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Summary. Cascade correlation (CC) has proven to be an effective tool for simulating hu-
man learning. One important class of problem solving tasks can be thought of as establishing
appropriate connections between inputs and outputs. A CC network initially attempts to
solve the task with a minimal network configuration, but when the task cannot be solved, it
is powered up by recruiting a hidden unit to capture the uncaptured aspects of the input-
output relationship until a satisfactory degree of performance is reached. Knowledge-based
CC (KBCC) has a similar mechanism, but instead of recruiting hidden units, it can recruit
other networks previously trained with similar tasks. In this paper we demonstrate the use-
fulness of these network tools for simulating learning behavior by human subjects.

Key words: Pronoun learning, Nonlinear function learning, Constructive algorithm, Knowl-
edge transfer, Environmental bias.

1. Introduction

Many of the learning tasks we face day to day can be thought of as establishing
appropriate connections between input and output variables. As an example,
consider the learning of first- and second-person pronouns. When the mother
talks to her child, me refers to herself, while you refers to the child. When
the child talks to the mother, however, me refers to the child, while you refers
to the mother. How can the child learn the semantic rule of these pronouns?
There are three important input variables, indicating who the speaker is, who
the addressee is, and who the referent is. When the speaker and the referent
represent the same person, me should be used, and when the addressee and the
referent represent the same person, you should be used (Oshima-Takane, 1988,
1992). The output variable should elicit me when the values on the speaker
and the referent variables agree, and it should elicit you when the values on
the addressee and the referent variables agree. The learning of pronouns can
thus be considered a mapping problem from inputs to outputs.

This mapping is nonlinear and involves certain kinds of interaction effects
among the input variables. In particular, the mapping should be able to iden-
tify on which two of the three input variables values agree. Multi-layered feed-
forward neural networks (NN) are particularly good at capturing nonlinear
and interaction effects that govern the input-output relationship without being
told which nonlinear and interaction effects are important. They automatically
create the necessary components by observing examples of the input-output
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relationship.

It is interesting to see how the networks create the necessary components. Cas-
cade correlation (CC) networks (Fahlman & Lebiere, 1990) are particularly at-
tractive in simulating the process of creating the necessary components. A CC
network starts with the simplest network topology, in which there are only
input and output units. However, when no further improvement is possible
within the current network topology, it changes its configuration by recruiting
a hidden unit which captures the unpredicted part of the input-output rela-
tionship. This process is repeated until a satisfactory degree of performance is
reached. The dynamic growth in problem solving capability in CC networks
looks similar to that of human subjects gradually accumulating relevant knowl-
edge to become able to solve more complicated tasks (Shultz, 2003).

CC networks, however, usually start from scratch. CC accumulates knowledge
within a particular task, but that knowledge does not carry over to other sit-
uations in which related tasks are to be solved. Human subjects, on the other
hand, acquire knowledge from their previous experiences and actively apply
the knowledge to solve subsequent problems. Knowledge-based cascade corre-
lation (KBCC) (Shultz & Rivest, 2001) has been developed to bridge this gap.
It can incorporate prior knowledge (acquired elsewhere) to solve a current task
by recruiting other networks previously trained on similar tasks. This feature
of KBCC may allow more realistic simulations of human learning.

2. Cascade Correlation Learning Algorithm

Cascade correlation (CC) network (Fahlman & Lebiere, 1990) is a construc-
tive algorithm, which allows the network to grow dynamically, starting with
only the input and output units. Each input unit is directly connected to the
output units by adjustable weights. Initial weights are selected randomly, and
are adjusted based on target activations given in the training patterns (Ini-
tial Output Training). When performance cannot be improved any further by
weight adjustments, a hidden unit with a sigmoid activation function is re-
cruited, producing nonlinear and interaction effects in the mapping of inputs
to outputs. The new hidden unit is trained in such a way that it has an ac-
tivation pattern that maximally “correlates” with the current network error
(Input Training). After the hidden unit has been trained, output weights are
readjusted to optimize performance (Output Training). This cycle of error re-
duction is repeated until an acceptable performance is reached. No network
topology has to be prescribed except input and output. An “optimal” network
configuration is automatically determined, tailored to the level of difficulty of
the task.

To illustrate, let us look at part of Figure 1 labelled “Source Net” (enclosed
in a circle), which depicts a simple CC network. There are four input units la-
belled b’, sp’, ad’, and rf’, and one output unit labelled o’. CC starts from this
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minimal configuration (without a hidden unit). It initially estimates connec-
tion weights from the input units to the output unit (Initial Output Training).
This part is equivalent to the linear logistic discrimination method. It turns
out that the linear effects of the input variables are not sufficient for pre-
dicting the output variable, and so a hidden unit (labelled h’) is recruited.
Incoming weights (input weights) to this unit are determined by maximizing
the “correlation” between the unit’s activation and network’s current error
(Input Training). Once the hidden unit is recruited and trained, it is immedi-
ately used to predict the output variable in the next phase. The weights for
connections leading to o’ (output weights) are re-estimated (Output Training)
so that the network predictions best agree with the target outputs. In CC
networks, the input weights, once estimated, are fixed throughout the remain-
der of the training period. Thus error is not propagated back across different
levels of the network, resulting in quicker, more stable convergence. Units are
connected in a cascaded manner; the input units and all previously recruited
hidden units are connected to more recently recruited hidden units as well
as to the output units. This helps to capture higher order nonlinearities and
interaction effects among the input variables most efficiently. The input units
are directly connected to the output units (cross connections). The cross con-
nections capture linear effects of the input variables, which often account for
major portions of the variability in the target function.

Figure 1.
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Figure 2.

The CC algorithm thus proceeds in two alternate phases, Input and Output
Training phases. More specifically:

Input Training. For generality, we assume that there are K output units in
the network. At stage g, the vector of input weights v(g−1) to a new hidden
unit is determined by maximizing
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φ(g)(v(g−1)) =
K∑

k=1

|e(g−1)′
k Jz(g−1)|,

where e
(g−1)
k is the vector of current errors in output unit k, J is the matrix

of centering operator, and z(g−1) is a vector of activations at the new hidden
unit, defined by

z(g−1) = σ(Z(g−1)v(g−1)),

where σ is a sigmoid transformation.

Output Training. The matrix of activations at stage g is obtained by ap-
pending the matrix of activations in the previous stage, Z(g−1), by z(g−1). That
is, Z(g) = [Z(g−1),z(g−1)]. The matrix of output weights, W (g), is determined
by minimizing

ψ(g)(W (g)) = SS(O − Ô
(g)

).

where for any matrix X, SS(X) = tr(X ′X), O is the matrix of target outputs,

and Ô
(g)

is the matrix of output predictions defined by

Ô
(g)

= σ(Z(g)W (g)).

The algorithm starts with the second phase with Z(g) equated to the matrix
of inputs. See Shultz (2003), and Takane, Oshima-Takane, and Shultz (1999)
for more detail.

3. Pronoun Learning Problem

The learning of first and second pronouns presents an interesting problem
to psychologists because of the shifting reference of these pronouns. Oshima-
Takane and her collaborators (Oshima-Takane, 1988, 1992; Oshima-Takane,
Goodz, & Derevensky, 1996) have conducted a series of extensive studies on
this topic with human subjects. As noted earlier, the problem can be regarded
as a special type of rule (nonlinear function) learning, where the rule to be
learned is: Use me when the speaker and the referent agree, and use you when
the addressee and the referent agree.

To analyze the task more closely, let us look at Table 1. There are three input
variables: Speaker (sp), Addressee (ad) and Referent (rf), and there is one
output variable (o) indicating the pronoun to be used (me or you). For the
moment, we assume that there are only three persons involved: Child, Mother
and Father. (This number will be increased to five in the simulations to be
reported later.) The three input variables can take either one of these three
values. There are two constraints in forming input patterns: (1) Speaker and
Addressee can never agree, and (2) Either Speaker and Referent agree, or
Addressee and Referent agree. These constraints limit the number of possible
patterns to 12. It can be verified that the rules mentioned in the previous
paragraph indeed hold for all the 12 patterns. For example, when Father talks
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to Child referring to himself, he uses me, while when Mother talks to Child
referring to Child, she uses you, etc. The child has to learn the three relevant
input variables and be able to identify which two of the three variables take
identical values.

Table 1. Training Patterns in the Three-Person Situation

Condition Input Variables Output Variable
Speaker Addressee Referent Pronoun

Addressee 1) Father Child Father me
patterns 2) Father Child Child you

3) Mother Child Mother me
4) Mother Child Child you

Nonaddressee 5) Father Mother Father me
patterns 6) Father Mother Mother you

7) Mother Father Mother me
8) Mother Father Father you

Child-speaking 9) Child Father Child me
patterns 10) Child Father Father you

11) Child Mother Child me
12) Child Mother Mother you

Notice that there are three distinct groups of input patterns in the table.
The first group, called addressee patterns, consists of patterns in which the
addressee is always Child. The second group, called nonaddressee patterns,
consists of patterns in which Child is neither the speaker nor the addressee.
The third group, called child-speaking patterns, consists of patterns in which
the speaker is always Child. Oshima-Takane (1988) hypothesized that rele-
vant information necessary for learning the correct use of the pronouns is
not provided in the speech addressed to the child, and that the child has to
be exposed to the nonaddressee patterns (i.e., to pay attention to overheard
speech) to learn their correct use. Her hypotheses have been empirically ver-
ified in both experimental and observational studies (Oshima-Takane, 1988,
1992; Oshima-Takane, et al., 1996). However, for obvious ethical reasons chil-
dren cannot be tested under the pure addressee or nonaddressee condition.
This is where simulation studies will be important because neural nets can be
trained under these pure conditions. According to Oshima-Takane’s hypothe-
ses, networks will learn an incorrect function (or rule) when trained with only
addressee patterns, but arrive at a correct function when trained with non-
addressee patterns. The child-speaking patterns provide a test of whether the
correct function is learned or not. Changes in learning as a result of changes
in inputs are generally known as the problem of environmental bias.
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4. Simulations of Pronoun Learning by CC

We investigate the effects of environmental bias in pronoun learning by CC net-
work simulations. Since the pronoun learning problem is equivalent to finding
a nonlinear function that connects inputs to outputs, we are in effect investi-
gating changes in function approximations due to environmental bias. For the
purpose of simulations we arbitrarily assigned the values of 0, 2, and −2 to
Child, Mother, and Father on the three input variables, and .5 to me and −.5
to you on the output variable. However, a previous study (Oshima-Takane,
Takane, and Shultz, 1999) indicated that three persons were not sufficient for
CC networks to learn a correct function and generalize properly. To provide
a richer learning environment (more examples), we added two other persons,
who were coded 1 and −1 in the simulation studies. With five persons in total,
we obtain 8 addressee patterns, 24 nonaddressee patterns, and 8 child-speaking
patterns. The target function can be formally stated as

o = (ad− rf)/(ad− sp)− 0.5,

where sp, ad and rf are the values of the speaker, the addressee, and the refer-
ent variables, respectively. It can easily be verified that when sp = rf , o = .5,
and when ad = rf , o = −.5.

Figure 2 presents a graphical display of the target function. The me surface
is presented at the top (o = .5), and that of you is presented at the bottom
(o = −.5). Note that for the me surface, the axis labelled sp represents both the
speaker and the referent variables which should agree, while the axis labelled
ad represents the addressee variable. For the you surface, on the other hand,
the axis labelled ad represents both the addressee and the referent variables
which should agree, while the axis labelled sp represents the speaker variable.
These surfaces were drawn for the values between -3.5 and 3.5 for all the input
variables. The letter A on each surface indicates addressee patterns, the letter
N nonaddressee patterns, and the letter C child-speaking patterns, used in the
training. No other points on the grids were used in the training.

Two simulation studies were conducted to test Oshima-Takane’s hypotheses
using CC networks. In the first study, nets were trained under the pure ad-
dressee condition, while in the second study under the pure nonaddressee
condition. We expect that the nets will learn an incorrect function under the
former condition, and a correct function under the latter condition. We can
graphically display the function learned in each simulation study. In both con-
ditions one hidden unit was recruited. The two top figures in Figure 3 (3a and
3b) show the me and the you surfaces, respectively, constructed under the pure
addressee condition. Both surfaces correctly discriminate the four addressee
patterns for me from the four addressee patterns for you. (Read off the function
values at ad = 0 in both figures.) However, they do not correctly discriminate
the eight child-speaking patterns. (Read off the function values at sp = 0 in
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the two figures.) Nonaddressee patterns are also not properly discriminated.
As expected, further training was necessary to deal with the child-speaking
and nonaddressee patterns. The bottom portions of Figure 3 (3c and 3d) show
the me and you surfaces obtained from the pure nonaddressee condition. They
correctly discriminate not only the nonaddressee patterns used in the train-
ing, but also the child-speaking and the addressee patterns. Generalizations
(function values at untrained points) also seem quite good, although the me
surface shows a sign of problems in generalization in the lower right corner.
The surfaces look quite similar to the corresponding target functions depicted
in Figure 2. The nonaddressee patterns are indeed crucial for pronoun learning,
as hypothesized by Oshima-Takane (1988, 1992), indicating the importance of
overheard speech. These results conform to the findings by Oshima-Takane,
Takane, and Shultz (1999).
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Figure 3. Approximated Functions: Addressee (a, b) and Nonaddressee Condition (c, d).

5. KBCC Network Simulations

Knowledge-based cascade correlation (KBCC) networks can incorporate prior
knowledge in learning a new task by recruiting other networks previously
trained with related tasks. Figure 1 depicts a KBCC target network, where a
source net pre-trained by CC has been recruited instead of a single hidden unit.
When the source net is being recruited, its inputs (except the bias unit) are
connected to all existing units (except the output units) in the target network.
The source inputs are trained (the weights leading to the source inputs are
adjusted) in such a way that outputs from the source net are maximally cor-
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related with current target network error. The input connections are assumed
to have linear transfer functions. Once the source input training is done, the
output training in the target network proceeds just as in ordinary CC. Shultz
and Rivest (2001) describe the algorithm for KBCC in detail along with a
report of numerical experiments assessing the capability of KBCC networks
under a variety of conditions.
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Figure 4. Input Recoding: Activations at Source Inputs

We examined effectiveness of KBCC networks in the pronoun learning task.
Addressee nets learned an incorrect function in CC network simulations. They
could capture only addressee patterns with which they were trained, but could
not generalize correctly to untrained patterns. We may ask, however, whether
they learned anything useful for eventual learning of the untrained patterns.
What happens if an addressee net is used as a possible source net in a KBCC
network? Would this source net facilitate the learning of child-speaking and
nonaddressee patterns? We simulated the learning of addressee and child-
speaking patterns by KBCC with the addressee nets as possible source nets.
We were interested to find whether the addressee source net has any effects
(either facilitating or interfering) on learning, and if the learned function gen-
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eralizes to nonaddressee patterns.

We first examined how the input training of the addressee source net could
change the output activations in the source net. Figure 4 shows activations at
source net inputs (labelled Inputs 1, 2, and 3 which correspond with sp’, ad’,
and rf’ in Figure 1, but they no longer represent sp, ad, and rf as such) in
a KBCC network, which are obtained by linear transformations of the input
units (labelled b, sp, ad and rf) in the target network. Of the three source
input units, the only crucial unit turned out to be Input 3 (rf’) because in
the original addressee net the only significantly nonzero weight was for the
connection from rf’ to h’. Other input units (sp’ and ad’) did not play any
significant roles. Figure 5 indicates output predictions (activations) from the
source net. As indicated, these predictions are totally different from the orig-
inal outputs from the addressee source net which were displayed in Figure 3a
and 3b. This shows how drastically the input recoding (linear transformations
of the original inputs) can change the output predictions from a source net.
The source output turned out to be nearly identical to those from the final
target network (so much so that no separate figures are given for the target
outputs). Somewhat surprisingly, the final output functions resemble the tar-
get function for the learning of first and second person pronouns depicted in
Figure 2. The you surface is perfectly recovered including the untrained non-
addresse patterns, while the me surface has some observable departure from
the target function. These surfaces look similar to those obtained by the non-
addressee CC nets (Figure 3c and 3d). (However, the prediction error for the
nonaddressee patterns was somewhat larger for the KBCC nets than that of
the nonaddressee CC nets.) The activation pattern at h’ was also very similar
to the hidden unit activations in the nonaddressee CC net. This means that
source input training can make the source net work like a nonaddresse CC
net by linear transformations of the original inputs. A closer inspection of the
activation pattern at Input 3 (rf’) in the source net has revealed that it rep-
resents a linear combination of the original input units similar to the sum of
contributions of these units that goes into the hidden unit in the nonaddressee
CC net.
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6. Conclusion and Future Direction

KBCC presents an interesting paradigm for how prior knowledge may be
used in human learning, although obviously more systematic investigations
of knowledge representation in KBCC are in order.

When only the first and second person pronouns are used in a simulation,
sp = rf implies ad 6= rf, and ad = rf implies sp 6= rf because no patterns in
which sp 6= rf 6= ad are included in the training. This means that a network
does not have to learn the true rule. Apparently correct behavior follows if
it uses a degenerate rule: me if sp = rf and you otherwise, or you if ad =
rf and me otherwise. Indeed, this was the case (Takane, 1998), and for the
network to learn the true rule, pronouns other than me and you, e.g., he and
she, have to be included (Oshima-Takane, Takane, & Takane, 1999). Similar
simulation studies by KBCC involving pronouns other than me and you would
undoubtedly be interesting.
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