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ABSTRACT

Constrained principal component analysis (CPCA)
incorporates external information into principal com-
ponent analysis (PCA). CPCA first decomposes the
data matrix according to the external information
(external analysis), and then applies PCA to decom-
posed matrices (internal analysis). The external anal-
ysis amounts to projections of the data matrix onto
the spaces spanned by matrices of external informa-
tion, while the internal analysis involves the gener-
alized singular value decomposition (GSVD). Since
its original proposal (Takane & Shibayama, 1991),
CPCA has evolved both conceptually and method-
ologically; it is now founded on firmer mathematical
ground, allows a greater variety of decompositions,
and includes a wider range of interesting special cases.
In this paper we present a comprehensive theory and
various extensions of CPCA. We also discuss four spe-
cial cases of CPCA; 1) CCA (canonical correspon-
dence analysis) and CALC (canonical analysis with
linear constraints), 2) GMANOVA, 3) Lagrange’s the-
orem, and 4) CANO (canonical correlation analysis)
and related methods.

1. DATA REQUIREMENT

PCA is often used for structural analysis of multivari-
ate data. The data are, however, often accompanied
by auxiliary information. CPCA incorporates such
information in representing structures in the data.
CPCA allows specifying metric matrices that modu-
late the effects of rows and columns of a data matrix.
There are thus three important ingredients in CPCA;
the main data, external information and metric ma-
trices.

1.1 The Main Data: Let us denote an N by n
data matrix by Z. Rows of Z represent cases, while
columns represent variables. The data can be any
multivariate data. To avoid limiting applicability of
CPCA, no distributional assumptions will be made.
The data could be either numerical or categorical, as-
suming that the latter type of variables is coded into
dummy variables. Mixing the two types of variables
is also permissible. The data may be preprocessed or
not preprocessed. Preprocessing refers to centering,
normalizing, standardizing, or any other prescribed
data transformations. Results of PCA and CPCA are
typically affected by what preprocessing is applied, so
whatever the decision on the preprocessing must be
made deliberately in the light of investigators’ empir-
ical interests.

1.2 External Information: There are two kinds of
matrices of external information, one on the row and
the other on the column side of the data matrix. We
denote the former by an N by p matrix G, and the
latter by an n by ¢ matrix H. When there 1s no

special row and/or column information, we may set
G =1Iy and/or H=1,.

When the rows of a data matrix represent sub-
jects, we may use subjects’ demographic information,
such as IQ, age, level of education, etc, in G. For ex-
ample, we may take a matrix of dummy variables for
G indicating subjects’ group membership. We then
analyze the differences among the groups.

When the columns of a data matrix represent
stimuli, we may take a matrix of descriptor variables
of the stimuli as H. When the columns correspond
to different within-subject experimental conditions,
H could be a matrix of contrasts, or when the vari-
ables represent repeated observations, H could be a
matrix of trend coefficients. There are several poten-
tial advantages of incorporating external information
(Takane, Kiers & de Leeuw, 1995). By incorporat-
ing external information, we may obtain more inter-
greta.ble solutions. We may also obtain more sta-

le solutions by reducing the number of paramert-
ers to be estimated. We may investigate the empir-
ical validity of hypotheses incorporated as external
constraints by evaluating the goodness of fit of the
hypotheses. We may predict missing values via ex-
ternal constraints which serve as preéictor variables.
In some cases we can eliminate incidental parameters
by reparameterizing them as linear combinations of a
small number of external constraints.

1.3 Metric Matrices: There also are two kinds of
metric matrices, one on the row side, K, and the other
on the column side, L. Metric matrices are assumed
to be nnd. They are closely related to the criteria
employed in fitting models to data. If coordinates
that prescribe a data matrix are mutually orthogo-
nal and have comparable ascales, we may simply set
K =1 and L = 1. This implies that we use the un-
weighted LS criterion. However, when variables in a
data matrix are measured on uncomparable scales, a
special nonidentity metric matrix is required, leading
to a weighted LS criterion. It is common, when scales
are uncomparable, to transform the data to standard
scores before analysis, but this is equivalent to using
the inverse of the diagonal matrix of sample variances
as L. A special metric is also necessary when rows
of a data matrix are correlated. The rows of a data
matrix are usually assumed statistically independent,
which can be justified when they represent a random
sample of subjects from a target population. They
tend to be correlated, when they represent, for exam-
ple, different time points in sigle-subject multivariate
time series data. In such cases, a matrix of serial
correlations has to be estimated, and its inverse be
used as K. When differences in importance and/or
in reliability among the rows are suspected, a special
diagonal matrix is used for K that has the effect of
differentially weighting rows of a data matrix.

When columns of a data matrix are correlated, no
sEecial metric matrix is usually used. However, when
the columns of the residual matrix are correlated
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and/or have markedly different variances after a
model is fitted to the data, the variance-covariance
matrix among the residuals may be estimated, and
its inverse be used as metric L. This has the effect of
improving the quality of parameter estimates by or-
thonormalizing the residuals in evaluating the overall

oodness of fit of the model. Meredith & Millsap
%1985) suggests to use reliability coefficients or in-
verses of variances of anti-images (Guttman, 1953) as
a nonidentity L. Although as typically used, PCA is
not scale invariant, Ra.o%1964) has shown that spec-
iffying certain non-identity L matrices have the effect
of attaining scale invariance.

2. BASIC THEORY

We present CPCA in its general form. The provision
of nonidentity metric matrices widens the scope of
CPCA. For example, it makes correspondence analy-
sis of various kinds (Greenacre, 1984; Nishisato, 1980;
'(I}‘af.’k(z;ie, Yanai & Mayekawa, 1991) a special case of

2.1 External Analysis: We postulate the following
model for Z:

Z = GMH' + BH' + GC + E, (1)

where M (p by ¢), B (N by ¢), and C (p by n) are
matrices of unknown parameters, and E (N by n) a
matrix of residuals. The first term in model (1) per-
tains to what can be explained by both G and H,
the second term to what can be explained by H but
not by G, the third term to what can be explained
by G but not by H, and the last term to what can
be explained by neither G nor H. We assume that
metric matrices, K and L are both nnd, and that
rank(KG) = rank(G), and rank(LH) = rank(H).
These conditions are necessary for Pg/x and Pyt
(defined below) to be projectors. Model (1) is under-
identified. To identify the model, it is convenient
to impose the orthogonality constraints, G'’KB = 0,
and H'LC' = 0.

Model parameters are estimated so as to minimize
the sum of squares of the elements of E in the metrics
of K and L. That is, we obtain min SS(E)k,; with
respect to M, B, and C, where

f = SS(BE)k,z = tr(E'KEL). @)

This leads to the following LS estimates of M, B, C,
and E:

M = (G'’KG)"G'KZLH(H'LH)", (3)
B = K"KQg,x ZLH(H'LH)", (4)
C = (G'KG)"G'’KZQjy, LL™, (5)

and
E=2-Pg/kZPy; — K KQg/xZPy/
- Pg/kZQy/LL™, (6)

where superscript “~” indicates a g-inverse of a ma-
trix, Pg/x = G(G'’KG)"G'K, Qg/x =1-Pgyx,

Py = HH'LH)"H'L, Qy/r = 1-Ppg/L. Ma-
trices Pg/x, and Qg x are projectors such that
P%,x = Pg/x, Q¢/x = Qq/kr Po/xkQaix =
Qg/kPa/k = 0, PgxKPg/k = PgxK =

KP¢/k, and Qg xKQg/x = Qg kK = KQg k-
Similar properties hold for Pg/r and Qpgyy. They

reduce to the usual (I-orthogonal) projectors when
K=IandL=1

Putting the LS estimates of M, B, C, and E above
in model (1) yields the following decomposition of the
data matrix, Z:

Z="Pg/x 2Py + K KQq/xZPy,
+ PG/KZQ,H/LLL— + (Z - Pg/KZP,H/L
- K KQg/xkZPy — Pa/xZQy/LL7). (7)

The four terms in (7) are mutually orthogonal with
respect to K and L, so that

$S(Z)x,r = SS(GMH')k 1 + SS(BH )k
+8S(GC)k L + SS(E)k,L- (8)

That is, sum of squares of Z is decomposed into the
sum of sums of squares of the four terms in (7).

When K and L are both nonsingular, K"K = I
and L™L = I, so that decomposition (7) reduces to,

Z = Pg/kZPh+Qe/xZPy/1
+Pe/kZQyL + Qa/x ZQm/r,  (9)

and (8) to

SS(Z)k,L = SS(Pa/k TPy L)k L
+ SS(QG/KZP}{/L)K,L
+ SS(Pe/kZQy/L)K, L
+55(Qa/xkZQ/L)K L- (10)

2.2 Internal Analysis: In the internal analysis, the
decomposed matrices in (7) or (9) are subjected to
PCA either separately or some of the terms combined.
Decisions as to which term or terms are subjected
to PCA, and which terms are to be combined, are
dictated by researchers’ own empirical interests. For
example, PCA of the first term in (7) reveals the most
revailing tendency in the data that can be explained
gy both G and H, while that of the fourth term is
meaningful as a residual analysis (Rao, 1980; Yanai,
1970).
P)CA with nonindentity metric matrices requires
the generalized singular value decomposition (G%VD)
with metrics K and L, as defined below:

Definition (GSVD): Let K and L be nnd matrices.
Let A be an N by n matrix of rank . Then,
RixAR; = RxUDV'Ry (11)

is called GSVD of A under metrics K and L, and is
written as GSVD(A)k, L, where Rg and Ry are such

that K= RkRy and L=R.R}, U (N by r) is




such that U'KU =1, V (n by r) is such that V'LV =
I, and D (r by r) is diagonal and pd. When K and
L are nonsingular, (11) reduces to

A =UDV/, (12)

wglere U, V and D have the same properties as
above.
GSVD(A)k,z can be obtained as follows. Let the

usual SVD of Rx AR be denoted as
R4 AR; = U*D*V*’, (13)

Then, U, V and D in GSVD(A)g, 1 are obtained by
U=(Rg)"U", V=(R])"V*,and D=D". It can
easily be verified that these U, V and D satisfy the
required properties of GSVD.

GSVD plays an important role in CPCA. The fol-
lowin§ two theorems (given without proof) are ex-
treme g useful in facihitating computations of SVD

and GSVD in CPCA.

Theorem 1. Let T (N by ¢t; N > t) and W (n
by w; n > w) be columnwise orthogonal matrices,
ie.,, T'T =Iand W'W = 1. Let the SVD of A (¢
by w) be denoted by A = U4D4V/,, and that of
TAW’' by TAW' = U*D*V*. Then, U* = TU,
(Usa = T'U"), V' = WV, (V4 = W'VY), and
D4 =D*.

Theorem 2. Let T and W be two matrices such
that TAW’ can be formed. Let GSVD(TAW')k
be denoted as UDV’ and GSVD(A)r k7w Lw as
UsD4V). Then, U=K"KTU,4, V=L LWV,
and D = Dy, and Uy = (T'KT)"T'KU, V, =
(W/LW)~"W'LV and D4 = D.

In some cases, GSVD(M)g'k g, H'LH, Where M is
given in (3), may be of direct interest. For example,
Takane & Shibayama (11,991) discussed vector pref-
erence models, in which K = I, L = I G = 1,
and H is a design matrix for pair comparisons. In
those models M contains scale values of stimuli, and
consequently GSVD(M)r g'g is of direct interest.

GSVD(M)G/ K¢, m'Lg may be calculated directly, or
indirectly from the related GSVD discussed above. In
particular, if M = Up Dy, V', represents GSVD
(M)¢'k ¢ m'LH, then because of Theorem 2, Uy =
(G'’KG)"G'KU, V)y = (HLH)"H'LV and Dy =
D,or U=K KGUy, V=L"LHV) and D =
Djs. (Note that U = GUp and V = HV )y, when
K and L are nonsin§ular.) Ups and Vs are the re-
gression weights applied to G and H, respectively, to
obtain U and V, respectively. This is analogous to
canonical correlation analysis between, say, G and H,
in which canonical weights are obtained by GSVD
((G'G)~"G'H(H'H)~)g'G,u'H, Whereas canonical
variates are directly obtained by SVD(Pg Py ), where
PG = Pg/[ and PH = PH/I-

3. SOME EXTENSIONS

Within the basic framework of CPCA, various ex-
tensions are possible. We discuss two of them here.

3.1 Decompositions into Finer Components:

When more than one set of external constraints are
available on either side of a data matrix, it is possible
to decompose the data matrix into finer components.
The problem of fitting multiple sets of constraints can
be viewed as decompositions of a projector defined
on the joint space of all constraints into the sum of
projectors defined on subspaces. Suppose G consists
of two constraint sets, X and Y; i.e., G = [X|Y]. A
variety of decompositions are possible (Rao & Yanai,

5979), depending on the relationship between X and

"When X and Y are mutually orthogonal (with
respect to K), we have

Pg/k = Px/x + Py/k. (14)

This simply partitions the joint effect of X and Y
into the sum of the independent effects of X and Y.

When X and Y are orthogonal except in their
intersection space, Px/x and Py g are still commu-

tative, and
Pe/k =Px/k +Py/k — Px/kPy/k.  (15)

This decomposition plays an important role in ANOV
A for factorial designs.

When X and Y are not mutually orthogonal in
any way, two decompositions are possible:

Pg/k = Px/k+Pqy x/k
= Py/k+Pqyxy/K, (16)

where Pg, . x/kx and Pq, v /K are projectors onto
spaces of Qy X (the portion of X that is unac-
counted for by Y) and Qx/kY, respectively. The
above decompositions are useful when one of X and
Y is fitted first and the other is fitted to the residuals.

When Sp(X) and Sp(Y) are not mutually orthog-
onal but disjoint, we may use

Pg/x = X(X'KQy/xX)"X'KQy,k
+Y(Y'KQy/xY) YKQyx. (1)

Note that KQy, x and KQyx,x are both symmetric.

This decomposition is useful when X and Y are fitted
simultaneously. Note that unlike all other decompo-
sitions discussed in this section, the two terms in this
decomposition are not mutually orthogonal.

When additional information is given as con-
straints on the weight matrix U, applied to G, i.e,,
Ug = AU, for a given matrix, A. Then,

Po/k = Pga/k + Pa@eke)-B/x,  (18)

where A'B = 0, Sp(A) & Sp(B) = Sp(G'), and
B = G'’KW for some W (Yanai & Takane, 1992).
Since B'(G'’KG)"G'KGU,4 = 0 for B such that
B = G'’KW, the constraint Ug = AU, can also be
expressed as B'Ug = 0. This decomposition is an
example of higher-order structures to be discussed in
the next section.

It is obvious that similar decompositions apply to
H as well. It is also relatively straightforward to ex-
tend the decompositions to more than two sets of con-
straints on each side of a data matrix.




3.2 Higher-Order Structures: External informa-
tion other than G or H can also be incorporated.
This information is often provided in the form of a
hypothesis about the parameters in the model. In
such cases we may be interested in obtaining an es-
timate of the parameters under that hypothesis. For
example, a model similar to (1) for Z may also be
assumed for M. Suppose A(= H) is a design ma-
trix for pair comparisons, and suppose stimuli in the
pair comparisons are constructed by systematically
manipulating some basic factors. Let S denote the
design matrix for the stimuli. It may be assumed
that M = WS’ +E"*, where W is a matrix of weights

applied to S’. The entire model may then be written
as

Z = G(WS'+E")A'+E
= GWS'A’+ GE"A' +E. (19)

This model partitions Z into three parts: what can
be explained by G and AS, what can be explained
by G and A but not by AS, and the residual.

Alternatively, M may be subjected to PCA first,
and then some hypothesized structure may be im-
posed on its row representation, Uy, or on U =
GUjys. In the latter case, we may have

Z = U'D'"VY4+GE'H' +E
= (TW+E)D"V" 4+ GE'H' +E, (20)

where T is an additional row information matrix. An
LS estimate of W in this model, given the estimate
of U*, is obtained by W = (T'KT)~T'KU"*. This
W can also be obtained directly by GSVD
(Per/kZPy L)k L.

4. SPECIAL CASES

CPCA subsumes a number of interesting special
cases. In this paper we focuss on those which have
not been discussed previously (Takane & Shibayama,
1991). Specifically, we discuss four groups of meth-
ods; canonical correspondence analysis (CCA; ter
Braak, 1986) and canonical analysis with linear con-
straints (CALC; Bockenholt & Bockenholt, 1990);
GMANOVA (Potthoff & Roy, 1964) and its exten-
sions (Khatri, 1966); CPCA with components within
row and column spaces of data matrices (Guttman,
1944; Rao, 1964); and relationships among CPCA,
canonical correlation analysis (CANO) and related
methods.

4.1 CCA and CALC: We show that both CCA
and CALC are special cases of CPCA. For illustration
we discuss the case in which there are only row con-
straints. Let F denote a two-way contingency table.
Correspondence analysis (CA) of F obtains an “opti-
mal” row and column representation of F', which tech-
nically amounts to obtaining GSVD(DrFD_;)px,pc
where D and D¢ are diagonal matrices of row and
column totals of F, respectively. Let UDV’ denote
the GSVD. Then, the row and column representa-
tions of F are obtained by simple rescaling of U and
VD, respectively.

_Let X denote the row constraint matrix. CCA ob-
tains U under the restriction that U = XU*, where

U™ is a matrix of weights. This amounts to GSVD
(X'DrX)"X'FD;)x'Drx,Dc from which U* is ob-
tained (and then, U is derived by U = XU"),
orto GSVD(X(X'DrX)~X'FDZ)px,pc from which
U is directly obtained (Takane, Yanai, & Mayekawa,
1991). CCA of F with row constraint matrix X will
be denoted as CCA(F, X), or simply CCA(X). Thus,
CCA(F, X) = GSVD(X(X,DRX)_XIFDE)DR,DC.
CALC is similar to CCA, but instead of restricting
U by U = XU", it restricts U by R'U = 0, where
R is a constraint matrix. That is, CALC specifies
the null space of U. CALC obtains GSVD(DE(I —
R(R'DzR)"R'DR)FD_)ps, Do, Which will be de-
noted as CALC(F, R), or simply CALC(R).
Takane, et al. (1991) have shown that CCA
and CALC can be made equivalent by appropriately
choosing an R for a given X or vice versa. More
specifically, CCA(X) = CALC(R) if X and R are

mutually orthogonal, and together they span the en-
tire column space of F. For a given R, such an X can

be obtained by X such that I—- R(R'R)"R' = XX".
Similarly, an R can be obtained from a given X by

I-X(X'X)"X' = RR’. It can also be shown that
CCA and CALC are both special cases of CPCA.
When H = I, decomposition (7) reduces to

Z = Po/xZ+ Qg k2. (21)
The first term in (21) can be rewritten as
Pg/xZ = G(G'’KG)"G/(KZL)L™,  (22)

which is equal to X(X'DrX)"X'FDg, if G = X,
K = Dg, L = D¢, and Z = DgFD_. That is,
GSVD(P/xZ)x . = CCA(F, X).

The second term in (21) can be rewritten as

Qg/xZ = (I- G(G'KG)"G'K)Z
=K~ (I- KG(G'’KK KG)~
G'KK~)(KZL)L™, (23)

which is equal to D(I - R(R'DzR)"R'D3)FDg,
ifR=KG,K=Dg,L=D¢,and Z=DzFD; .
Thus, GSVD(Qg,xZ)k,. = CALC(F, R).

The above discussion shows that both CCA
and CALC are special cases of CPCA, and that
CCA(X) and CALC(DgX) analyze complementary
parts of data matrix Z. CALC(DgX), in turn,
is equivalent to CCA(X"), where X" is such that
Sp(X*) = Ker(X'Dpg). The analysis of residuals
from CCA(X") is equivalent to CALC(DrX"), which
in turn is equivalent to CCA(X), where X is such that
Sp(X) = Ker(X*'DR). Such an X can be the X in
the original CCA.

4.2 GMANOVA: GMANOVA (Potthoff & Roy,
1964) postulates

Z = GMH' +E. (24)

This is a special case of model (1) in which only the
first term is isolated from the rest. Under the




assumption that rows of E are #d multivariate nor-
mal, a maximum likelihood estimate of M is ob-

tained by M = (G'G)~G'ZS~'H(H'S™'H)~ (Kha-
tri, 1966), where S = Z'(I- G(G'G)~G')Z assumed
to be nonsingular. This estimate of M is equivalent to
an LS estimate of M in (3) with K = Iand L = S™1.
In GMANOVA, tests of hypotheses about M are
typically of interest: R'MC = 0, where R and C
are given constraint matrices. We assume that R =

G'KWp, for some Wg, and similarly C = HLW¢
for some W¢. An LS estimate of M under the above
hypothesis can be obtained as follows: Let X and Y

be such that R’X = 0 and Sp[R|X] = Sp(G'), and
C'Y = 0 and Sp[C|Y] = Sp(H'). Then, M can be
reparameterized as

M= XMny, + MyYI + XMy, (25)

where Mxy, My and Mx are matrices of unknown
parameters. This representation is not unique. For

identification we assume X'G'KGMy = 0, and
Y'H'LHMY; = 0. Putting (25) into (24), we obtain

Z = GXMxyY'H' + GMy Y'H'
+ GXMxH' +E. (26)

LS estimates of Mxy, My, and Mx can be obtained
in a manner similar to (3) through (6). Putting them

into (26) leads to the following decomposition:

Z =Pgx/kZPyy;L + Poeke)-rik TPhy/L
+Pox/kZPyarmy-c/L + E, (27)

where E is defined as Z minus the sum of the first
three terms in (27). In the above decpomposition

Sp(Z) is split into four mutually orthogonal sub-
spaces.

4.3 Lagrange’s Theorem: It is well known (e.g.,
Yanai, 1990) that (A’); 5 = ZB(A'ZB)~, and B3, ,
= (A’ZB)~ A’'Z are reflexive g-inverses of A’ and B,
respectively, under rank(A’'ZB) = rank(A’) and rank
(A'ZB) = rank(B), respectively. Define Qzp 4 =
I-(A')zgA', and Qzi4p = I - BBj;. Then,
Qzp, 4 is the projector onto Ker(A') along Sp(ZB),
and Qg4 p onto Ker(A'Z) along Sp(B). Define

2, =Qz34Z=17Qz, 5 (28)

Then, rank(Z,) = rank(Z) — rank(A’ZB). This is
called Lagrange’s theorem (Rao, 1973, p. 69).
Rao(1964) considered extracting components

within Sp&)Z) orthogonal to a given G. This amounts
to the SVD of

ZQZIG = Z(I - ZIG(GIZZIG)_GIZ)
=(1-ZZ'G(G'ZZ'G)"G)Z
= Qg/z2'%- (29)

This reduces to Z; in (28) by setting A = G and
B = Z'G. It is obvious that this is also a special

case of ZQy with H = Z'G, and of QG/KZ with
K=27.

Guttman (1944) considered obtaining components
which are given linear combinations of Z, and used
Lagrange’s theorem to successively obtain residual
matrices. Let the weight matrix in the linear com-
binations be denoted by W. Let A = ZW and
B = W in (28). PCA of the part of data matrix
Z that can be explained by ZW amounts to the SVD
of PzwZ = ZPw/z:z and that of residual matrices
to the SVD of QzwZ = ZQjy z:z- Both are special

cases of CPCA.

4.4 Relationships among CPCA, CANO and
Related Methods: A number of methods have been
proposed for relating two sets of variables. In this
section we show relationships among some of them:
CPCA, canonical correlation analysis (CANO),
CANOLC (CANO with linear constraints; Yanai &
Takane, 1990), CCA (ter Braak, 1986), and the usual
(unconstrained) correspondence analysis (CA;
Greenacre, 1984). A common thread running through
these techniques is the generalized singular value de-
composition.

(1) CPCA: There are five matrices involved. It is
more explicitly written as CPCA(Z, G, H, K, L).
(2) CANOLC: Four matrices are involved. It is writ-
ten as CANOLC(X, Y, G, H). Canonical correla-
tion analysis between X and Y is performed under
the restrictions that the weights to define canonical
variates, U and V, are linear functions of G and H,
respectively. That is, U = XGU"* and V = YHV”*,
where U* and V* are weight matrices obtained by
GSVD((G'X'XG)"G'X'YHH'Y'YH)™)
G'X'XGH'Y'YH-

(3) CCA: Five matrices are involved. It is more ex-
plicitly written as CCA(F, G, H, Dg, D¢), where F
18 a two-way contingency tabie, G and H are matri-
ces of external constraints, and Dg and D¢ diagonal
matrices of row and column totals of F, respectively.

CCA amounts to GSVD((G'DrG)~ G'FH
(H'DcH)™)¢'Dpe,H'DcH

(4) CANO: Canonical correlation analysis between G
and H denoted as CANO(G, H) amounts to GSVD
((G,G)_G/H(HIH)_)G/G,HIH.

(5) CA: The usual (unconstrained) correspondence
analysis of a two-way contingency table, F, is writ-
ten as CA(F, Dg, D¢), where Dg and D¢ are, as

before, diagonal matrices of row and column totals of
F, respectively. CA(F, Dg, D¢) reduces to GSVD
(DI_%FD_(_J)DR Dc-

| Specific relations among these methods are as fol-
ows:

1) CPCA — CANOLC: Set Z = (X'X)~X'Y
YY), K=X'X,and L=Y'Y.

2) CPCA — CCA: Set Z = DRFD_, K = Dg, and
L=Dc¢.

3) CPCA — CANO:Set Z=I, K=I,and L=1
4) CPCA — CA:Set Z=DRrFD;, G=1 H=1,
K=Dpg,and L =D¢.

5) CANOLC — CCA: Set X'Y = F, X'X = Dg,
and Y'Y = De¢.

6) CANOLC — CANO: Set X =I,and Y =1L




7) CANOLC — CA: Set GH=F, X =1, Y =1,
G'G = Dg, and HH = D¢.

8) CCA — CANO:Set F=I,Drp =1, and D¢ =1.
9)CCA — CA:Set G=L, and H=1.

10) CANO — CA: Set G'H = F, G'G = Dg, and
H'H = Dc¢.

Note that the relationship between CPCA and CANO
implies relationships between CPCA and all special
cases of CANO including MANOVA and canonical
discriminant analysis.

5. DISCUSSION

CPCA is a versatile technique for structural analy-
sis of multivariate data. It 1s widely applicable and
subsumes a number of existing methods as special
cases. Technically, CPCA amounts to two major ana-
lytic techniques, projection and GSVD, both of which
can be obtained non-iteratively. The computation in-
volved is simple, efficient, and free from dangers of
suboptimal solutions. Component scores are uniquely
defined, and solutions are nested in the sense that
lower dimensions are retained in higher dimensional
solutions.

No distributional assumptions were made on the
data not to limit the applicability of CPCA. This may
have some negative consequence in statistical model
evaluation. Goodness of fit evaluation and dimen-
sionality selection are undoubtedly more difficult, al-
though various cross-validation approaches are feasi-
ble. %‘or example, the bootstrap method (Efron,
1979) can easily be used to assess the degree of sta-
bility of the analysis results.

It may be argued that in contrast to ACOVS (e.g.,
Joreskog, 1970), CPCA does not take into account
measurement errors. Although it is true that the
treatment of measurement errors is totally different
in the two methods, CPCA has its mechanism to re-
duce the amount of measurement errors in the solu-
tion. Discarding components associated with smaller
singular values 1n the internal analysis has the effect
of eliminating measurement errors. Furthermore, in-
formation concerning reliability of measurement can
be incorporated into CPCA via metric matrices.

PCA and CPCA are generally considered scale
variant, in contrast to ACOVS which is scale invari-
ant if the maximum likelihood or the generalized least
squares method is used for estimation. This state-
ment is only half true. While PCA and CPCA are not
scale invariant with L = I, they can be made scale
invariant by specifying an appropriate nonidentity L.
A crucial question is how to choose an appropriate L
(Meredith & Millsap, 1985).

One limitation of CPCA is that it cannot fit dif-
ferent sets of constraints imposed on different dimen-
sions, unless they are mutually orthogonal or orthog-
onalized a priori. A separate method (DCDD) has
been developed specifically to deal with this kind
of constraints in PCA-like settings (Takane, et al.,
1995).

D)evelopment of CPCA is still under progess. It
will be interesting to extend CPCA to cover struc-
tural equation models, multilevel analysis, time series
analysis, dynamical systems, etc.
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