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1 Introduction

Multiple correspondence analysis (MCA) is a useful technique for the structural anal-

ysis of multivariate categorical data (Greenacre, 1984; Lebart, Morineau, & Warwick,

1984; Nishisato, 1980). MCA assigns scores to rows (representing the subjects) and

columns (representing the response categories) of a data matrix, yielding a graphical

display of the rows and the columns of the data matrix. The graphical display fa-

cilitates our intuitive understanding of the relationships among the categories of the

variables.

MCA, however, has remained largely descriptive, although there have been some

attempts to make it more inferential (Gifi, 1990; Greenacre, 1984, 1993; Markus,

1994). These attempts mostly focussed on the assessment of stability of solutions

using a bootstrap resampling technique (Efron, 1979). However, inferential data

analysis is not limited to assessing stability, but is also intended in estimating popu-

lation characteristics using sample data. The quality of solutions should be assessed

in terms of how close the estimates are to the corresponding population quantities.

An interesting question arises from this perspective: Is the conventional method

of MCA the best method for obtaining estimates of parameters? In MCA, the con-

ventional method is well established, is computationally simple, and has been in use

almost exclusively in data analytic situations involving MCA. However, does it pro-
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vide estimates that are on average closest to the population parameters? The answer

is “not always”. In this chapter, we propose an alternative estimation procedure

for MCA, called regularized MCA (RMCA), and demonstrate that in some cases

it provides estimates that are on average closer to population parameters than the

conventional estimation method. This method is easy to apply and is also computa-

tionally simple, in fact almost as simple as the conventional method.

The basic idea of RMCA comes from ridge regression, proven useful to mitigate

multi-collinearity problems often encountered in multiple regression analysis (Hoerl &

Kennard, 1970). Let X and y denote a matrix of predictor variables and an observed

criterion vector, respectively, and let b denote a vector of regression coefficients.

Then, the ordinary least squares (LS) estimates of regression coefficients are obtained

by

b̂ = (X>X)−1X>y. (1)

In ridge regression, on the other hand, regression coefficients are estimated by

b∗ = (X>X + λI)−1X>y, (2)

where the additional quantity, λ, is a regularization (or ridge) parameter, which typ-

ically takes a small positive value. The LS estimation provides the best (minimum

variance) estimates among all linear unbiased estimates (BLUE) under mild distribu-

tional assumptions on errors. However, it may provide poor estimates of regression
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coefficients (associated with large variances) when the matrix X>X is ill-conditioned

(nearly singular) due to multi-collinearity (high correlations among the predictor vari-

ables). The ridge estimator, on the other hand, is biased but is more robust against

multi-collinearity. A small positive number added to the diagonals of X>X works

almost magically to provide estimates that are more stable than the ordinary LS

estimates.

The quality of parameter estimates is measured by the squared Euclidean distance

between the estimates and parameters. If we take the expected value of the squared

distance over replicated samples of data, we obtain mean squared error (MSE). MSE

can be decomposed into two distinct parts. One is the squared bias (the squared

distance between the population parameters and the mean of the estimates over

replications), and the other is the variance (the average distance between individ-

ual estimates and the mean of the estimates). The LS squares estimates have zero

bias, but they may have large variances (as is typically the case in the presence of

multi-collinearity). The ridge estimates, on the other hand, although often biased,

are also typically associated with a smaller variance, and most importantly, if the

variance is small enough, ridge estimates may well have a smaller MSE than their

LS counterparts. That is, in spite of their bias, they are on average closer to the

population values. Indeed, for a certain range of values of λ, it is known that ridge

estimators always have a smaller MSE than the ordinary LS estimates (Hoerl & Ken-
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nard, 1970) regardless of the existence of multi-collinearity problems. We exploit this

fact to obtain better estimates in MCA.

To see the effect of regularization in MCA, let us look at Figure 1 as an example.

This figure displays a two-dimensional configuration of response categories obtained

by the usual (non-regularized) MCA of Nishisato’s (1994) small survey data. In

this data set, 23 subjects responded to four multiple-choice items each having three

response categories. The questionnaire items, the associated response categories, and

the data are given in Appendix (A). In this figure, each response category is labelled

using an alphabet/number pairing; the alphabet indicates an item, and the number

indicates a category number within the item. Ellipses surrounding the points are 95%

confidence regions obtained by the bootstrap procedure (Efron, 1979). The smaller

the ellipse, the more reliably the point is estimated. The ellipses are fairly large in

all cases, indicating that the category points are not very reliably estimated. This

is understandable from the fact that the sample size is rather small in this data set.

Now let us look at Figure 2 for comparison. This figure is essentially the same as

Figure 1, except that it was derived from the regularized MCA (RMCA). As can be

seen, ellipses are almost uniformly smaller compared to those in Figure 1, indicating

that the point locations are more reliably estimated by RMCA. This exemplifies the

kind of benefit we might expect to get as a result of regularization. (More will be

said about this example later).
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***** Insert Figures 1 and 2 about here. *****

This chapter is organized as follows. In the next section, we present the pro-

posed method of regularized MCA (RMCA) in some detail. We first (section 2.1)

briefly discuss ordinary (non-regularized) MCA to provide a context for introducing

regularization (section 2.2). We then discuss how to choose an optimal value of the

regularization parameter (section 2.3). In section 3, we give some examples that il-

lustrate the use of RMCA. We first (section 3.1) follow up on Nishisato’s data and

complete our discussion given above, and then (section 3.2) consider a large data

set from Greenacre (1993; pp. 124-125) to demonstrate the conditions under which

RMCA is most effective. Appendices give descriptions of the data used for illustra-

tion.

2 The Method

2.1 Multiple Correspondence Analysis (MCA)

In this section we briefly discuss ordinary MCA as an introduction to regularized

MCA (RMCA), which we develop in the next section.

Let Zk (k = 1, · · · , K) denote an n (cases) by pk (categories) matrix of raw in-

dicator variables for the kth categorical variable. We use Z to denote a block ma-

trix formed by arranging Zk side by side. That is, Z = [Z1, · · · ,ZK ]. Define a
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block diagonal matrix D̃ consisting of D̃k = Z>k Zk as the kth diagonal block. Let

X denote a column-wise centered data matrix obtained from the raw data ma-

trix by X = QnZ = ZQ1p/D̃, where Qn is the centering matrix of order n (i.e.,

Qn = In−1n1
>
n /n, where 1n is the n-element vector of ones), and Q1p/D̃ is the block

diagonal matrix with Q1pk
/D̃k

= Ipk
− 1pk

1′pk
D̃k/n as the kth diagonal block where

1pk
is the pk-element vector of ones. We assume X is partitioned in the same way as

Z (i.e., X = [X1, · · · ,Xk]). Define D = D̃Q1p/D̃, which is the block diagonal matrix

with Dk = X>
k Xk as the kth diagonal block.

In MCA, we find the matrix of column scores (weights) W = [W1, · · · ,WK ]

partitioned in the same way as X, that maximizes

φ(W) = tr(W>X>XW), (3)

subject to the ortho-normalization restriction that W>DW = IA, where A is the

dimensionality of the representation space. This leads to the following generalized

eigen-equation,

X>XW = DW∆2, (4)

where ∆2 is the diagonal matrix of generalized eigenvalues in descending order of

magnitude, and W is the matrix of generalized eigenvectors of X>X with respect to

D. Once W and ∆2 are obtained by solving the above eigen-equation, the matrix of

row scores, F, can be obtained by F = XW∆−1.
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Essentially the same results can also be obtained by the generalized singular value

decomposition (GSVD) of XD− with row metric D. (This is based on the well-

known relationship between the generalized eigenvalue decomposition and the GSVD.

See, for example, Takane (2002).) This is written as GSVD(XD−)In,D, where D−

indicates a generalized inverse (g-inverse) of D. (For definition and computation of

GSVD, see Greenacre (1984) or Takane & Hunter (2001).) Let GSVD(XD−)In,D be

denoted by XD− = F∗∆∗W∗>, where F∗ is the matrix of left singular vectors such

that F∗>F∗ = Ir, W∗ is the matrix of right generalized singular vectors such that

W∗>DW∗ = Ir, and ∆∗ is the positive-definite (pd) diagonal matrix of generalized

singular values arranged in descending order of magnitude. Here, r is the rank of

the column-wise centered data matrix, X. Matrix W in (4) is obtained from W∗ by

retaining only the first A columns of W∗ corresponding to the A largest generalized

singular values, and matrix ∆ is obtained from ∆∗ by retaining only the first A rows

and columns. The matrix of row scores F can be similarly obtained by retaining only

the first A columns of F∗.

Whether we use (4) or GSVD to obtain MCA solutions, we can replace D in the

formulae by D̃ (and D− by D̃
−1

) without affecting the computational results. This

simplifies the computation considerably because D̃ is diagonal and can be directly

calculated from the raw data, whereas the computation of D requires an additional

step. Also, D̃
−1

is much easier to compute than D−, which is a g-inverse of D of
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a specific kind (D is necessarily of rank deficient because each diagonal block of D

is of rank deficient) to obtain Wk that satisfies 1>pk
DkWk = 0> for every k, which

is a standard requirement in MCA solutions. The use of D̃ and D̃
−1

automatically

assures this requirement.

2.2 Regularized MCA

We now introduce a regularization procedure. Define

D̃(λ) = D̃ + λJp, (5)

where λ is a regularization parameter (whose value is determined by some cross

validation method, as will be discussed in the next section), and Jp is a block diagonal

matrix with Jpk
= X>

k (XkX
>
k )−Xk as the kth diagonal block. (Matrix Jpk

is the

orthogonal projector onto the row space of Xk.) Also, define

D(λ) = D̃(λ)Q1p/D̃ = D̃Q1p/D̃ + λJpQ1p/D̃ = D + λJp. (6)

Note that JpQ1p/D̃ = Jp. In regularized MCA (RMCA), we maximize

φλ(W) = tr(W>(X>X + λJp)W) (7)

with respect to W, subject to the ortho-normalization restriction that W>D(λ)W =

IA. This criterion is an extension of (3). The above criterion leads to the following
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generalized eigen equation analogous to (4):

(X>X + λJp)W = D(λ)W∆2. (8)

In order to derive the GSVD equivalent to the above generalized eigen-equation,

we need to define a special metric matrix, M(λ), as follows:

M(λ) = In + λ(XX>)+, (9)

where (XX>)+ indicates the Moore-Penrose inverse of XX>. Note that using M(λ),

X>X + λJp can be rewritten as,

X>X + λJp = X>M(λ)X, (10)

assuming that Xk’s are disjoint (i.e., rank(X) =
∑K

k=1 rank(Xk)). This condition is

usually met in practical data analysis situations. See Takane & Hwang (2004) for

more details of the derivation. The equivalent GSVD problem can now be stated as

GSVD(XD(λ)−)M(λ),D(λ).

As in the non-regularized case, D(λ) and D(λ)− in (8) or in the above GSVD

problem can be replaced by D̃(λ) and D̃(λ)−1, respectively. Again, this simplifies the

computation. The exact rationale that allows this replacement can again be found in

Takane & Hwang (2004).

The criterion, (7), can be further generalized into:

φ
(L)
λ (W) = tr(W>(X>X + λL)W), (11)
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which is maximized with respect to W, subject to the restriction that W>(D +

λL)W = IA, where L is a block diagonal matrix with Lk as the kth diagonal block.

Matrix Lk could be any symmetric nnd (non-negative definite) matrix such that

Sp(Lk) = Sp(X′
k), where Sp(Y) indicates the space spanned by the column vectors

of Y. This criterion leads to a solution of the following generalized eigen equation:

(X>X + λL)W = D(L)W∆2, (12)

where D(L) = D + λL. This generalization is often useful when we need a regu-

larization term more complicated than λJp. Such cases arise, for example, when we

want to incorporate, by way of regularization, certain degrees of smoothness in the

function to be approximated (e.g., Ramsay & Silverman, 1997). Adachi (2002) used

this form of regularization to modulate the degree of smoothness of the trajectory

describing changes in responses to a categorical variable over a period of time. In this

case, M(λ) defined in (9) should also be generalized into:

M(L)(λ) = In + λ(XL+X>)+. (13)

Properties similar to those for M(λ) hold for M(L)(λ) as well.

2.3 The Choice of λ

In this section, we first discuss a cross validation procedure for selecting an opti-

mal value of the regularization (ridge) parameter, λ. We then briefly discuss other
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nonparametric procedures that help make MCA more inferential.

We should note at the outset that a wide range of values of λ exists for which

the regularization method works reasonably well, so that we do not have to be overly

concerned about its choice. As will be shown in section 3.2, any value between 2

and 20 works substantially better than λ = 0, and they all give similar results. In

this sense, the proposed regularization method is robust. Having said that, we may

still want to have an objective procedure that can determine a near optimal value

of λ. We may use some kind of cross validation method such as the bootstrap or

the G-fold cross validation method. We use the latter without any good reason to

favor one over the other. In this method the data set at hand are randomly divided

into G sub-samples. One of the sub-samples is set aside, and estimates of parameters

are obtained from the remaining data. These estimates are then used to predict the

cases in the sample set aside to assess the amount of prediction error. We repeat this

process G times, each time setting aside one of the G sub-samples in turn.

Let X(−g) denote the data matrix with data in sample g eliminated from X. We

denote the data in sample g (that are eliminated) by X(g). We apply RMCA to

X(−g) to obtain W(−g), from which we calculate X(g)W(−g)W(−g)>. This gives the

cross validation prediction of X(g)D(λ)−. We repeat this for all G sub-samples, and

collect all cross validated predictions, X(g)W(−g)W(−g)>, in matrix X̂D(λ)−. We then
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calculate

ε(λ) = SS(XD(λ)− − X̂D(λ)−)M(λ),D(λ) (14)

as an index of prediction error, where SS(Y)M(λ),D(λ) = tr(Y>M(λ)YD(λ)). We

compare the value of ε(λ) for different values of λ (e.g., λ = 0, 1, 2, 5, 10, 20, 30), and

choose the value of λ associated with the smallest value of ε(λ).

When G is taken equal to the size of the original data set, this procedure is called

leaving-one-out (LOO) or jackknife method. The LOO method may be avoided for

large data sets because it requires G = N solutions of RMCA and could be quite

time consuming, although for smaller sized data, it may still be used. In most cases,

however, the G-fold cross validation method with G < N gives similar results to the

LOO method.

The above procedure for determining an optimal value of λ presupposes that we

already know the number of dimensions in the RMCA solution. For dimensionality

selection, we may use permutation tests similar to the one used by Takane & Hwang

(2002) in generalized constrained canonical correlation analysis. Although the per-

mutation tests may also be affected by the value of λ, our experience indicates that

the best dimensionality is rarely, if ever, affected by the value of the regularization

parameter. Thus, the permutation tests may be applied initially with λ = 0, by

which a tentative dimensionality is selected, and the G-fold cross validation method

is applied to select an optimal value of λ. We may then reapply the permutation
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tests with the selected optimal value of λ to make sure that the best dimensionality

remains the same. General descriptions of the permutation tests for dimensionality

selection can be found in Legendre & Legendre (1998), and ter Braak (1990).

We may also use a bootstrap method (Efron, 1979) to assess the reliability of

parameter estimates derived by RMCA. In this procedure, random samples (called

bootstrap samples) of the same size as the original sample are repeatedly sampled

from the original sample with replacement. RMCA is applied to each bootstrap

sample to obtain estimates of parameters each time. We then calculate the mean and

the variance-covariance of the estimates across the bootstrap samples, from which we

calculate estimates of standard errors of the parameter estimates, or draw confidence

regions to indicate how reliably parameters are estimated. The latter is done under

the assumption of asymptotic multivariate normality of the parameter estimates.

Figures 1 and 2 presented earlier for Nishisato’s data were obtained in this way.

When the assumption of asymptotic normality is suspect, we may use a nonpara-

metric method for constructing confidence regions (e.g., Markus, 1994). Alternatively,

we may simply plot as many point estimates (as we obtained by the bootstrap proce-

dure) in the configuration of category points (Greenacre, 1984; 1993). This is usually

good enough to give a rough indication of how tightly or loosely category points are

estimated. See Figures 8 and 9 in section 3.2.

Significance tests of the elements of W, may also be performed as byproducts
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of the bootstrap method described above. We simply count the number of times

bootstrap estimates “cross” the value of zero (i.e., if the original estimate obtained

from the original sample is positive, we count the number of times the corresponding

bootstrap estimates turn out to be negative, and vice versa). If the relative frequency

(the p-value) of the cross-over is smaller than a prescribed α level, we conclude that

the corresponding parameter is significantly different from zero.

3 Examples

We report two sets of numerical results in this section. One involves Nishisato’s

(1994) small survey data we have discussed previously in the introduction section.

The other pertains to Greenacre’s (1993) car purchase data. This is a huge data set

(over half a million cases) representing the total population of car purchases made in

some country during a certain period of time. Because it is a population data set,

we can sample data of varying sizes from the population, and directly estimate MSE

as well as bias and variance of the estimates that result from a certain estimation

procedure. We can directly compare these quantities across different values of λ by

systematically varying its value.
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3.1 Analysis of Nishisato’s Data Continued

As mentioned earlier, these data consist of 23 subjects responding to four items each

having three response categories. Information regarding this data set is given in

Appendix (A).

Permutation tests indicated that the first dimension (corresponding to the singular

value of 2.59) was highly significant (p = 0), while the second dimension (correspond-

ing to the singular value of 1.79) was only marginally so (p = .07). The p-values were

reported only for λ = 2 found to be optimal for this data set. However, a similar

pattern of significance (p-values) was observed for other values of λ. All subsequent

analyses on this data set assumed A = 2.

The LOO method was then applied to find an optimal value of the regularization

parameter. (The LOO method was feasible because this was a small data set.) The

estimate of prediction error (ε) was found to be .391 for λ = 0, .383 for λ = 1, .382

for λ = 2, and .391 for λ = 5. Thus, an optimal value of λ was found to be 2.

A bootstrap method was used to assess the reliability of the parameter estimates.

This was done for both λ = 0 (non-regularized MCA) and the optimal value of

λ = 2 (RMCA) for comparison. One thousand bootstrap samples were generated,

parameter estimates were obtained for each sample, and the mean and the variance-

covariance estimates of the estimated parameters were calculated, from which the 95%
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confidence regions depicted in Figures 1 and 2 were drawn. As we have seen already,

confidence regions are almost uniformly smaller for the parameter estimates obtained

by RMCA (with the optimal value of λ = 2) than those obtained by non-regularized

MCA (under λ = 0), indicating that the parameters are more reliably estimated in

the former. The regularization tends to shrink the estimates. To avoid getting smaller

confidence regions just because of the shrinking effects, the configuration obtained by

RMCA was sized up to match the size of the configuration obtained by the ordinary

MCA, and the variance-covariance estimates of the former were adjusted accordingly.

Confidence regions were also drawn for subject points (row scores). This was done

as follows. The column scores (W) derived from each bootstrap sample were applied

to the original data to derive estimates of the coordinates of subject points. The mean

and the variance-covariance estimates of the subject points were calculated over the

bootstrap samples, and the confidence regions were drawn in the same way as before.

Figures 3 and 4 display the configurations of the subject points along with the 95%

confidence regions obtained by MCA and RMCA, respectively. Again, we find that

the subject points were more reliably estimated by RMCA. Confidence regions are

almost uniformly smaller in Figure 4 than in Figure 3. This corroborates our finding

in Figures 1 and 2.

***** Insert Figures 3 and 4 about here *****
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3.2 Analysis of Greenacre’s Car Purchase Data

The second data set we analyze comes from Greenacre (1993, pp. 124-125). The

total number of 581,515 cars purchased in the USA during the last quarter of year

1988 were cross classified in terms of 14 size classes of car and purchaser profiles,

and are reported in the form of a two-way contingency table. The purchaser profiles

were defined by the age of the oldest person in the household of the purchaser, and

the income of the household. The age variable was classified into 7 groups, and the

income variable into 9 levels, which are factorially combined to create 63 categories.

More detailed descriptions of the categories in the three variables (size classes, age

and income) can be found in Appendix (B).

Because the data are population data, there is no inferential problem arising.

On the other hand, this provides a golden opportunity to perform various sampling

experiments on the data to examine the quality of estimates against population pa-

rameters. In particular, we can directly estimate MSE as well as its breakdown into

squared bias and variance by applying RMCA to data sampled from this population.

We may compare MSE across different values of the regularization parameter includ-

ing the non-regularized case (λ = 0) to assess the effect of regularization. We may

also systematically vary the sample size.

In order to apply MCA, the data were first rearranged into a multiple-choice data
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format. We took the three variables (size classes, age and income) all constituting

column categories defining profiles of purchases. Rows of this data represent 882

(= 14 × 63) distinct profiles of purchases indicated by patterns of size classes of

cars purchased, age groups and income levels of the household of purchasers. Figure

5 presents the two-dimensional population configuration of the 30 (= 14 + 7 + 9)

category points obtained by applying the ordinary MCA to this data set. Size classes

of car are indicated by upper case alphabetic characters (A through N), age groups

by small “a” followed by the number indicating the age group (a1 through a7), and

income levels by small “i” followed by the number indicating the income level (i1

through i9). Age groups are connected by dotted line segments, and so are income

levels.

The direction that goes from the bottom right corner to the top left corner roughly

corresponds with the size dimension with the bottom right representing larger cars

and the top left smaller cars. The direction perpendicular to this dimension (going

from the bottom left corner to the top right corner) roughly corresponds with the

price dimension with the left bottom corner representing more expensive cars as

opposed to the top right corner representing more economical cars. The age variable

is more or less linearly related to the size dimension with older people tending to

prefer larger cars. Its relation to the price dimension, however, is quadratic with

middle-aged people preferring more expensive cars, while younger and older people
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more economical cars. The higher end of the income variable is linearly related to

the price dimension, while the lower end is more in line with the smaller side of the

size dimension. These results are similar to those of Greenacre’s (1993) obtained by

an analysis of data in contingency table form, except that the current configuration

is rotated about 45o.

***** Insert Figure 5 about here *****

We then obtained 100 samples each of varying sizes (N = 200, 500, 1000, 2000,

and 5000) from this data set, applied RMCA to those sampled data with the value of

regularization parameter systematically varied (λ = 0, 5, 10, 20, 30, 40, and 50), and

calculated MSE, squared bias and variance. Since this is a multi-parameter situation,

these quantities have to be aggregated across parameters. The simple sum of squared

discrepancies was taken as an aggregate measure of discrepancies. These aggregated

measures of discrepancies are then averaged across the samples. Let θ denote the

vector of parameters, θ̂i their estimate from sample i, and θ̄ the mean of θ̂i across

samples. Then,

Squared Bias = (θ̄ − θ)>(θ̄ − θ),

Variance = (1/I)
I∑

i=1

(θ̂i − θ̄)>(θ̂i − θ̄),

and

MSE = (1/I)
I∑

i=1

(θ̂i − θ)>(θ̂i − θ),
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where I is the number of sampled data sets within each condition. In the present

case, I = 100 in all conditions.

Figure 6 displays average MSE’s plotted as a function of the sample size and the

value of regularization parameter. Average MSE goes down dramatically from the

non-regularized case (λ = 0) to regularized cases in all sample sizes. MSE takes the

smallest value for λ between 10 and 20 in all cases. A few remarks are in order.

First of all, if we do not regularize, we need a much larger sample size to achieve

the same degree of MSE than when we regularize with a near optimal value of the

regularization parameter. For example, to achieve without regularization the level of

MSE (with λ = 20) achieved for a sample size of N = 500, we roughly need four

times as many observations (N = 2000). This ratio diminishes as the sample size

increases. However, it can still be substantially larger than 1 for the sample size as

large as N = 5000. Secondly, MSE does not go up drastically even if we overshoot

its value, that is, if we happen to choose too large a value of λ by mistake. This

indicates that we do not have to be overly concerned about the choice of the value

of the regularization parameter. This tendency holds across different sample sizes.

The computation of MSE in Figure 6 presupposed a two-dimensional configuration of

category points. However, essentially the same results hold for other dimensionalities,

including the single dimensional case.

***** Insert Figure 6 about here *****
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Figure 7 breaks down the MSE presented in Figure 6 into squared bias and variance

components for N = 500. The squared bias tends to go up, while the variance goes

down, as the value of λ increases. The sum of these quantities, MSE, takes the

smallest value somewhere in the mid range. This is the characteristic of the MSE

function that Hoerl and Kennard (1970) theoretically derived in the context of ridge

regression. It is reassuring to find a similar tendency in RMSA, although the curves

depicted in Figure 6 were derived empirically, and not theoretically. Although only

the results for N = 500 are presented, essentially the same tendency was observed for

other sample sizes. Also, these curves were derived in all cases from two-dimensional

solutions. As before, a similar tendency holds for other dimensionalities.

***** Insert Figure 7 about here *****

To compare the quality of estimates obtained from RMCA with those obtained

from the non-regularized MCA, two categories of the size class variable were picked

out and subjected to further examination. Those two categories are Class C and Class

A cars. The former has a relatively small marginal frequency (9,626 purchases out

of 581,515), the latter a relatively large observed frequency (68,977). These translate

into less than 2% and nearly 12% of the total purchases, respectively. It is anticipated

that the sampling error is much larger in the small frequency category.

Figure 8(a) plots estimates of the point representing Class C cars obtained by
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the non-regularized MCA from 100 samples of size N = 500 from the population. A

small circle indicates the population location, while the × indicates the mean of the

one hundred estimates. (The plus symbol indicates the origin of the representation

space.) It can be seen that the estimates are quite widely scattered, indicating that

their reliability is relatively low. The difference between o and × indicates the bias in

the estimation. Figure 8(b), on the other hand, displays the RMCA solutions with a

near optimal value of the regularization parameter (λ = 20). Estimates of the point

are much less scattered than in Figure 8, although the bias is slightly larger. In total,

we get much smaller MSE for the estimates.

***** Insert Figure 8 about here *****

Figure 9 presents essentially the same information as the previous figure for Class

A cars, which received a much larger observed frequency. A similar tendency as

in the previous figure can also be observed in this figure, but on a much smaller

scale. Estimates obtained from the non-regularized MCA are not as scattered as

those for Class C cars. (Compare Figures 8(a) and 9(a).) However, RMCA is still

an improvement over the non-regularized case. It is associated with a slightly larger

bias, but also with a smaller variance and a smaller MSE than the non-regularized

case. This indicates that regularization is most effective when we have categories

with small observed frequencies, while it is not harmful to regularize (it may still
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improve the conventional estimation method) even for categories with relatively large

frequencies.

***** Insert Figure 9 about here *****

4 Concluding Remarks

Regularization techniques similar to the one developed in this chapter have been

investigated in many other statistical methods including regression analysis (Hoerl

& Kennard, 1970; see also Groß, 2003), canonical correlation analysis (Vinod, 1976;

Ramsay & Silverman, 1999), discriminant analysis (Dipillo, 1976; Friedman, 1989; see

also Hastie, Tibshirani, & Friedman, 2001), PCA (Principal Component Analysis),

etc. This chapter is the first demonstration of its usefulness in MCA. Its usefulness

was demonstrated through numerical experiments involving actual data sets. A sim-

ilar regularization technique may be incorporated into many other multivariate data

analysis techniques, for example, generalized canonical correlation analysis (Takane &

Hwang, 2004), redundancy analysis (Takane & Yanai, 2003), hierarchical linear mod-

els (HLM), logistic regression and discrimination, generalized linear models, log-linear

models, and structural equation models (SEM), etc.

Incorporating prior knowledge is essential in many data analysis situations. Infor-

mation obtained from the data is never sufficient, and must be supplemented by prior
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information. In regression analysis, for example, the regression curves or surfaces

(the conditional expectation of the criterion variable, y, as a function of predictor

variables, X) are estimated for the entire range of X based on a finite number of

observations. In linear regression analysis, this is enabled by the prior knowledge

(assumption) that the regression curves and surfaces are linear within a certain range

of X. Regularization may be viewed as a way of incorporating prior knowledge in

data analysis. In the ridge type of regularization, the prior knowledge takes the form

that any parameters in the model (category points in MCA) should not be too far

away from 0 (the origin). That is, the effect of λ is to shrink the estimates toward

zero in the light of this prior knowledge.

In a broader perspective, the results presented in this chapter cast serious doubts

about the adequacy of the conventional estimation methods (such as the maximum

likelihood estimation method) that rely on asymptotic rationale. For problems with

small to moderate sample sizes, there are better estimation procedures in the sense

of achieving smaller MSE. It is not easy to theoretically prove the superiority of the

regularization method, and little theoretical work has been done outside regression

analysis. However, the kind of numerical experiments used in the present chapter is

easy to implement in a variety of contexts other than MCA, and it is expected that

similar results will be obtained.
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5 Software Notes

MATLAB programs used to obtain the results reported in this paper can be obtained

by sending a request to takane@takane2.psych.mcgill.ca
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Appendix (A): Nishisato’s (1994) Small Survey Data

Nishisato’s (1994) data consist of the following four items:

a: Your age? (1=20 to 29; 2=30 to 39; 3=over 40 )
b: Children these days are not as well disciplined as children when you were a child.

(1=Agree; 2=Can’t agree; 3=Can’t say which)
c: Children today are not as happy as children when you were a child. (1=Agree;

2=Can’t agree; 3=Can’t say which)
d. Religion should be taught at school. (1=Agree; 2=Disagree; 3=Don’t care)

item
respondent a b c d

1 3 1 2 1
2 2 1 3 2
3 2 1 2 2
4 1 2 2 3
5 3 1 2 2
6 1 3 1 2
7 2 1 2 2
8 2 1 1 2
9 1 2 3 1
10 3 1 2 1
11 1 2 2 3
12 2 1 1 1
13 2 1 3 3
14 3 1 2 1
15 1 1 2 3
16 3 1 2 1
17 3 1 1 1
18 2 3 2 2
19 3 1 2 1
20 2 1 2 2
21 1 3 3 3
22 2 1 2 2
23 1 3 3 3
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Appendix (B): Variables and categories in Greenacre’s (1993) Car
Purchase Data

Greenacre’s (1993) data consists of three categorical variables: 1. Size class of car, 2.
Age (the age of the oldest person in the household), and 3. Income. The size variable
consists of 14 categories (size classes), the age variable 7 categories (age groups), and
the income variable 9 categories (income levels) as defined in the table below.

Variable Symbol Description
A Full-size Standard
B Full-size Luxury
C Personal Luxury
D Intermediate Regular
E Intermediate Specialty
F Compact Regular

Size Class G Compact Specialty
H Subcompact Regular
I Subcompact Specialty
J Passenger Utility
K Import Economy
L Import Standard
M Import Sport
N Import Luxury
a1 18 - 24 years of age
a2 25 - 34
a3 35 - 44

Age a4 45 - 54
a5 55 - 64
a6 65 - 74
a7 75 or older
i1 $75,000 or more
i2 $50,000 - $74,999
i3 $35,000 - $49,999
i4 $25,000 - $34,999

Income i5 $20,000 - $24,999
i6 $15,000 - $19,999
i7 $10,000 - $14,999
i8 $8,000 - $9,999
i9 Less than $8,000
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Figure 1: Non-regularized MCA of Nishisato’s data: Category points and 95% confi-
dence regions.
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Figure 2: Regularized MCA of Nishisato’s data: Category points and 95% confidence
regions.
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Figure 3: Non-regularized MCA of Nishisato’s data: Subject points and 95% confi-
dence regions. Subjects 1, 10, 14, 16 & 19 having an identical response pattern are
indicated by “*”. Likewise, subjects 3, 7, 20 & 22 are indicated by “x”, 4 & 11 by
“+”, and 21 & 23 by “o”.
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Figure 4: Regularized MCA of Nishisato’s data: Subject points and 95% confidence
regions. Subjects 1, 10, 14, 16 & 19 having an identical response pattern are indicated
by “*”. Likewise, subjects 3, 7, 20 & 22 are indicated by “x”, 4 & 11 by “+”, and 21
& 23 by “o”.
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Figure 5: The two-dimensional population configuration for the car data.
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Figure 8: Estimates of point location by (a) non-regularized and (b) regularized MCA
for car class C over 100 replicated samples of size 500.
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Figure 9: Estimates of point location by (a) non-regularized and (b) regularized MCA
for car class A over 100 replicated samples of size 500.
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