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Summary: A method of K-set canonical correlation analysis capable of joint
multivariate nonlinear transformations of data was proposed. The method
consists of K nonlinear data transformation modules, each of which is a multi-
layered feed-forward network, and one integrator module which combines
information from the K transformation modules. The proposed method is
useful for integrating information from K concurrent sources.

1. Introduction

We propose a method of nonlinear generalized (K-set) canonical corre-
lation analysis (NGCANO), where K > 2. Generalized CANO (Carroll,
1967; Horst, 1961; Meredith, 1964) is an interesting technique because it
subsumes a number of existing techniques for multivariate data analysis as
special cases. It specializes into the usual (2-set) CANO when K = 2. It
reduces to principal component analysis (PCA) when each of the K sets
consists of a single (usually) continuous variable, and to multiple correspon-
dence analysis (MCA) when each set consists of a matrix of dummy variables
representing responses to a multiple-choice questionnaire item. Generalized
CANO has been extended to allow variable-wise nonlinear transformations
of input variables (Gifi, 1990), called OVERALS. In this paper we further
extend it to allow for joint multivariate nonlinear transformations of input
variables by artificial neural networks.

There are a number of situations in which NGCANO could be useful.
We may, for example, have a problem of integrating information from dif-
ferent sensors, from different modalities, from different measurement tools,
and so on. Several different cues are available for depth perception, e.g.,
binocular disparities, motion parallax, shading, textures, occluding contours,
etc. Different cues are processed more or less independently up to certain
levels by separate brain modules, which should be integrated into coherent
images (Marr, 1982). NGCANO approximates such information integration
mechanisms. Becker and Hinton (1992) developed a similar procedure for
K = 2 based on a somewhat different fitting criterion, which they success-
fully applied to identify surface structures in random dot stereograms. Asoh
and Takechi (1994) devised an approximate method for Becker and Hinton’s
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method. NGCANO extends their methods to K > 2.

2. The method

Figure 1 displays the basic construction of NGCANO for K = 3. The
three modules are enclosed by large squares. Each module (corresponding to
a set of input variables) consists of a multi-layered feed-forward (MLFF) net-
work. It accepts inputs, forms linear combinations of the inputs and trans-
forms them by sigmoid transformations to obtain hidden-layer activations,
which capture nonlinear and interaction effects among the input variables. It
then forms linear combinations of hidden-layer activations as outputs from
the network. NGCANO attempts to make the outputs from different modules
as homogeneous as possible. This information integration part is depicted in-
side the octagon in the figure. The outputs from all the modules are made
to approximate a single common set of quantities (called common canonical
variates) as closely as possible.
2.1 Optimization criterion

Let Oy denote the matrix of outputs from module k, and let F' = [f1, fo]
denote the matrix of canonical variates. Define

K
9=> o with gk = |[F = Ox%, (1)
k=1

where Oy, = Hi Wy, and Hy = 0(XV)) with o being the sigmoid transfor-
mation. Here, X} is the matrix of inputs, and V};, and W}, are matrices of the
first and the second layer weights, respectively. We minimize g in (1) with
respect to Vi, Wy, (k=1,...,K), and F subject to:

F'F=1 and F'iy =0, (2)

where 1y is an N-element vector of ones (where N is the number of cases in
the training sample, and 0 is a zero vector of appropriate size.

Output Oy, from each module should approximate F' as much as possible.
Each Oy, in turn, is obtained by linear combinations of the matrix of hidden
layer activations (Hy), which, in turn, are obtained by sigmoid transforma-
tions of some linear combinations of the input matrix (X}). Constraints (2)
state that F' is column-wise centered and orthogonal, which are required for
identification purposes.

2.2 Algorithms

There are three sets of parameters, {V},, Wy, F'}. We propose two algo-
rithms to minimize (1). Algorithm I splits the parameter set into {Vj, Wy}
and {F'}, whereas Algorithm IT into {V,} and {Wy, F'}.

Algorithm I: We alternate the following two steps until convergence is
reached.
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Figure 1: The basic construction of NGCANO for K = 3 modules with a
single hidden layer in each module.

1. For k = 1,..., K, minimize g with respect to V; and Wy for fixed F' by
the Levenberg-Marquardt (LM) method.

2. Minimize g with respect to F' subject to (2) for fixed V}, and Wy. This is
done by first defining F* = (Iy — 1y1%/N) Zle Oy /K), where Iy is the
identity matrix of order IV, and then by applying the Gram-Schmidt orthog-
onalization method to F™* to obtain F. (Matrix Iy — 1x1% /N has the effect
of column-wise centering the matrix that follows.)

Step 1 in the above algorithm works just like separate MLFF networks
with F' as target outputs. A ready-made algorithm for MLFF networks (like
the one in the Neural Network Tool Box in MATLAB) can be used for opti-
mization in this phase.

Algorithm II: In the above algorithm, the most time consuming part is



Step 1 which involves an iterative optimization method. It is best to mini-
mize the number of parameters in this step. In Algorithm II, we alternate
the following two steps.

1. For k = 1,..., K, minimize g; with respect to Vj for fixed F' and W} by
the LM method.

2. Minimize g with respect to F' and Wy, for fixed Vj. This is done as follows:
Define A = (Iy — 151y /N)HD /2 where H = [Hy, Ho,- -+, Hg] and D is a
block diagonal matrix with H, Hy(k =1, ..., K) as diagonal blocks. We com-
pute the generalized singular decomposition of A with column metric matrix
D to obtain F. We then calculate Wy, by Wy, = (H, Hy) *H,F.

Both algorithms are monotonically convergent. Note also that in both
algorithms Step 1 can be carried out for each module separately, which sig-
nificantly reduces the number of parameters updated simultaneously in each
optimization problem.

3. An illustrative example

The data used to demonstrate the feasibility of NGCANO is part of large
scale survey data collected at the Institute of Statistical Mathematics in
Tokyo. The survey questions asked about traditional versus modern views
on Japanese society and culture. We used six items from the survey, five
of which (items 1, 2, 3, 5 and 6) had three response categories and one
(item 4) had two response categories. There were 1864 subjects responding
to the survey questionnaire. This is the kind of data set to which multiple
correspondence analysis (MCA) is typically applied. An analytic solution
exists, so we know what NGCANO is supposed to obtain.

We used the so-called analog coding instead of dummy coding (as typically
done in MCA); we arbitrarily assigned numbers to the response categories and
treated them as values on an input variable in each module. Each module
consisted of a single (continuous) input variable, so that the situation has
direct analogy to nonlinear PCA. The assigned numbers could be any distinct
numbers, although the first 2 or 3 consecutive integers were used in the
present example. Which integers are used to code which response categories
is also essentially arbitrary. NGCANO is supposed to find the best nonlinear
transformations of these prescribed numbers.

We used one less hidden unit than the number of response categories in
each module and obtained a solution with two canonical variates. The de-
rived solution was virtually indistinguishable from that obtained by MCA.
Figure 2 depicts the hidden unit activations and the output activations for
two output units as functions of the single input variable for items (which
coincide with modules) 2, 3 and 4. The hidden unit activations were obtained
by sigmoid transformations of the input variable times the weights. The acti-
vation functions are bound to be monotonic (either increasing or decreasing).
The output activations were obtained by linear combinations of the hidden
unit activations, and may no longer be monotonic. An important thing is
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Figure 2: Hidden unit activations and best nonlinear transformations of input
variables for module 2 (top), module 3 (middle), and module 4 (bottom). In
each row the leftmost figure gives hidden unit activations (marked by “+” for
hy and by “Xx” for hy), and the center and the rightmost figures give output
activations as functions of the input variable in the module.

that whereas in MCA we only get values at the response categories (marked
by small circles), NGCANO fits a continuous nonlinear function that passes
through these points. This does not mean that we can freely interpolate val-
ues between the response categories, but that in principle the input variables
can take infinitely many values (in fact, a continuum of values) between pre-
scribed values of the response categories. The output activation functions are
generally not unique, but always pass through the points marked by small
circles representing the response categories of the item in the module. There
are infinitely many functions that pass through the three points, and different
functions are typically obtained from different initial estimates of the weights
in the network.

The second analysis investigates what happens if we include more than
one item in one module. We included the first two items in module 1, and
left the rest of the items as in the previous analysis. Again analog coding was
used, and a solution with two canonical variates were obtained. There were



thus nine possible input patterns (3 by 3) in module 1, which were coded as
11,12,13,21,22,23,31, 32, and 3 3 on the two input variables in this
module. We used eight hidden units in module 1 to obtain the solution. The
derived solution was essentially the same as the one obtained by the so-called
interactive coding of the first two items in MCA. In the interactive coding,
we create an item with nine categories by factorial combinations of the three
response categories in each of the two items.
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Figure 3: Hidden unit activations for the eight hidden units in module 1
as functions of the two input variables in the module, obtained by sigmoid
transformations of some linear combinations of the two input variables.

Figure 3 depicts hidden unit activations as functions of the two input
variables for the eight hidden units in module 1. All of them are monotonic
in a particular direction on the xy — x5 plane. These hidden unit activations
were linearly combined to obtain output activations which may no longer be
monotonic in any direction on the plane. Figure 4 depicts output activations
for output 1 in module 1 corresponding to the first canonical variate, which
is a nonlinear transformation of the two input variables in module 1. Small



circles indicate the function values at the prescribed values of the response
categories. Some degree of interaction effects are observed, although there
does not seem to be much interactions, as indicated by near parallel lines
connecting points within particular response categories in each of the two
items. A similar output activation function was obtained for output 2.
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Figure 4: Output activations as functions of the two input variables in module
1 obtained by a linear combination of the hidden unit activations depicted in
Figure 3.

4. Discussion and future prospects

The proposed method works in the way it is supposed to in the analysis
of multiple-choice categorical data. Although results are not presented here
because of space limitation, it has also been demonstrated that NGCANO
works in situations where there are many more response categories in each
item (to the extent that each category receives only one response). This is
the situation in which nonlinear PCA is typically called for, which is another
special case of NGCANO. These are very encouraging, although admittedly
they are still preliminary.

The basic framework of the method presented above can be extended in
a variety of ways. Below is a list of possible extensions, some of which have
already been implemented.

1) Differential weighting of modules. Information processed by some
modules is more important than others. Information from contradicting mod-
ules may duly be ignored completely. Different modules may therefore be
differentially weighted to reflect their importance. The weights may be cho-



sen a priori or algorithmically according to how well each module fits to the
criterion values, as in robust regression analysis by iterative reweighting.

2) Different numbers of hidden layers and different types of
transfer functions across modules. In the model depicted in Figure 1,
all modules had only one hidden layer, and the same sigmoid transfer func-
tions were used for all the hidden units. Information processed by different
modules may be of different types and of different complexity. In such cases
it would be useful to allow different numbers of hidden layers and different
types of transfer functions across different modules. In the example above,
one of the items had only two response categories. Since two points can
always be perfectly fitted by a linear function, no nonlinear transformation
was necessary for this item, while the other items required multiple nonlinear
transformations. This attests the necessity of differentiating the size and the
complexity of the networks for data transformation purposes.

3) Differential weighting of training patterns. Some training pat-
terns are more important and/or more reliable than others. In a manner
similar to 1) above, a differential weighting scheme may be introduced to
different training patterns. This may also be useful in dealing with missing
data. We give the weight of one to observed data, while that of zero to
missing observations.

4) Regularizations. The problem each module is solving may be ex-
tremely complicated, sometimes “ill-posed” in the sense that no unique so-
lutions can be obtained due to the lack of key ingredients as inputs, as in
the problem of recovering three-dimensional depth structures based on two-
dimensional retinal images. This is called an inverse problem (Marr, 1982).
In such cases it is essential that the information integrator is equipped with
regularization terms representing prior knowledge (also known as smooth-
ing terms, penalty terms, constraint terms, shrinkage terms, etc.) about the
problems to be solved (Poggio, Torre, and Koch, 1985). There may be as
many such terms as necessary for each module. This can be implemented by
redefining g in (1) as

ng

g = IF = Oull? + 3 pillaws (Vi) I, 3)

where the py; are the penalty parameters, the gi; are some functions of Vj,
and ny is the number of regularization terms for module k.
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