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Summary: A new approach to structural equation modeling, so-called extended
redundancy analysis (ERA), is proposed. In ERA, latent variables are obtained as linear
combinations of observed variables, and model parameters are estimated by minimizing
a single least squares criterion. As such, it can avoid limitations of covariance structure
analysis (e.g., stringent distributional assumptions, improper solutions, and factor score
indeterminacy) in addition to those of partial least squares (e.g., the lack of a global
optimization). Moreover, data transformation is readily incorporated in the method for
analysis of categorical variables. An example is given for illustration.

1. Introduction

Two different approaches have been proposed for structural equation modeling
(Anderson & Gerbing, 1988; Fornell & Bookstein, 1982). One analyzes covariance
matrices as exemplified by covariance structure analysis (Joreskog, 1970), while the
other analyzes data matrices as exemplified by partial least squares (PLS, Wold, 1982).
Typically covariance structure analysis estimates model parameters by the maximum
likelihood method under the assumption of multivariate normality of variables. Yet,
such a distributional assumption is often violated. A more serious problem is improper
solutions (e.g., negative variance estimates), which occur with high frequency in
practice. Also, factor scores or latent variable scores are indeterminate. An
asymptotically distribution-free (ADF) estimator (Browne, 1984) can be used to fit
non-normal data . The ADF estimation, however, is accurate only with very large
samples and is still not free from improper solutions and factor score indeterminacy.

In PLS, on the other hand, latent variables are obtained as exact linear composites
of observed variables and model parameters are estimated by the fixed-point algorithm
(Wold, 1965). As such, PLS does not need any restrictive distributional assumptions.
Moreover, PLS does not suffer from improper solutions and indeterminate factor scores.
PLS, however, does not solve a global optimization problem for parameter estimation.
The lack of a global optimization feature makes it difficult to evaluate an overall model
fit. Also, it is not likely that the obtained PLS solutions are optimal in any well defined
sense (Coolen & de Leeuw, 1987).
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In this paper, we propose a new method that avoids the major drawbacks of the
conventional methods. It may be called extended redundancy analysis (ERA). In ERA,
latent variables are estimated as linear combinations of observed variables, so that there
are no improper solutions and non-unique factor scores. Also, it employs a global least
squares (LS) criterion to estimate model parameters. Thus, it offers an overall model fit
without recourse to the normality assumption.

2. Extended Redundancy Analysis

Let Z( denote an n by p matrix consisting of observed endogenous variables. Let
Z® denote an n by g matrix consisting of observed exogenous variables. When an
observed variable is exogenous as well as endogenous, it is included in both ZM and
Z®, Assume that the columns of the matrices are mean centered and scaled to unit
variance. Then, the model for extended redundancy analysis is given by

Z® = ZOWA' +E = FA' +E, 2.1)
with
rank(WA') < min(q,p),

where W is a matrix of weights, A’ is a matrix of loadings, E is a matrix of residuals,
and F (= Z@W) is a matrix of component scores with identification restrictions
diag(F'F) = 1. In (2.1), W and/or A’ are structured according to the model to be fitted.
Model (2.1) reduces to the redundancy analysis model (van den Wollenberg, 1977)
when no variables are shared by both Z1 and Z®, and no constraints other than
rank(WA') are imposed on W and A'.

Figure 1. A two latent variable model among three sets of variables.




For simple illustration, suppose that there are three sets of variables, for example,
Z, = [z, 23], Z, = [z3, 24), and Z3 = [zs, z¢]. Further suppose that there are
relationships among the three sets of variables, as displayed in Figure 1. Figure 1 shows
that two latent variables, one obtained from Z; (i.e., f;), and the other from Z; (i.e., f2),
are combined to affect Z3.This may be expressed as
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ZOW = [f, : f2].
To estimate parameters, we seek to minimize the following LS criterion:

f=S8SSZM -ZOWA') = SS(ZM - FA"), 2.3)

with respect to W and A’, subject to diag(F'F) = I, where SS(X) = tr(X'X). An
alternating least squares (ALS) algorithm is developed to minimize (2.3), which is a
simple adaptation of Kiers and ten Berge (1989)’s algorithm.

To employ the ALS algorithm, we may rewrite (2.3) as

f = SS(vec(ZM) — vec(ZPWA')) (2.42)
= $S(vec(ZM) — (A ® ZP)vec(W)) (2.4b)
= SS(vec(ZM) - (I ® F)vec(A')) (2.4c)

where vec(X) denotes a supervector formed by stacking all columns of X, one below
another, and ® denotes a Kronecker product. The algorithm can then be made to repeat
the following steps until convergence is reached.

(Step 1) Update W for fixed A’ as follows: let w denote the vector formed by
eliminating zero elements from vec(W) in (2.4b). Let Q denote the matrix formed by
eliminating the columns of A ® Z@ in (2.4b) corresponding to the zero elements in
vec(W). Then, the LS estimate of w is obtained by

W = (Q'Q)"'1Q'vec(ZM). @.5)

The updated W is reconstructed from W, and F = Z@W is normalized so that
diag(F'F) = L




(Step 2) Update A’ for fixed W as follows: let a denote the vector formed by
eliminating zero elements from vec(A') in (2.4c). Let T" denote the matrix formed by
eliminating the columns of I ® F in (2.4c) corresponding to the zero elements in
vec(A'). Then, the LS estimate of a is obtained by

i = @' 'I'vec(ZM). (2.6)

The updated A’ is recovered from &.

In the method, the total fit of a hypothesized model to data is measured by the total
variance of the observed endogenous variables explained by the exogenous variables.
This is given by

_ SS(ZM - ZOWA")
SS(ZM)

Fit =1 @7

This fit index ranges from 0 to 1. The larger is the fit value, the more variance of the
endogenous variables is explained by the exogenous variables. The standard errors of
parameter estimates can be estimated by the bootstrap method (Efron, 1982). The
bootstrapped standard errors can be used to assess the reliability of the parameter
estimates. The critical ratios can be used to examine the significance of the parameter
estimates (e.g., a parameter estimate having a critical ratio greater than two in absolute
value is considered significant at a .05 significance level).

3. Analysis of categorical variables by data transformation

ERA can readily analyze categorical variables through a certain type of data
transformation, often called optimal scaling (e.g., Young, 1981). In optimal scaling, the
data are parametrized as S and S®, which are estimated, subject to constraints
imposed by the measurement characteristics of Z() and Z®. We divide all parameters
into two subsets: the model parameters and the data parameters. We then optimize a
global fitting criterion by alternately updating one subset with the other fixed. Note that
S and S® may contain variables with different measurement characteristics. This
means that a variable may not be directly comparable with other variables, so that each
variable in SV and $® should be separately updated.

The ALS procedure with the data transformation feature proceeds as follows. Let z;
denote a variable in either Z() or Z?, so that i = 1,---, p + q. Let s; denote a variable
in either S or S@. Then, we seek to minimize

f=SS(W -SDWA') = SS(SV — S?®B), 3.1

with the conditions that diag(W'S@'S®W) = I, sis; = 1, and s; = £(z;), where B =
WA/, and £ refers to a transformation of the observations in z;, which is a function of
their measurement characteristics. To minimize (3.1), two main phases are alternated.
One phase is the model estimation phase, in which the model parameters are estimated.
The other is the data transformation phase that estimates the data parameters. The




model estimation phase is analogous to the estimation procedure in Section 2. We thus
focus on the data transformation phase here. The data transformation phase mainly
consists of two steps. In the first step, the model prediction of s; is obtained in such a
way that it minimizes (3.1). In the next step, s; is transformed in such a way that it
maximizes the relationship between s; and the model prediction under certain
measurement restrictions.

The first step of the data transformation phase is given as follows. Let sgl) and 5,2)
denote the g-th and h-th variables in S and S@, respectively (¢ = 1,--+, p; h = 1,---,
q). Let §; denote the model prediction of s;. Then (3.1) may be rewritten as

ptq
f=2.556m - (A-¥)). 3.2)

i=1

In (3.2), %, A, and ¥ are defined as follows: Suppose that if s; is shared by SM and
S@ it is placed in the g-th column and the k-th column of S and S, respectively.
Then, when the model predictions of the variables in S!) are updated,

S@B, ifs; is shared e, —b, ifs; is shared
A={ T®WE® T , ¥=80,and n'=4 h ) .
S@B  otherwise €, otherwise

When the model predictions of non-common variables in S@ are updated,
A=SPBu), ¥ =S80, andn' = bj.

In the above, matrix S B ) is a product of $© whose h-th column is the n-component
vector of zeros and B whose h-th row is the p-component vector of zeros. Matrix Sg;
equals to S@ whose g-th column is an n-component vector of zeros. e, denotes a

p-component row vector whose elements are all zeros except the g-th element being
unity. Vector b}, corresponds with the h-th row of B. Then, §; is obtained by

$i = An(n') 7", (33)

where A =A - .

In the next step, s; is transformed in such a way that it is close to §; as much as
possible under the appropriate measurement restrictions. In many cases, s; is updated by
minimizing a LS fitting criterion (e.g., the (normalized) residuals between s; and §).
This comes down to regressing §; onto the space of z;, which represents the
measurement restrictions. The LS estimate of s; can be generally expressed as follows

s = T;(T}Yi)"lrﬁii. 34

In (3.4), Y; is determined by the measurement restrictions imposed on the
transformation. For example, for nominal variables, Y; is an indicator matrix, whose




element stands for category membership, and is known in advance. For ordinal
variables, Y; indicates which categories must be blocked to satisfy the ordinal
restriction, and is iteratively constructed by Kruskal’s (1964) least squares monotonic
transformation algorithm. The updated s; is then normalized to satisfy sis; = 1. In
(3.2), we see that updating a variable is dependent on other variables. To ensure
convergence, we must immediately replace the previously estimated variable by the
newly estimated and normalized variable. Moreover, when s; is included in both SV
and S@, the rescaled and normalized s; should be substituted for the corresponding
columns in both SV and @,

4. Example

The present example is part of the so-called basic health indicator data collected by
the World Health Organization. They are available through the internet
(http://www.who.int). It consists of 6 variables measured in different countries: (1)
infant mortality rate (IMR), defined as the number of deaths per 1000 live births
between birth and exact age one year in 1998. (2) maternal mortality ratio (MMR),
defined as the number of maternal deaths per 100000 live births in 1990, (3) real gross
domestic product (GDP) per capita adjusted for purchasing power parity is expressed in
1985 US dollars, (4) the average number of years of education given for females aged
25 years and above (FEUD) (5) the percentage of children immunized against measles
in 1997 (Measles), and (6) total health expenditures as a percentage of GDP in 1995
(Healthexp). The sample size is 51, which amounts to the number of countries for
which the data are available.

Two latent variables were assumed for the last four observed variables. One latent
variable called ‘social and economic (SE) factor’ was defined as a linear combination of
GDP and FEUD, and the other called ‘health services (HS) factor’ as that of Measles
and Healthexp. The two latent variables were in turn deemed to influence two observed
endogenous variables, IMR and MMR. For this model, W and A’ were identical to
those in (2.2). By using ERA, the model was fitted to the data. Results are provided in
Figure 2.

The goodness of fit of the model was .65, indicating that about 65% of the variance
of the endogenous variables were accounted for by the two latent variable model. The
fit turned out to be significant in terms of its critical ratio obtained from the bootstrap
method with 100 bootstrap samples, indicating that the fitted model was significantly
different from the model which assumed B = 0. The squared multiple correlations of
IMR and MMR were .73 and .57, respectively. They also turned out significant
according to their bootstrapped critical ratios. In Figure 2, boldfaced parameter
estimates indicate that they turned out to be significant in terms of their critical ratios.
The component weights associated with SE were all significant and negative. This
indicates that SE was characterized as social and economic underdevelopment.
Similarly, the component weights of Mealses and Healthexp were negative, indicating
that HS was likely to represent a low level of health services.




However, only one variable, Measles, was significantly associated with HS. Both latent
variables were found to have a significant and positive effect on IMR and MMR. This
indicates that social and economic underdevelopment and the low level of health
services are likely to increase infant mortality rate and maternal mortality ratio. The
correlation between the two latent variables was .47.

Fit= .6512

GDP FEDU Measles Healthexp

-.50 - 57

SE

73)

IMR

) (;2)

Figure 2. Results of fitting the two latent variable model for the WHO data.

To exemplify data transformations, two observed endogenous variables, that is,
IMR and MMR, were monotonically transformed. Kruskal’s (1964) primary LS
monotonic transformation was applied to them. This indicated that observation
categories were order-preserved but tied observations might become untied. The LS
monotonic transformations of the variables are shown in Figures 3 and 4. The left-hand
and right-hand figures represent the LS monotonic transformations of IMR and MMR,
respectively. In both figures, the original observations (horizontal) are plotted against
the transformed scores (vertical). We find that the monotonic transformations are quite
steep although they contain some ties. Due to the transformation, the fit of the model
was dramatically improved (.96), while providing similar interpretations of parameter
estimates as those obtained when the variables were treated as numerical.
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Figure 3. The LS monotonic transformation of IMR
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Figure 4. The LS monotonic transformation of MMR.

5. Concluding Remarks

A few attempts have been made to extend redundancy analysis to three sets of
variables (e.g., Takane, Kiers, & de Leeuw, 1995; Velu, 1991). Yet, they are limited to
model and fit a particular type of relationship among three sets of variables. Our
method, on the other hand, is quite comprehensive in extending redundancy analysis,
and it enables us to specify and fit various structural equation models. Although they
are not presented here to conserve space, the basic ERA model can be readily extended
to fit more complex relationships among variables, including direct effects of observed
variables and higher-order latent variables. Moreover, it is able to perform multi-sample
comparisons (Takane & Hwang, 2000).

The data transformation may be considered as one of the principal assets of our
method. This makes the data more in line with the model, and goodness of fit may be
improved. This also allows us to examine relationships among various types of data




measured at different levels. This kind of data transformation is feasible because our
method directly analyzes the data matrices rather than the covariance or correlation
matrix. However, in PLS, which also analyzes the data matrices, this particular way of
data transformation is not feasible since it requires a well-defined global criterion that is
consistently optimized by updating the transformed variables.

A number of relevant topics may be considered to further enhance the capability of
the method (Hwang & Takane, 2000). For instance, robust estimation may be in order
since the proposed method may not be robust against outliers as far as it is based on
solving a simple (unweighted) least squares criterion. Missing observations can raise a
serious problem, which frequently appear in large data sets. The assumption of
normality is not essential for the method due to the least squares fitting. If it is assumed,
nonetheless, we can extend the current estimation method in such a way that it provides
efficient estimators and allows to perform statistical significance tests without recourse
to resampling methods. Future studies are needed to deal with such topics in the
proposed method.
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