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Summary: Feedforward neural network (NN) models approximate nonlinear functions
that connect inputs to outputs by repeated applications of simple nonlinear transforma-
tions. By combining this feature of NN models with traditional multivariate analysis (MVA)
techniques, nonlinear versions of the latter can readily be constructed. In this paper, we ex-
amine various properties of nonlinear MVA by NN models in two specific contexts: Cascade
Correlation (CC) networks for nonlinear discriminant analysis simulating the learning of
personal pronouns, and a five-layer auto-associative network for nonlinear principal compo-
nent analysis (PCA) finding two defining features of cylinders. We analyze the mechanism
of function approximations, focussing, in particular, on how interaction effects among input
variables are captured by superpositions of sigmoidal transformations.

1. Introduction

Feed-forward neural network (NN) models and statistical models have much in com-
mon. The former can be viewed as approximating nonlinear functions that connect
inputs to outputs. Many statistical techniques can be viewed as"approximating func-
tions (often linear) that connect predictor variables to criterion variables. It is thus
beneficial to exploit various developments in NN models in nonlinear extensions of
linear statistical techniques. There is one aspect of nonlinear transformations by NN
models that is particularly attractive in developing nonlinear multivariate analysis
(MVA). It allows joint multivariate transformations of input variables, so that inter-
actions among them can be captured automatically in as much as they are needed
for prediction. In this paper we examine various properties of nonlinear MVA by NN
models in two specific contexts: Cascade Correlation (CC) networks for nonlinear
discriminant analysis simulating the learning of personal pronouns, and a five-layer
auto-associative network for nonlinear principal component analysis (PCA) recover-
ing two defining attributes of cylinders. In particular, we analyze the mechanism of
function approximations in these networks.

2. Cascade Correlation (CC) Network

NN models consists of a set of units, each performing a simple operation. Units re-
ceive contributions from other units, computes activations by summing the incoming
contributions and applying prescribed (nonlinear) transformations (called transfer
functions) to the summed contributions, and send out their contributions according
to the activations and strengths of connections to other units. A network of such
units can produce rather complicated and interesting effects. It can produce almost
any kind of nonlinear effects and interactions among input variables by looking at
examples that show specific input—output relationships.

The CC learning network is capable of dynamically growing nets (Fahlman & Lebiere,
1990). It starts as a net without hidden units, and it adds hidden units to improve
its performance until a satisfactory degree of performance is reached. Thus, no a
priori net topology has to be specified. Hidden units are recruited one at a time in
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such a way that all pre-existing units are connectd to the new one. Input units are
directly connected to output units (cross conneions) as well as to all hidden -units.
The cross connections capture linear effects of input variables. Hidden units, on
the other hand, produce nonlinear and interaction effects among the input variables
that are necessary to connect inputs to outputs in some tasks. When a new hidden
unit is recruited, the connection weights associated with input connections are deter-
mined so as to maximize the correlation between residuals from network predictions
at the particular stage and projected outputs from the recruited hidden unit, and are
fixed throughout the rest of the learning process. This avoids the necessity of back-
propagating error across different levels of the network, and leads to faster and more
stable convergence. The weights associated with output connections are, however,
re-estimated after each new hidden unit is recruited.

The CC algorithm constructs a net and estimates connection weights based on a
sample of training patterns. For each input pattern, a unit in a trained net sends
contributions to units it is connected to. A contribution is defined as the product of
the activation for the pattern at the sending unit and the weight associated with the
connection between the sending unit and the receiving unit. The receiving unit forms
its activation by summing up the contributions from other units and applying the
sigmoid transformation to the summed contribution. An activation is computed at
each unit and for each input pattern in the training sample. Let a; denote an input
pattern (a vector of activations at input units and bias, which acts like a constant
term in regression analysis), and let w; represent the vector of weights associated
with the connections from the input and bias units to hidden unit 1 (h1). Then,
the activation for the input pattern at h; is obtained by & = f(ajwi) — .5, where
f is a sigmoid function, i.e., f(t) = 1/{1 + exp(—t)}. Now h; as well as the input
and bias units send contributions to h;. The activation at hy is then obtained by
b2 = f(ajwz) —.5. A similar process is repeated until an activation at the output
unit is obtained, which is the network prediction for the output. In the training
phase, connection weights are determined so that the network prediction closely ap-
proximates the output corresponding to the input pattern.

3. Two-Number Identification

The CC network algorithm was first applied to the two-number identification prob-
lem, in which there are two input variables, z; and z, (excluding the bias). Pairs of
) and z; are classified into group 1 (indicated by output variable y equal to .5) when
the two numbers are identical, and are otherwise classified into group 2 (indicated
by y = -.5). This is a simple two-group discrimination problem, but the function to
be approximated is highly nonlinear, as can be seen in Figure 1(a). The problem is
interesting because of its implication to real psychological problems; identifying two
objects underlies many psychological phenomena, as exemplified by an example given
in the next section.

One hundred training patterns, generated by facorially combining #; and z, varied
systematically from 1 to 10 in the step of 1, were used in the training.” The CC
network algorithm constructed a network depicted in Figure 1(b). This net has three
input units (including the bias), one output unit, and two recruited hidden units,
Network predictions are computed in a manner described above. F igure 1(c) displays
the function approximated by the CC net (the set of network predictions as a function
of z; and z;3). The approximation looks quite good, although the ridge at x; = z, in
the approximated function is not as “sharp” as in the original target function. This
is due to the “crudeness” of the training sample. The minimum difference between
two distinct numbers in the training sample is 1, so that the net was not required
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Figure 1: The mechanism of a function approximation for the two-number identifi-
cation problem by CC network. (a) depicts the target function approximated by the
CC network, (b), with the approximated function displayed in (c). (d) through (f)
are contributions from three input units to »;, which are summed to obtain (g), which
is sigmoid-transformed to obtain the activation function (h) at h;. The activation
function at hy (i) is similarly derived. These activation functions are used to define
contributions of the units to other units.
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to discriminate beween two numbers whose differences are less than 1. The ridge in
the approximated function can be made sharper if pairs of numbers with smaller dif-
ferences are included in the training sample. Note that interpolations are done quite
nicely. That is, although numbers like 5.5 were not included in the training sample,
the identification involving such numbers are handled as expected. Extrapolation,
on the other hand, seems a bit difficult, as indicated by a slight increase i function
values toward the righthand side corner. Note that the target function ifivolves a
form of interaction between z; and z,, where the word “ interaction” is construed
broadly; the meaning of a specific value on one variable, say z, depends on the value
on the other variable, x,.

It is interesting to see how the approximated function is bulit up and what roles the
two hidden units play. Figure 1(d) through (f) present contributions of the three
input units to hy. As described above, contributions are defined as products of acti-
vations at the input units and the weights associated with the connections leéading to
hy. The contributions are summed up (Figure 1(g)), and further sigmoid-transformed
to obtain the activation function at , (Figure 1(h)). It seems that &, is identifying
if £; > 5. The activation function at ks (Figure 1(i)) is similarly derived. Contribu-
tions now come from four units (three input units plus h1). hy seems to be identifying
if 23 > z1. The output unit (y) receives contributions from all other units. However,
hy -and h; seem to play particularly important roles. y stands out to take .5, when
and only when input patterns satisfy both z; > z, and z, > z;, but otherwise -.5.
Interestingly, this is essentially how we prove z; = z, in mathematics.

4. Pronoun Learning

We were interested in the two-number identification problem because of its implica-
tion to a real psychological problem, that is, the learning of first. and second person
pronouns. When the mother talks to her child, me refers to the mother and you to
the child. However, when the child talks to the mother, me refers to the child, and
you to the mother. The child has to learn the shifting reference of these pronouns.
There are three relevant input variables in this problem (excluding bias) and one
output variable indicating me (y = .5) or you (y = —.5). The three input variables
are speaker (sp), addressee (ad), and referent (rf). The rule (or the function) to be
learned is: “Use me when the speaker and the referent agree (i.e., y = .5, when sp =
rf)”, and “use you when the addressee and the referent agree (i.e., y = —.5, when ad
= 1f).” The network should be able to judge which two of the three input variables
agree in their values. The two-number identification problem is thus a prerequisite
to the pronoun learning problem.

How children learn the correct use of these pronouns has been studied by Oshima-
Takane (1988, 1992) and her collaborators (Oshima-Takane, et al., 1996). Simulation
studies by CC networks have also been reported in Oshima-Takane, et al. (1995), and
in Takane, et al. (1995). All previous simulation studies, however, presupposed the
existence of only two pronouns, me and you. This severely limits the scope of these
studies. In particular, the operating rule may not coincide with the one assumed
above. That is, seemingly correct behavior can follow from rules other than the one
described above. For example, a rule such as me if sp = rf and you otherwise, or
you if ad = rf and me otherwise, works equally well so far as only me and you are
considered. That is, ad = rf is equivalent to sp # tf, and sp = 1f is equivalent to ad
# 1f when only me and you are to be distinguished.

We, therefore, first investigate what rule is in fact learned under the me-you-only
condition. Forty training patterns were created by systematically varying the three
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input variables from -2 to 2 in the step of 1, and by discarding all but me and you
patterns. Forty patterns were retained. (Remember that sp and ad cannot agree,
and such patterns were also discarded.) The CC network algorithm recruited two
hidden units to perform the task. The approximated function is depicted in Figure
2 in terms of ad on the y-axis and rf on the z-axis for nine different values of sp (-2,
-1.5, -1. -.5, 0. .5, 1, 1.5, and 2). It looks like the output variable, y, takes the value
of -.5, as it is supposed to (see the diagonal "ditch” observed in each graph), but
it also takes the value of .5 in all other cases, including sp = rf and sp # rf # ad.
This is correct for sp = rf, but not for sp # rf # ad. Remember that no training
patterns were given for the latter and so it is quite natural that the net responded
rather arbitrarily to the latter patterns. This implies, however, that pronouns other
than me and you are necessary to learn the correct use of these two pronouns. That
is, to learn to discriminate between sp = rf and sp # rf # ad, patterns involving other
pronouns such as he and she have to be included in the training sample.

To verify the above assertion, another simulation study was conducted, this time,
with pronouns other than me and you also included in the training sample. This
condition, called the me-you-others condition, had 100 training patterns with 40
me-you patterns plus 60 others patterns. The net was trained to take the value of 0
(y = 0) when sp # 1f # ad in addition to y = .5 when sp = rfand y = —.5 when ad
= tf. Figure 3 shows the approximated function under this condition, which looks as
it is supposed to. The task is appreciably more complicated than before, and the CC
network algorithm recruited five hidden units to perform the task.

5. Five-Layer Auto-Associative Network

The next example pertains to a five-layer auto-associative network. A simplified ver-
sion of this network is depicted in Figure 4(a). There are five layers of units including
the input layer at the bottom and the output layer at the top. Units are intercon-
nected between adjacent layers, but not within same layers or between nonadjacent
layers. It is well known (e.g., Baldi & Hornik, 1989) that a three-layer neural network
with linear transfer functions at both middle (hidden) and output layers has a rank
reducing capability when the number of units in the hidden layer is smaller than
both the number of input units and that of output units. This is a network version of
(linear) reduced-rank regression (Anderson, 1951), also known as PCA with instru-
mental variables (Rao, 1964) and redundancy analysis (Van den Wollenberg, 1977).
The usual (linear) PCA results when inputs and outputs coincide, as in Figure 4(a).
The name “auto-associative” derives from the fact that this net attempts to repro-
duce X from input X with a reduced number of components (the number of units in
the middle layer). The network version of PCA is not interesting in itself since there
are more efficient and accurate algorithms to do linear PCA. It becomes interesting
when the model is extended to nonlinear PCA by including two additional hidden
layers with nonlinear transfer functions (most often, with sigmoidal transformations),
one between the input layer and the middle layer, and the other between the middle
layer and the output layer, resulting in a five-layer network. Layer 2 (hidden layer 1)
and layer 4 (hidden layer 3) perform nonlinear input encoding and nonlinear output
decoding, respectively. Unlike the CC network, the network topology (the number
of layers, the number of units in each layer and how the units in different layers are
connected) is a priori specified and fixed throughout the learnig process, in which
only connection weights are adjusted using the backpropagation (BP) algorithm.

The five-layer auto-associative network was proposed (apparently independently) by
several authors at about the same time (e.g., Irie & Kawato, 1989; Oja, 1991), and
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Figure 2: The approximation function for the pronoun learning problem obtained
under the me-you-only condition. The function is depicted as functions of ‘addressee’
(y-axis) and ‘referent’ (z-axis) at several values of ‘speaker’. Function values (2-axis)
at ad=rf should indicate you (y = +.5), and those at sp=rf me (y = =.5), if the
pronouns are correctly learned. The problem is that the function takes the assumed
value for me even if sp#rfs£ad for which no examples were given in the training.
Discontinuities in the function correspond to points where sp=ad which never occurs.
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Figure 3: The same as Figure 2, but under the me-you-others condition. When the
correct learning occurs, the function takes the value of you (y = —.5) if and only
if ad=rf, the value of me (y = +.5) if and only if sp=rf, and y = 0 if and only if
sp#riad.
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Figure 4: The mechanism of a function approximation in the five-layer auto-
associative network. (a) depicts the basic construction of the network. (b) and
(c) represent recovered components as functions of the original components (In a on
the y-axis, In b on the z-axis). (d) through (f) display a sample of input functions
(out of 12 altogether), and (g) through (i) recovered functions at the output units
corresponding to (d)—(f).
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has been applied to extracting components that determine facial expressions of emo-
tion (DeMers & Cottrell, 1993) and internal color representation (Usui, et al., 1991).
Takane (1995) examined recovery properties of nonlinear PCA by the NN models
using several artificial data sets.

6. The Cylinder Problem

The example used to demonstrate nonlinear PCA by NN models was adapted from
Kruskal & Shepard (1974), who generated a set of cylinders by systematically varying
log altitude (Ina) and log base area (In ) of the cylinders. These two variables serve
as two assumed components to be recovered by nonlinear PCA. Kruskal & Shepard
then measured the cylinders with respect to twelve variables which are all monotonic
functions of Ina and lnb: 1. altitude, 2. base area, 3. circumference, 4. side area,
5. volume, 6. moment of inertia, 7. slenderness ratio, 8. diagonal-base angle, 9.
diagonal-side angle, 10. electrical resistance, 11. conductance, and 12. torsional
deformability.

The training patterns used in the present study were generated in a similar way,
except that 1) Ina and Inb were systematically varied from -.6 to .6 in the step of
.1 to obtain 13 equally spaced levels, which were factorially combined to obtain 169
cylinders (as opposed to 30 prescribed cylinders in Kruskal & Shepard), and 2) after
the same twelve variables were used to measure the cylinders, they were further trans-
formed by an arbitrary linear transformation to define a completely new set of twelve
variables, which may no longer be monotonic with either Ina or Inb. Three examples
of these variables are shown in Figure 4(d)—(f), as functions of Ina and lnb. These
variables are joint multivariate nonlinear transfomations of Ina and Inb. Nonmetric
PCA allowing only variablewise monotonic transformations is expected to have great
difficuties in recovering the original components from such data. However, nonlinear
PCA by means of a five-layer auto-associative network with 12 units in each of the
the first and third hidden layers (this number is the same as the number of input
units and that of output units) could almost perfectly recover the input data. The
recovered data are shown in Figure 4(g)—(i) for the variables corresponding to those
in Figure 4(d)—(f). The recovered variables at the output units look remarkably
similar to the corresponding input variables, except that small wiggles are observed
in the former. Figure 4-(b) and (c) give two recovered components plotted against
Ina and Inb. In both cases, recovered components are fairly linear with the original
components.

It is interesting to see how input variables are approximated (recovered) at the ouput
units with a reduced number of components in the middle layer (Hidden layer 2).
Figures 5 and 6 display the activation functions created at hidden layers 1 and 3
(Hy and Hj), respectively. The activation functions at H; were obtained by sigmoid
transformations of linear combinations of input unit activations. They are in turn
linearly combined to obtain the two recovered components at H. The recovered com-
ponents are then linearly combined and sigmoid-transformed to obtain the activation
functions at Hj. They were then linearly combined to obtain the approximated input
functions at the output units.

7. Discussion

NN models present interesting perspectives to nonlinear multivariate analysis by al-
lowing joint multivariate nonlinear transformations of input variables. In this paper,
we highlighted the mechanisms of these transformations in two specific context: CC
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Figure 5: The activation functions created at units in hidden layer 1. These activation

functions are linearly combined to obtain the activation functions ((b) and (¢} of
Figure 4), which are recovered component scores.
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Figure 6: The same as Figure 5, but for hidden layer 3. These activation functions
are linearly combined to obtain the output functions (activation functions at output
units), some of which are given in (g)—(i) of Figure 4.
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networks for nonlinear discriminant analysis and a five-layer auto-associative network
for nonlinear PCA. In the present studies, no random errors were added in the data
generation process. Investigating how the networks cope with random errors in the
data is an important next step to evaluate the viability of the approach ‘as a general
method for developing nonlinear multivariate analysis techniques.
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