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1. Introduction

Many multivariate analysis (MVA) techniques often used in psychometrics are based
on singular value decomposition (SVD) of a certain matrix. In principal component analy-
sis (PCA), for example, we obtain SVD of a data matrix, Z, while in canonical correlation
analysis (CANO) we obtain SVD of PgPpy, where Pg and Py are orthogonal projectors
defined by two sets of variables, G and H, respectively. Quite often, however, a matrix
whose SVD we are to obtain is defined as a product (e.g., AB) and/or a “quotient” (e.g.,
AB~, the product of A and B, which is roughly analogous to the “quotient” of two
numbers) of two or more matrices. For example, Takane & Koene (1997) have proposed a
regularization technique for multi-layered back-propagation networks which involves SVD
of ZW, where Z is a matrix of input data, and W is a matrix of weights representing the
strengths of connections between input neurons and output neurons. As another example,
consider matrix PPy above. This matrix can be viewed as the product of six matrices,
G, (G'G)", G, H, (HH)™, and H', which in turn can be viewed as the product of four
matrices, (G7')’, G, H and H;, where X is a least squares g-inverse of X. (Note that
G, = (G'G)~G/, but GG}, = GGy, where Gj, is a least-squares reflexive inverse of G.
The same for H.) In such cases, numerically more stable results can be obtained by apply-
ing the product SVD (PSVD; Fernando & Hammarling, 1988), the quotient SVD (QSVD;
Van Loan, 1976), or combinations of them (De Moor, 1991), rather than forming a prod-
uct first and then applying the ordinary SVD to the product. In this paper, we show how
we can effectively use these new kinds of SVD in representative methods of multivariate
analysis.
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2. PSVD

Let A (m x n) and B (p X n) be two matrices, and let r = rank(A) — ra.nk(AB')
t = rank(B) — rank(AB’), s = rank(AB’), and k¥ = s 4+ r 4+ t. Then, the following pair of

decompositions,

A=UDX"!, and B =XJV/, (1)

is called PSVD of the matrix pair, A and B’, where U and V are orthogonal matrices of
order m and p, respectively, X is a square nonsingular matrix of order n, and D and J are
such that
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where S is a pd diagonal matrix, and ¢ = m—(s+r) and j = p—(s+t). SVD(AB') follows
from AB' = U(DJ)V’, where DJ = diag(S,0,0). S contains nonzero singular values of
AP in its diagonal.

PSVD of matrix pair (A, B’) is denoted as PSVD(A,B’). The PSVD can easily be

generalized to more than two matrices.

3. QSVD
Let A and B be as defined in the previous section. Let s = dim(Sp(A’) N Sp(B’)) =
rank(A) + rank(B) — k, r = k — rank(B), and ¢ = k£ — rank(A), where k = rank ( g =
s+r+t=dim(Sp(A’) U Sp(B’)). Then, the following pair of decompositions,
A=UDX"!, and B=VIX', (2)

is called QSVD of the matrix pair, A and B, where U, V and X are the same as defind in
the previous section, and D and J are such that
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where T is a pd diagonal matrix, and ¢ = m — (s+r) and j = p— (s +1t). QSVD of matrix
pair (A, B) is denoted as QSVD(A, B).

Just as SVD(A) is the SVD counterpart of the eigenvalue-vector decomposition of
A'A, SVD(ABy/ 4 ,) is the SVD counterpart of the generalized eigenvalue-vector decom-




position of A’A with respect to B'B. Here, By 44 = QnjaaBr, where Quuy =
I-N(N'A’AN)"N’A’A and N is such that Ker(B) = Sp(N), satisfies

1. BB]—\}/AIAB = B.
2. (BBI_V/A’A), - BB]-:I/A’A'
3. (A,AB]_V/A’AB)I = A’AB;J/A/AB.
SVD(ABy, 4/4) can be derived from QSVD(A, B) by
AByiaa = AQuaaBr
= UDX—IQN/AlAXJI_V,

= UDQN./D,DJ,'V'
= U(DJ;/"/D'D)VI’ (3)
where N* = X™'N and Jy. /pp = Qne/ppdr - The latter has a property similar to

that of By 44 mentioned above. Note that A'A = (X'YD'DX™, and Qu/as =
I - XN*(N*D'DN*)"N*D'DX ™. Note also that
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where Z;’s and E;’s are arbitrary.

DJy.,pp = diag(T,0,0), where T contains nonzero finite singular values of A with

respect to B in its diagonal. (All improper (infinite and indeterminate) singular values of
A with respect to B become 0 in SVD(ABYy, 4,4)-)

QSVD has been generalized to apply to three matrices, A, B, and C, simultaneously,
which obtains SVD((Cjy/44/)'ABjy/414), Wwhere M is such that Ker(C) = Sp(M). This is

called restricted SVD (RSVD; Zha, 1991; De Moor & Golub, 1991).

4. Applications

How can we effectively use PSVD and QSVD (RSVD) in representative methods of
MVA? Let us take constrained PCA (CPCA; Takane & Shibayama, 1991) as an example.
CPCA of data matrix Z with two external constraint matrices, G and H, and two metric
matrices, K and L, is denoted by CPCA(Z, G,H)g ;. This method subsumes a number of
existing MVA techniques as special cases, so that discussing the use of PSVD and QSVD in




this context entails their relationships to a host of other techniques. For example, canonical
correlation analysis (CANQO) between G and H follows from CPCA when Z =1, K =1
and L = I, while constrained CANO (CANOLC; Yanai & Takane, 1992) between X and
Y with constraints G and H by setting Z = X'Y, K=Tand L=1.

For simplicity, we temporarily assume that K = I and L = I. Then, CPCA amounts
to SVD(PgZPpg). One way to obtain this is via PSVD(G, (G'G)~,G',Z,H,(H'H)~, H').
A little more elegant way is via RSVD(G'ZH, G, H). Note that in this case both Qp/ 414 =
I and Qprpaa =1, so that Hy pizigezy = Hi and Gyyezppizie = Gi. This is equiv-
alent to PSVD((G;y), G',Z,H, H;). Perhaps the most elegent way is to combine PSVD
and RSVD into RSVD(PSVD(G',Z, H), G’, H), which De Moor (1991) calls QPPQ-SVD.

With non-identity metric matrices, K and L, let Rx and R, be square-root factors of
K and L. We then obtain RSVD(PSVD(G/,K,Z,L,H), PSVD(R), G), PSVD(R}, H)).
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SUMMARY

Many multivariate analysis techniques are based on singular value decomposition
(SVD) of a matrix product or quotient. This paper discussed basic properties of the
product SVD (PSVD) and the quotient SVD (QSVD) that obtain SVD of a matrix product
and a matrix quotient, respectively, without explicitly forming them. It was shown how

they could effectively be used in representative MVA techniques such as constrained PCA
(CPCA).




