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Abstract: Square tables in which some of the elements located symmetrically about

the diagonal are not equal to each other are called asymmetric tables. Asymmetric

tables arise in a variety of different ways. They can be roughly classified into two

groups, one arising from measurements of antisymmetric relationships, and the other

of proximity relationships. A variety of models have been proposed to capture the

asymmetry in such tables. In this article we briefly discuss some of the representative

models of asymmetry for each of the two types of data.

Scaling asymmetric tables

Tables with the same number of rows and columns are called square tables. In square

tables corresponding rows and columns often represent the same entities (objects,

stimuli, variables, etc.). For example, the ith row of the table represents stimulus i,

and the ith column also represents the same stimulus i. Let xij denote the element

in the ith row and the jth column of the table. (We often call it ijth element of the
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table.) We use X (in matrix form) to denote the entire table collectively. Element xij

indicates (the strength of) some kind of relationship between the row entity (stimulus

i) and the column entity (stimulus j). Square tables, in which xij 6= xji for some

combinations of i and j, are called asymmetric tables. In matrix notation, this is

written as X ′ 6= X, where X ′ indicates the transpose of X.

Asymmetric tables arise in a number of different guises. In some cases the kind

of relationship represented in the table is antisymmetric. For example, suppose you

have a set of stimuli, and you ask a group of subjects whether they prefer stimulus

i or j for each pair of stimuli. Since j cannot be preferred to i if i is preferred to j,

the preference choice constitutes an antisymmetric relationship. Let xij denote the

number of times i is preferred to j. Tables representing antisymmetric relationships

are usually asymmetric. This type of tables are often skew-symmetric or can easily

be turned into one by a simple transformation (e.g., yij = log(xij/xji)). In the skew

symmetric table, yji = −yij (Y ′ = −Y ). Skew symmetric data such as the one just

described are often represented by the difference between the preference values of

the two stimuli involved. Let ui represent the preference value of stimulus i. Then,

yij = ui − uj. Case V of Thurstone’s law of comparative judgment [8], and Bradley-

Terry-Luce (BTL) model [1, 7] are examples of this class of models. The scaling

problem here is to find estimates of ui’s given a set of observed values of yij’s.

Here is an example. The top panel of Table 1 gives observed choice probabilities

among four music composers labelled as B, H, M and S. Numbers in the table indicate

the proportions of times row composers are preferred to column composers. Let us
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apply the BTL model to this data set. The second panel of the table gives the skew

symmetric table obtained by applying the transformation, yij = log(xij/xji), to the

observed choice probabilities. Least squares estimates of preference values for the four

composers are obtained by row means of this skew symmetric table. B is the most

preferred, M the second, then S, and H the least. Something similar can also be done

with Thurstone’s Case V model. The only difference it makes is that normal quantile

(deviation) scores are obtained, when the matrix of the observed choice probabilities is

converted into a skew symmetric matrix. The rest of the procedure remains essentially

the same as in the BTL model.

***** Insert table 1 about here *****

Asymmetric tables can also arise from proximity relationships, which are often

symmetric. In some cases they exhibit asymmetry, however. For example, you may

ask a group of subjects to identify the stimulus presented out of n possible stimuli,

and count the number of times stimulus i is “confused” with stimulus j. This is called

stimulus recognition (or identification) data, and it is usually asymmetric. There are

a number of other examples of asymmetric proximity data such as mobility tables,

journal citation data, brand loyalty data, discrete panel data on two occasions, etc.

In this case a challenge is how to explain the asymmetry in the tables.

A variety of models have been proposed for asymmetric proximity data. Perhaps

the simplest model is the quasi-symmetry model. The quasi-symmetry is characterized

by xij = aibjcij, where ai and bj are row and column marginal effects, and cij = cji
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indicates a symmetric similarity between i and j. This model postulates that after

removing the marginal effects, the remaining relation is symmetric. (In the special

case in which ai = bi for all i leads to a full symmetric model.) The quasi-symmetry

also satisfies the cycle condition stated as xijxjkxki = xjixkjxik. In some cases, the

symmetric similarity parameter, cij, may further be represented by a simpler model,

cij = exp(−dij), or cij = exp(−d2
ij), where dij is the Euclidean distance between

stimuli i and j represented as points in a multidimensional space.

DEDICOM (DEcomposing DIrectional COMponents, [4]) attempts to explain

asymmetric relationships between n stimuli by a smaller number of asymmetric re-

lationships. The DEDICOM model is written as X = ARA′, where R is a square

asymmetric matrix of order r (capturing asymmetric relationships between r compo-

nents, where r is assumed much smaller than n), and A is an n by r matrix that relates

the latent asymmetric relationships among the r components to the observed asym-

metric relationships among the n stimuli. Several algorithms have been developed to

fit the DEDICOM model. To illustrate, the DEDICOM model is applied to a table of

car switching frequencies among 16 types of cars [4]. (This table indicates frequencies

with which a purchase of one type of cars is followed by a purchase of another type

by the same consumer.) Table 2 reports the analysis results [5]. Labels of the 16 car

types consist of two components. The first three characters mainly indicate size (SUB

= subcompact, SMA = small specialty, COM = compact, MID = mid-size, STD =

standard, and LUX = luxury), and the fourth character indicates mainly origin or

price (D = domestic, C = captive imports, I = imports, L = low price, M = medium
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price, and S = specialty). The top portion of the table gives the estimated A matrix

(normalized so that A′A = I), from which we may deduce that the first component

(dimension) represents plain large and mid-size cars, the second component represents

fancy large cars, and the third represents small/specialty cars. The bottom portion

of the table represents the estimated R matrix that captures asymmetry relationships

among the three components. There are more switches from 1 to 3, 1 to 2, and 2 to 3

than the other4 way round. This three-component DEDICOM model captures 86.4%

of the total SS (sum of squares) in the original data.

***** Insert Table 2 about here *****

Any asymmetric table can be decomposed into the sum of a symmetric matrix (Xs)

and a skew symmetric matrix (Xsk). That is, X = Xs +Xsk, where Xs = (X +X ′)/2,

and Xsk = (X − X ′)/2. The two parts are often analyzed separately. Xs is often

analyzed by a symmetric model (such as the inner product model or a distance model

like those for cij described above). Xsk, on the other hand, is either treated like

a skew symmetric matrix arising from an antisymmetric relationship, or by CASK

(Canonical Analysis of SKew symmetric data, [3]). The latter decomposes Xsk in

the form of AKA′ where K consists of 2 by 2 blocks of the form




0 kl

−kl 0


 for

the lth block. This representation can be analytically derived from the singular value

decomposition of Xsk.

Generalized GIPSCAL [6] and HCM (Hermitian Canonical Model, [2]) analyze

both parts (Xs and Xsk) simultaneously. The former represents X by B(Ir + K)B′
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(where the BB′ part represents Xs and the BKB′ part represents Xsk) under the

assumption that the skew symmetric part of R (i.e., (R − R′)/2) in DEDICOM is

positive definite. The HCM first forms an hermitian matrix, H, by H = Xs + iXsk

(where i is a symbol for an imaginary number, i =
√−1), and obtains the eigenvalue-

vector decomposition of H.
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Observed Choice Probabilities

B H M S

B .500 .895 .726 .895

H .105 .500 .147 .453

M .274 .853 .500 .811

S .105 .547 .189 .500

Matrix of yij = log(xij/xji)

B 0 2.143 .974 2.143

H -2.143 0 -1.758 -.189

M -.974 1.758 0 1.457

S -2.143 .189 -1.457 0

Estimated Preference Values

1.315 -1.022 .560 -0.853

Table 1: The BTL model applied to preference choice data involving four music

composers.
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Matrix A

Dimension

Car Class 1 2 3

SUBD .13 -.02 .36

SUBC .02 .00 .03

SUBI .03 .01 .30

SMAD .01 .03 .53

SMAC .00 .00 .00

SMAI .00 .01 .09

COML .24 -.11 .17

COMM .10 -.01 .06

COMI .02 .00 .03

MIDD .54 .00 .12

MIDI .02 .00 .02

MIDS .09 .24 .58

STDL .68 -.08 -.18

STDM .32 .67 -.27

LUXD -.23 .69 .05

LUXI .00 .02 .01

Matrix R (divided by 1000)

dim. 1 127 57 78

dim. 2 26 92 23

dim. 3 17 12 75

Table 2: DEDICOM applied to car switching data.
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