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Linear Constraints in
Correspondence Analysis

UIf Béckenholt and Yoshio Takane

5.1 INTRODUCTION

In any correspondence analysis (CA) study, external information is of para-
mount importance. External information may refer, for example, to prior 3
knowledge about the row and column categories as well as expectations about -4
their multidimensional representation. At a minimum, external information is
necessary for an interpretation of the graphical representation, for instance,
when labeling the dimensions. We may also include external information in the
graphical display by fitting supplementary profiles (Greenacre 1984, p. 70) or 7§
by constraining the configuration. Both approaches are important tools in 4
highlighting interesting features of the data that otherwise may be overlooked. 3
However, in contrast to the use of supplementary points which do not affect k.

the CA solution, the direct incorporation of external information in the form §

of constraints often leads to simplified multidimensional displays (Bentler and 3
Weeks 1978, Carroll et al. 1980, Heiser 1981, p. 235, Ramsay 1982, Takane ~
1981). As a result, when analyzing the dependence between rows and columns,
constraints are useful in the search for meaningful patterns, particularly in
large data sets. The implementation and application of such constraints is the
topic of this chapter.

Perhaps the simplest application of constrained CA is to explore whether 3§
row and column scores satisfy the order implied by the categories’ labels (see ’_
Table 5.1), or, more parsimoniously, follow a linear order (Goodman 1991, 4
Gilula and Haberman 1988). Although CA makes no assumptions about the

spacing of the row and/or column scores, it is straightforward to estimate the

scores under a linear order constraint and to compare the constrained solution
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TABLE 5.1
Cross-classification of mental health status and parental socioeconomic status
: (Srole et al. 1962, p. 213).

Parental socioeconomic status stratum

Row

Mental health category A B C D E F totals

E el 64 57 57 72 36 21 307
% :Mild symptom formation 94 94 105 14t 97 71 602
k. Moderate symptom formation 58 54 65 77 54 54 362
¢ Impaired 46 40 60 94 78 71 389

k. Column totals 262 245 287 384 265 217 1,660

.Note: A is the highest and F is the lowest socioeconomic status category

& with its unconstrained counterpart. 1f the expectation about the spacing proves
,}f -adequate, differences to the optimal solution are minimal and more than offset
£ by the simplified and more parsimonious representation of the data. More
zgenerally, when the row or column categories form an (incomplete) factorial
k- design, dummy or contrast variables used to code that design may be applied

c3

' lto constrain the graphical representation (Nishisato 1980). For example,
> “Delbeke (1978) constructed different family compositions by factorially
f. combining the number of sons and the number of daughters (which ranged
g from 0 to 3), and asked 82 students to rank order the 16 compositions
k- according to their preference. In a constrained correspondence analysis of this
data set, Takane ef al. (1991a; see also Heiser 1981, p. 167) recoded the 16
family types as a factorial combination of the number of children and gender
bias (defined as the difference between number of sons and daughters). Takane
al’s results showed that interactions between both factors can be ignored
nd that, in support of theoretical notions about family composition
preferences (Coombs et al. 1973), subjects arrived at their preference
judgments for the 16 family types by adding their separate utilities for the two
gactors gender bias and number of children. Many other applications with

¢ literature. For example, Ekman’s (1954) similarity ratings among pairs of 14
spectral hues arc well described by a two-dimensional representation of the
color circle. An analysis of Torgerson’s (1958, p. 286) similarity data obtained
for nine Munsell colors yields also a two-dimensional representation that
corresponds closely to the colors’ brightness and saturation (Takane 1978,
Takane ef al. 1991a). Clearly, the inclusion of known physical properties of
the row and column categories in CA may not only reduce considerably the
number of parameters to be estimated but may also lead to a much simplified
interpretation of the data.
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In this chapter we distinguish three general applications for imposing
constraints in a CA. First, concomitant variables may be used to explain the
association structure in the table. The equidistant spacing constraint is a
simple example for this approach because it yields a readily interpretable
representation of the results. Second, it may prove beneficial to partial out
the effect of concomitant variables from a CA solution (Bockenholt and %
Béckenholt 1990, Gilula and Haberman 1986; van der Heijden ef al. 1989). 4
Third, in some applications it may be important to first partial out the effects .3
of a subset of the concomitant variables and then to relate the residual |
information to the association structure in the table (ter Braak 1988). By . %
incorporating external information through linear constraints on the row ;_‘
and/or column scores in these various ways, a representation of a contingency
table is obtained that is not only more parsimonious but is also easier to &
understand. As a result, applications of constrained CA may prove especially 4
useful in exploratory analyses of a contingency table (Escoufier and Junca
1986).

This chapter reviews and illustrates these three approaches for imposing
linear constraints in a CA. Most of the theoretical results presented here can 3
be found in Bockenholt and Béckenholt (1990), Golub and Underwood 3
(1970), Rao (1964), Takane and Shibayama (1991), and Takane et al. (1991b). 4;
In particular, we refer to the last reference for rigorous derivations and
comparisons between seemingly different approaches for incorporating linear ’
constraints in the analysis of a contingency table. E

.

52 CORRESPONDENCE ANALYSIS WITH LINEAR CONSTRAINTS

Correspondence analysis is a useful tool for obtaining a graphical display of i
the dependence between the rows and columns of a contingency table (e.g. F
Benzécri et al. 1980, Gifi 1990, Greenacre 1984, Lebart et al. 1984, Nishisato 3
1980). We first describe CA without constraints to introduce the notation used
in this chapter. Consider an I by J contingency table P with proportions pi;}
describing the joint distribution of two random categorical variables, X and 3
Y, with I and J categories, respectively. Let Dr and D. be diagonal matrices_
containing the row and column sums of P, respectively. CA is the generalized 3
singular value decomposition (GSVD) of g

A=D:'® —E)D:! =RD,C' .04

with E = D;1 1’ D, (where 1 is a unit vector), and Dy is a diagonal matrix with 1
min(J — 1, J — 1) singular values \ in descending order. The sum of the squared]

e
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singular values is called the total inertia, and is equal to the x 2-statistic for
‘independence’ divided by the sample size, n:

2
LNP=2

The standard row and column coordinates (Greenacre 1984, p. 94), R and C,
satisfy the restrictions R'DR=1=C'D,C and 1'D[R=0=1'DC. In
practice, the coordinates are computed by an ordinary SVD of the matrix Z:

Z=D; VP -E)D:V2=UD\V’ (5.2)
with U'U=1=V'V, and
R=D;7"2U  and C=D¢

The principal coordinates (Greenacre 1984, p. 90) are obtained by post-
multiplying the standard scores by Dy. Usually, the interpretation of the data
is based on a low-dimensional, graphical representation of the standard or the
principal coordinates and is guided by the available background information
about the row and column categories. In many applications, however, it may
. prove useful to explicitly take into account this background information when
-’:‘j estimating the scores. As a result, the interpretation of a constrained repre-
« sentation is straightforward and differences between constrained and uncon-
- strained solutions may point to unexplained features of the data. Linear
“ constraints may be imposed by either the null-space or the reparametrization
- method (Bockenholt and Béckenholt 1990, Takane ef al. 1991b). Both
. approaches can give identical results but because in some applications one
method may be easier to use than the other, we review both procedures in the
next two subsections.

5.2.1 The null-space method

According to the null-space method linear row and column constraints are
defined by

G'R*=0 and H'C*=0

where G=(D1|G,) is a known IXxK matrix of rank K. Similarly,
H = (D1 | Hy) is a known J x L matrix of rank L. The effects defined by the
matrices G and H are partialed out from the standard row and column scores

i denoted by R* and C*, respectively, by computing the complementary
g projection operators Qr and Qc

Q:=1-G(G'D/'G)'G'D!

c=1-HMH'D:H) 'H'D:?
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The constrained standard scores are then obtained by the SVD of

Z* = D7 V2Qu(P - E)Q{D¢ V2 = U*DXV™ (5.3)
with U*'U* =1=V*'V", yielding

R*=D;V2U* and C*=D"2V*

and, consequently, R*'DR* =1= C*'D.C* and 1'D,R* = 0=1'D.C". If
constraints are imposed only on the row scores H =Dl and, similarly, if

constraints are imposed only on the column scores G =D¢l. Thus, the -

matrices, Z* in (5.3) and Z in (5.2), are identical when G = D1 and H = D1.

5.2.3 The reparametrization method

A second approach for imposing linear constraints on the standard row and 3
column scores is given by

MR, = R" and NCs=C*

where M = (1| M.) is a known I x K matrix of rank K and N=(1|Ny) is a
known J x L matrix of rank L. The matrices Rs and C; contain the reduced
set of the scores. Thus, in contrast to the null-space method the constrained
standard row and column scores are obtained by directly reparametrizing the
unconstrained scores. The constrained standard scores are determined by
computing the projection operators O and O as

O;=DMM'DM) M’

and )
Oc = D-N(N'DN) "IN’
and performing the SVD of 3
Z* = D7 V20,(P - E)O{D¢ V2 = U*DYV* (5.4) &
with U*'U* = 1= V*'V*, and '
R*=D;2U* and C*=D¢V2V*

By setting M and N equal to an identity matrix we obtain the unconstrained ‘»
CA solution. '

5.2.3 Relationships between both methods

Because one can determine N(M) for a given H(G) and vice versa both the
null-space and the reparametrization method can yield the same or ortho-
complement results by appropriately defining the constraint matrices (Takane

et al. 1991b). For example, the reparametrization and the null-space method 4
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give identical results in the case of row constraints when O = Qx, and in the
case of column constraints when O¢= Q.. In contrast, if we impose con-
straints on the row scores, a residual analysis of the reparametrization method
with MRs = R* is equivalent to the null- -space method with G =DM, and a
residual analy51s of the null-space method with G’R* =0 is equivalent to the
reparametrlzatlon method with M = D;'G. In either case, Oy =1~ Q. or

DMM'DM)'M' =G(G'D;'G)"'G'D;!

Similarly, in the case of column constraints, the null-space and the
- reparametrization methods yield complementary results when NCs = C* and
H = DN, or when H'C* =0 and N = D¢ !H.

Clearly, the actual choice of the reparametrization or the null-space method
- depends only on the empirical application. The reparametrization method
seems more natural when we want to directly constrain the coordinates, while
the null-space method seems more natural when we want to exclude the effects
- of certain variables in interpreting a CA solution.

To summarize, we can decompose the A matrix in (5.1) into four
components,

A =D 0P - E)O! + O, (P — E)I - O))
+ (L= 0P - E)OL+ (1= O )P -~ E)Y1 = O) ' )D!

Each component refers to a particular effect of the constraints. To quantify
- the effects of these constraints the total inertia, £\2, may be decomposed into
the corresponding four parts:

IN? = tr(A' O:D;AOD.) + tr(A’ O;D;A (I — Oc) D)
+tr(A" (I - Or)D;AOD.) + tr(A' (I — O )D:A(I - Oc) D)

" The first component gives the part of the inertia obtained when both row and
column scores are constrained, the sum of the first and second component
equal the part of the inertia when only the row scores are constrained, and the
- sum of the first and third component equal the part of the inertia when only
P the column scores are constrained. Thus, the ratio of the first component and
the total inertia gives the proportion of the y2-statistic that is accounted for
when both row and column constraints are imposed.

-‘i; In some applications it may prove useful to combine the ideas underlying
e “the reparametrization and the null-space method. For example, a set of con-
§> comitant variables for the row scores may be divided into two subsets denoted
I by X1 and X; and one may be interested in examining the effects of Xz while
: statistically controlling for the effects of X;. This is accomplished by first
artialing out the effects of X; from Xa:

X7 = - X1(XiD:X1) "X{D,)X;

«In the next step the residual information is related to the association structure



118 U. Bdockenholt and Y. Takane

in the table by setting My equal X3 in (5.4) (ter Braak 1988). Obviously, a
similar procedure can be applied for the analysis of the column scores.

Only one set of constraints can be imposed by the reparametrization or the
null-space method. Occasionally, it may be more appropriate to impose
different sets of constraints on the scores corresponding to each singular value.
For instance, it may be useful to impose uniform spacing on the scores of the
first singular vector but equality constraints on the scores of the second
singular vector (for an application see Gilula and Haberman 1986). Different
constraints can be introduced by extracting the row and column scores
corresponding to the first singular value N and computing the rank-one
reduced matrix Z:

Zi=(A—-ufui" )P -E)d—-vivi')

where uf and vf are the vectors corresponding to Af. In the next step, we
substitute ZT for (P — E) in (5.3) or (5.4) and apply the different constraint
matrices for the row and column scores corresponding to the second singular
value. Although this approach is computationally straightforward it does not
satisfy a global fitting criterion and different solutions may be obtained
depending on the order by which the constraints are imposed. Consequently,
it may be more appropriate to use an algorithm that allows for the simul-
taneous fitting of different constraint sets (Takane et al. 1991a).

5.3 APPLICATIONS

To illustrate the null-space and the reparametrization method, we report two
examples in this section. For the sake of simplicity and reproducibility of the
results, the selected data sets are rather small and do not represent typical
applications of CA. Procedures for imposing the linear constraints are easily
implemented, particularly when matrix commands (such as in SAS) can be
used. For example, Blasius and Rohlinger (1989) provide a comprehensive
documentation of a CA program written in SAS PROC MATRIX. The
necessary modifications for constrained CA are straightforward and involve
only the computation of the projection matrices.

5.3.1 Mental health status and parental socioeconomic status

The first data set (in Table 5.1) is taken from a study about the relationship
between mental health status and parental socioeconomic status (Srole ef al.
1962, p. 213). Subjects were assigned to one of four health categories and to
one of six socioeconomic status strata (SES) according to composite scores
derived from their fathers’ schooling and occupational level. The SES were
designated A through F to describe a sequence from highest to lowest position.
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Previous analyses of this table can be found, for example, in Haberman
(1979), Gilula (1986), Gilula and Haberman (1986), and Goodman (1985).
This example illustrates in a simple way the equivalence between the null-space
and the reparametrization method.

The independence model for the 4 x 6 table yields a Pearson x2-statistic of
46 with 15 degrees of freedom. To examine the relationship between the rows
¥ and columns of this table an unrestricted CA was computed which yielded
i three singular values A\ =0.161, X\, =0.037, and \; =0.017. The corre-
sponding proportions of the x2-statistic are 0.94, 0.04, and 0.02. Clearly, a
one-dimensional solution is sufficient for representing this data set. The first
column of Table 5.2 contains the standard row and column scores obtained
from (5.2). These scores reveal that the row and column category orders are

B natural. However, the scores corresponding to the second and third row are

- close together, indicating that the prevalence of ‘mild’ and ‘moderate’
symptoms is similar across socioeconomic statuses. The first and second as
well as third and fourth column scores are also poorly distinguished. A
simplified representation of this data set may be thus obtained by constraining

TABLE 5.2
Standard row and column scores for Table 5.1 by unconstrained and constrained
CA.
(1) &) ) @ ®)

£\ 0.161 0.156 0.157 0.150 0.158

g % - 94 88 89 81 91

- No. of parameters 15 5 3 1 1
B 1, -1.609  -1.439 -1.617 -1439 -1625
k. I -0.183 -0.481 -0.149 —-0.481 -0.077
g 1 0.088 0.477 0.037 0.477 -0.077
ra 1.472 1.436 1.472 1.436 1.472
ci1 -1.122 -1.067 -1.539 -1.539 -1.130
€2, -1.147 . -1.153 -0.918 -0.918 -1.130
Ci —-0.366 -0.343 —0.298 -0.298 -0.117
B Cai 0.055 0.005 0.323 0.323 -0.117
¥ Cs) 1.025 0.952 0.944 0.944 0.896
Cs1 1.783 1.874 1.565 1.565 1.909

Note: (1) Standard scores obtained from the first dimension of the unconstrained CA solution.
(2) Row scores are restricted to follow a linear order. (3) Column scores are restricted to follow
a linear order. (4) Both row and column scores are equidistant. (5) Row and column scores
are aquidistant and satisfy some equality constraints.

The number of parameters for unrestricted CA are equal to the degrees of freedom for the
% independence model. The remaining solutions are one-dimensional and the number of
. parameters is determined by ((/+J— 3) — number of linear restrictions}. For example, in

~ columns (4) and (5) )\ is the only parameter to be estimated.
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the row scores, the column scores, or both to follow a linear order which takes
into account that some of the categories are so similar that they can be
combined.

To impose these constraints we make use of orthogonal polynomials which
are convenient for subdividing the total variation of the scores into linear,
quadratic, cubic, etc., components. Although higher-degree polynomials may
be difficult to interpret, polynomials are quite useful in describing or approxi-
mating general forms of relationships within a limited value range. As
discussed in the previous section, the reparametrization method for restricted
CA is identical to simple CA when the constraint matrices M and N are set
equal to an identity matrix. The basis vectors spanning the vector space of I
may be changed without affecting the results of CA. For example, M4 may be
equal to a matrix of orthogonal polynomials,

3 1 -1
~1 -1 3
e
3 01 1

with the first, second, and third columns corresponding to the linear,
quadratic, and cubic effects, respectively (see Bock 1975, p. 585). However, by
considering the one-dimensional subspace spanned by the first column vector
with

Mi=[-3 -1 1 3] (5.5)
we restrict the standard row scores obtainéd from Table 5.2 to be equally
spaced. Thus, the constrained standard scores conform to the linear ordering

* * * L * %k
riy—nrn1=ra—ra=ri—ra

To satisfy the additional equality constraint between the scores of the seconq
and the third mental health categories: g

rAi=rii (and rfi—rii =131 - ri)

we set ‘
Mi=[-1 0 0 1] (5.6) 4
L. :

Note that the equality constraint, r3) = r31, is tantamount to combining the 3
second and third categories. Thus, an equivalent approach for estimating the ‘%
scores under the equality and linear spacing constraints is to group the second
and third mental heaith category and to apply the linear constraint,

Mi=[-1 0 1]

to the collapsed table.
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In a similar fashion we may constrain the column scores to follow a linear
order. To facilitate the comparison between the unconstrained and
constrained representation, we specify first N« to be a matrix of orthogonal
polynomials for the unconstrained estimation of the column scores

-5 5 -5 1 1
-3 -1 7 -3 5
-1 -4 4 2 —10
1 -4 -4 2 10
3 -1 -7 -3 -5
5 5 5 1 1

N

(see Bock 1975, p. 585). The linear spacing of the column scores is obtained
" by using only the first column of Ny:

Ni=[-5 -3 —1>1<1 3 5] (5.7)

Because the scores corresponding to the A and B and the C and D categories
“are poorly distinguished, we restrict the corresponding scores to be equal,

%* * % %
cin—cr=cy—cqa=90

ThlS equality constraint in combination with the linear ordering constraint
. " defined by (8),

cit — ¢ =il — ¢ = ¢ — ¢y
is obtained by setting
Ne=[-7 -7 -1 -1 5 11] (5.8)

Because equality constraints are equivalent to collapsing the A and B as well
f‘,‘,.as the C and D categories, we obtain the same results by applying the linear
léconstraint

Rue:

Ni=[-3 -1 1 3] (5.9

_‘71 ‘The same constraints can be imposed by the null-space method. For
’example, we obtain a linear order for the standard row scores by partialing
.out the effects of the quadratic and the cubic trends. In this case G« may be

pecified as
1 -1 -1 1
G4=[_1 3 _3 l] (5.10)

'Fand it is easy to see that Ga specifies the ortho-complement space of M,
_ in (5.5). Thus, by eliminating the effects of the quadratic and cubic trends,
only the linear effect remains and the standard row scores conform to an
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equidistant spacing. The matrix G« can be specified in different ways. For
instance, an equivalent formulation of the linear spacing constraint given by

(5.10) is
, 1 -2 10
G*“[o 1 -2 1]

The two rows of G4 stipulate that there is no quadratic trend for any triple
of consecutive categories. To satisfy the additional constraint for the data set
that the scores corresponding to the second and third mental health categories
are equal, we obtain

1T -1 -1 1
x = 5.11
G Lo 1 -1 o] .11
or, equivalently,
[1 -2 01
'=
G o 1 -1 0]

In both cases, the second column of Gy stipulates equality between the second
and third row score.

A linear ordering of the column scores is obtained by defining the matrix He
to contain the quadratic, cubic, quartic, and quintic contrasts,

5 -1 -4 -4 -1 5
, _} =5 7 4 —-— 4 -7 5
Hi=1 1 -3 2 2 -31 .12
-1 5 —10 10 -5 1
or, equivalently:
1 -2 1 0 0 0
0 1 -2 1 00
f —
Hi=ly 0 1 -2 10
1

0 0 0 1 -2

To examine the linear spacing constraint with equated first and second and
third and fourth column scores, one may set Hs to

1 0 -2 0 10

o 0 1 0 -2 1

1 -1 0 0 00 G.13)
0

0 0 1 -1 0
While the first two columns specify that there is no quadratic trend, the

remaining columns imply the relevant equality constraints between the column
scores.
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Table 5.2 lists some of the results obtained when applying these constraints
, to the data in Table 5.1. The second column of Table 5.2 contains the standard
k- row scores that satisfy a linear ordering defined by (5.5) or (5.10), the third
& column contains the constrained column scores defined by (5.7) or (5.12), and
the fourth column contains the scores obtained by simultaneously constraining
the row and column scores. The last column of Table 5.2 contains the
constrained scores obtained by simultaneously imposing (5.6) and (5.8) (or
(5.11) and (5.13)). In the second and third rows of Table 5.2 we also give the
number of estimated parameters and the percentage of the x2-statistic
accounted for by the first singular value, respectively.

Overall, the solution given in the fifth column is the most preferable. It
requires the estimation of only one parameter and accounts for about 91% of
the x?-statistic. From this representation, we conclude that the prevalence of
well-being decreases with the socioeconomic status groups and that the
opposite pattern is observed for the impaired mental health category. There
is no appreciable difference between the mild and moderate symptom
formation categories. Both categories’ prevalences are similar across the status
groups and can be combined. Moreover, the first and the second as well as the
third and the fourth socioeconomic status categories relate to the mental
health categories in a similar way and can also be combined with little loss in
information. When combining these categories equally spaced row and column
scores are obtained. As a result, the constrained CA yields a parsimonious and
Bl - compact representation of the relationship between the mental health and
e socioeconomic status categories.

k- 5.3.2 Magazine reading habits

In this study, reported by Bockenholt and Béckenholt (1991), 347 students
- were asked about their reading habits for the eight magazines: People, Rolling
g Stone, Time, Sports Hllustrated, Scientific American, National Geographic,
Readers’ Digest, and TV Guide. These students were assigned to four groups
f.and Table 5.3 lists how many members in each group read the magazines on
a regular basis. For example, 31 out of a group of 91 students read regularly
E the magazine People. A subset of the respondents (53 students) was also asked
gfto evaluate the magazines on several five-point rating scales. The total inertia
E of the data in Table 5.3 is 0.355 and the percentages of the inertia are 52.4,
g 41.1, and 6.4. A two-dimensional representation seems adequate and Figure
f-5.1 contains the principal coordinates obtained from the CA of these data. To
g-obtain a simultaneous representation of the groups’ selection and non-
f selection frequencies of the magazines we also analyzed the doubled data
E matrix but obtained virtually the same results.

: We interpret the graphical display by inspecting groupings and contrasts in
he configuration (Greenacre and Hastie 1987). Thus, differences between
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TABLE 5.3

Tabulation of selection frequencies for eight magazines.
Group PE RS TI SI SA NG RD TV Total Size

1 31 55 1 55 24 16 6 47 235 91

2 32 20 0 3 4 1 15 14 89 57

3 71 59 66 28 11 23 79 39 376 150

4 8 6 30 10 23 32 12 5 126 49
Total 142 140 97 96 62 72 112 105 826 347

Note: PE = People, RS = Rolling Stone, T| = Time, S! = Sports Illustrated,
SA = Scientific American, NG = National Geographic, RD = Readers’

Digest, TV = TV Guide

Unconstrained Solution

1.0 T T T

SA
NG

TV
0.0 RS

A3 = 0.146 (41.1%)

PE
-0.5 RD

-1.0 | 1 ]

T1

-1.0 —0.5 0.0 0.5
A2 = 0.186 (52.4%)

Figure 5.1 Two-dimensional display of the principal row and column coordinates

obtained by unconstrained CA.

Note: PE = People, RS = Rolling Stone, Tl|= Time, Sl=Sports lllustrated, SA = Scientific f,
American, NG = National Geographic, RD = Readers’ Digest, TV = TV Guide. The four groups g

are distinguished by the numbers 1 to 4.

10 3
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magazines along an axis are small to the extent they were read on a similar
i recurrent basis. We note that the first axis separates Scientific American,
National Geographic, Time, and Readers’ Digest from the remaining four
i magazines, and that the second axis separates Scientific American, National
Geographic, and Sports Ilustrated from People and Readers’ Digest. To
guide the interpretation of these principal axes, the ratings of the magazines
were averaged over the 53 respondents and included in the matrix N, to
; constrain the column scores. This analysis showed that the two rating scales
r ‘educational’ and ‘specialized’ were particularly useful in distinguishing the
magazines in the two-dimensional representation. Setting N, equal to the 8x2)
# matrix of averaged ratings (for the eight magazines and the two attributes
.. ‘educational’ and ‘specialized’) accounts for 87.6% of the total inertia. Figure
5.2 depicts the corresponding two-dimensional representation obtained from
the column-constrained CA. This analysis indicates that National Geographic
and Scientific American are perceived as more and TV Guide as less

3 Constrained Solution
L 1.0 T T T
SA
4 ]
0.5 NG

9 S

' %

Lo RS

oy o TV x i

)

o

-y 3
o 2 PE RD

0.5 —
ﬁ.”:
y

E

f -1.0 L ! |

‘r -1.0 -0.5 0.0 0.5 1.0

Af = 0.178 (57.2%)

FIGURE 5.2 Two-dimensional display of the principal row and column coordinates
obtained by reparametrization-method constrained CA.
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educational magazines. Readers’ Digest and Scientific American are at the two
extreme positions on a continuum of increasing specialization.

A powerful comparison of the differences between the unconstrained and
the constrained solution is provided by the null-space method with H = DcN.
This residual analysis examines the effects not accounted for by the two rating
scales. Figure 5.3 depicts the first two dimensions which account for 10.3% of
the total inertia. The first axis indicates that the constraints represent the
relationships between Scientific American and Sports Illustrated less well than
they represent the relationships among the other magazines. As a result, group
2, whose position is most affected by this result, is placed at the lower end of
this axis. Overall, however, the residual analysis provides further support for
the usefulness of the constraints. With the one minor exception, the mean
ratings capture well the multidimensional structure of the magazines, and,
consequently, facilitate a straightforward interpretation of the data.

Residual Constrained Solution
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FIGURE 5.3. Two-dimensional display of the principal row and column coordinates
obtained by null-space-method constrained CA.
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5.4 CONCLUDING REMARKS

This chapter presented two approaches for imposing linear constraints on the
row and/or column scores by restricting the CA solution to lie either in a
particular subspace (reparametrization method) or to be orthogonal to a
subspace (null-space method). In both cases, we obtain a solution not in the
full-space as in unconstrained CA but in a subspace that is directly or
indirectly specified by external information. We see three major advantages
in applying constraints in a CA. First, because of its simplicity and low
computational cost for large problems, CA provides frequently an excellent
starting point for further refinements and model building. Constraints that are
formulated on the basis of some theoretical considerations can be examined
for their empirical validity before more complicated models are applied. In
particular, by incorporating hypothesized data structures in the singular value
decomposition we gain much additional flexibility in developing a meaningful
multidimensional representation of a data table. Similarly, the option to
partial out the effect of certain variables in constrained CA should prove

- especially beneficial for the decomposition and graphical display of residuals
" obtained from models other than the log-linear independence model (de Leeuw
¢~ and van der Heijden 1988, van der Heijden ef al. 1989, Novak and Hoffman
: 1990). Second, constrained representations of a data matrix are more

parsimonious and stable than unconstrained solutions and less sensitive to
undesirable effects produced by, for example, outliers or coding errors. Third,

- by imposing constraints the search for patterns in the data may be consider-
" ably simplified. Although in some applications data structures may reveal
' themselves in an unconstrained analysis, in general, it is not trivial to separate
. ‘noise’ from ‘signals’ in a large data set. In these cases, constraints can prove
" helpful by either eliminating certain effects from the data or by directly

imposing a certain structure. The resulting gains in interpretability may far
exceed the loss in information as a result of the constraints.




