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Abstract
Regularization is a useful technique for supplementing insufficient data by prior

knowledge. In the ridge type of regularization, prior knowledge comes as a belief
that parameters in statistical models can never be too far away from zero, and the
usual estimates of the parameters are shrunk toward zero. This tends to produce
estimates which are on average closer to their population values. In this paper, the
effect of shrinkage estimation was first demonstrated, starting from the simplest
case of estimating a mean and working up to more complicated cases. The notion
of (generalized) ridge operators (GRO) was then introduced, and their properties
systematically investigated.

1. Introduction
Regularization is a useful technique as a way of supplementing insufficient

data by prior knowledge and/or incorporating certain desirable properties (e.g.,
smoothness) in the estimates of model parameters (Takane and Hwang, 2006). In
the ridge type of regularization, prior knowledge takes the form of a conviction
that parameters in statistical models can never be too far away from zero, and
consequently their estimates should be shrunk toward zero. This tends to produce
estimates of parameters which are on average closer to the true population values
(Hoerl and Kennard, 1970).

For quite some time now, Takane and his collaborators (Takane and Hwang,
2006, 2007; Takane, Hwang, and Abdi, 2006; Takane and Jung 2006, 2007; Takane
and Yanai, 2006) have been working on a project incorporating the ridge regular-
ization into a variety of multivariate analysis (MVA) techniques. These techniques
include multiple-set canonical correlation analysis (GCANO), redundancy analysis
(RA), etc., each of which in turn subsumes a number of representative techniques
of MVA as its special cases. In this paper, we first demonstrate the effect of
shrinkage estimation, starting from the simplest case of estimating a mean and
working up to more complicated cases of MVA. We then introduce the notion of
(generalized) ridge operators (GRO) and systematically investigate their mathe-
matical properties. For a fixed value of ridge parameter, this class of operators are
linear and characterized as ”contractions”, represented by matrices whose eigen-
values are all between 0 and 1 inclusive, and generalize the notion of projectors.
We show how the ridge regularization methods developed earlier for GCANO and
RA can be regarded as special cases of this class of operations.

2. Simple Demonstrations of the Effect of Regularization
We begin with perhaps the simplest possible demonstration of the effect of

ridge regularization. Consider estimating a mean based on n observations from
a population with mean µ and variance σ2. Note that no assumptions are made
about the shape of the distribution. An estimate of µ that immediately comes to
our mind is the sample mean. Let us call this estimation method “Method 1”. In
Method 2, we shrink the sample mean by a factor of a. We evaluate the goodness
of estimators by mean square error (MSE), the expected value of the squared
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discrepancy between an estimator and the population value. Let µ̂ represents an
estimator of µ. Then,

MSE = E[(µ− µ̂)2], (1)

where E indicates an expectation operation. MSE can be split into two parts,
squared bias and variance, i.e.,

MSE = [µ− E(µ̂)]2 + E[(µ̂− E(µ̂))2].

(squared bias) (variance)
(2)

The sample mean (Method 1) has no bias, but has the variance of σ2/n, so that
its MSE is equal to:

MSE1 = σ2/n. (3)

The shrinkage estimator (Method 2), on the other hand, has some bias since its
expected value is aµ, but the variance is smaller by a factor of a2, so that its MSE
is given by

MSE2 = µ2(1− a)2 + a2σ2/n. (4)

A question is for what values of a the shrinkage estimator gives a smaller MSE
than the sample mean.

This of course depends on the values of n, µ and σ2. We tentatively assumed
n = 10, µ2 = 4, and σ2 = 9. Figure 1 shows MSE functions for the two estimation
methods. MSE1 stays the same at .9 no matter what the value of a is, while MSE2
is a quadratic function of a that passes through and crosses with MSE1 at point
(1, .9). A little calculation shows that this curve also crosses with MSE1 at (.63,
.9) and takes a minimum value of .73 at a = .82. This indicates that for values of
a between .63 and 1, the shrinkage estimator yields a smaller value of MSE than
the sample mean. (This range becomes wider or narrower depending on n, µ and
σ2. In general, it gets narrower as n and µ gets larger, and it gets wider as σ2

gets larger.) This means that the shrinkage estimator is on average closer to µ, if
an appropriate value of a is known.
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We also calculated how many more observations are needed to achieve the level
of MSE (.73) achieved by the optimal shrinkage factor of .82 without shrinking.
This turned out to be 12.25. This means that more than 20% more observations
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are necessary, indicating that this many observations can be saved by shrinking.
Of course, if we have this many observations and optimally shrink, we can achieve
even a smaller MSE (.69). This is shown in Figure 2.

Figure 3 breaks down MSE2 into squared bias and variance as functions of a.
In this figure, however, the shrinkage effect gets larger as a gets smaller. This
is opposite to the conventional ridge regression situation, where a larger value
of the shrinkage factor (ridge parameter λ) yields a larger shrinkage effect. We
thus transformed a into λ by λ = n(1/a − 1), and redrew the graph in Figure 4.
The squared bias gets consistently larger as λ gets larger, while the variance gets
consistently smaller. The sum of the two, MSE, takes a minimum value at about
λ = 2.2.
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Fig. 3 A breakdown of MSE2 into
bias2 and variance as a function of
a.
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Fig. 4 The same as Figure 3, but as
a function of λ = n(1/a− 1).

Figure 4 is strikingly similar to the result obtained by Hoerl and Kennard
(1970, Figure 1), who for the first time in history demonstrated the effect of the
ridge type of shrinkage estimation in regression analysis. Our case is in fact a
special case of theirs. As is well known, calculating a sample mean is equivalent
to applying a regression analysis with a single constant predictor variable. So
there is nothing surprising in our result. An important thing is that this effect
is apparently very robust and can be observed in many other situations. We
have conducted many simulation studies in the contexts of other MVA techniques
(Takane and Hwang, 2006, 2007; Takane, Hwang, and Abdi, 2006; Takane and
Jung, 2006, 2007), and have repeatedly found essentially the same results. In these
simulations, we generate a number of data sets according to a population model,
estimate parameters by the regularized estimation method, and calculate MSE’s,
squared bias, and variances as functions of the ridge parameter λ and the sample
size. Figures 5 and 6 depict these functions for multiple-set CANO (GCANO) and
redundancy analysis (RA), respectively. These are just two examples (although
each of these techniques subsumes a number of representative techniques of MVA
as its special cases). In all cases we have tried so far, we have observed essentially
the same results.

3. (Generalized) Ridge Operators
Given that the ridge regularization is useful, there are two important topics

that remain to be addressed. One is how to implement the regularized estimation
into various MVA techniques, and the other is to investigate some mathematical
properties of this type of estimation. In this paper, we focus on the second topic,
assuming that an “optimal” value of the ridge parameter λ is already known. A
number of strategies exist for an optimal choice of λ including cross validation. See,
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Fig. 5 MSE, bias2, and variance as a
function of λ and n for GCANO.
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Fig. 6 The same as Figure 5, but for
RA.

for example, Gruber (1998) for other possibilities. Solutions to the implementation
problem follow from the general theory we present.

3.1. Projectors
We begin with a brief review of projection operators (or predictors for short),

which are closely related to ridge operators, and which play an important role in
least squares (LS) estimation. Let

f(B) = SS(Y −XB) = tr[(Y −XB)′(Y −XB)], (5)

be the LS criterion, where Y , X (n×p), and B are matrices of criterion variables,
predictor variables, and regression coefficients, respectively, in multivariate mul-
tiple regression analysis. We estimate B in such a way as to minimize (5), which
leads to the following LS estimate:

B̂ = (X ′X)−X ′Y, (6)

where − indicates a generalized inverse (g-inverse). The matrix of predictions is
obtained by

Ŷ = XB̂ = X(X ′X)−X ′Y = PXY, (7)

where PX = X(X ′X)−X ′ is called a projector, the orthogonal projector onto the
column space of X (denoted as Sp(X)). This matrix is invariant over the choice
of a g-inverse (X ′X)−, symmetric, and idempotent (i.e., P 2

X = PX).
The unweighted LS criterion (5) can readily be extended to the weighted LS

criterion

f (W )(B) = SS(Y −XB)W = tr[(Y −XB)′W (Y −XB)], (8)

where W is nnd (nonnegative-definite) and such that rank(WX) = rank(X).
Minimizing this criterion leads to the weighted LS (WLS) estimate of B given by

B̂ = (X ′WX)−X ′WY. (9)

The matrix of predictions is then obtained by

Ŷ = X(X ′WX)−X ′WY = PX/W Y, (10)
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where

PX/W = X(X ′WX)−X ′W (11)

is called a W -orthogonal projector, the projector onto Sp(X) along Ker(X ′W ),
where Ker indicates a null space. This projector has similar properties to PX
(invariant over the choice of a g-inverse (X ′WX)−, symmetric with respect to W ,
and idempotent).

3.2. Ridge operators (RO)
We define a ridge LS (RLS) criterion by

fλ(B) = SS(Y −XB) + λSS(B)PX′ , (12)

where λ ≥ 0 is the ridge parameter, SS(B)PX′ = tr(B′PX′B), and PX′ =
X ′(XX ′)−X is the orthogonal projector onto Sp(X ′), the row space of X. We
minimize (12) to obtain an RLS estimate of B

B̃ = (X ′X + λPX′)−X ′Y, (13)

which leads to the matrix of predictions given by

Ỹ = XB̃ = X(X ′X + λPX′)−X ′Y = RX(λ)Y, (14)

where

RX(λ) = X(X ′X + λPX′)−X ′ (15)

is called a ridge operator. This matrix is again invariant over the choice of a
g-inverse (X ′X + λPX′)−, symmetric, but generally not idempotent. Note that
PX′ reduces to an identity matrix, when X is columnwise nonsingular. However,
(X ′X + λI)−1 is often used for (X ′X + λPX′)− even when X is not columnwise
nonsingular. This can be justified by the fact that (X ′X + λI)−1 is a kind of
g-inverse of X ′X + λPX′ . (We write (X ′X + λI)−1 ⊂ {(X ′X + λPX′)−}.) This
choice of a g-inverse affects an estimate of B, but not the matrix of predictions.

Let X = UDV ′ represent the SVD (singular value decomposition) of X, where
U is the matrix of left singular vectors such that U ′U = Ir, V is the matrix of
right singular vectors such that V ′V = Ir, D is the positive-definite (pd) diagonal
matrix of order r = rank(X). Then, RX(λ) can be expressed as

RX(λ) = UD2(D2 + λIr)−1U ′. (16)

This is called a canonical form representation and is extremely useful in char-
acterizing a number of interesting properties of RX(λ). For example, it is im-
mediately clear from the above representation that RX(λ) is a contraction ma-
trix, whose eigenvalues are all between 0 and 1 inclusive, is semi-simple (i.e.,
rank(RX(λ)2) = rank(RX(λ)), and is consequently diagonalizable by a similarity
transformation (U). (This situation may be contrasted with that of PX , where
PX = UU ′; it is also a contraction matrix with all the eigenvalues either 0 or 1,
again semi-simple, and diagonalizable by U .)

An alternative way of characterizing a contraction matrix is:

RX(λ)−RX(λ)2 = λX(X ′X + λPX′)+2X ′ ≥ 0, (17)
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where (X ′X + λPX′)+ indicates a Moore-Penrose g-inverse, (X ′X + λPX′)+2 its
square, and ≥ 0 indicates that the matrix on the left hand side is nnd. The
contraction matrix generalizes the notion of projectors, which satisfy the lower
limit of the above inequality. Let SX(λ) = I −RX(λ), a “complement” of RX(λ).
Then,

RX(λ)−RX(λ)2 = RX(λ)SX(λ) = SX(λ)RX(λ) = SX(λ)− SX(λ)2 ≥ 0. (18)

3.3. The ridge metric matrix
We define a ridge metric matrix, which plays a crucial role in the development

to follow. Let

MX(λ) = Jn + λ(XX ′)+, (19)

where Jn is any matrix such that X ′JnX = X ′X (e.g., Jn = In, Jn = PX , etc.).
Note that (XX ′)+ has the following expression:

(XX ′)+ = X(X ′X)+2X ′. (20)

Using the ridge metric matrix defined above, we can rewrite X ′X + λPX′ as

X ′X + λPX′ = X ′MX(λ)X, (21)

so that RX(λ) can be rewritten as

RX(λ) = X(X ′MX(λ)X)−X ′. (22)

The above expression of RX(λ) is interesting for two reasons. One is

RX(λ)MX(λ)RX(λ) = RX(λ). (23)

That is, although RX(λ) itself is not idempotent, it is indeed idempotent with
respect to the metric matrix MX(λ). Another way of looking at the above identity
is that MX(λ) ⊂ {(RX(λ)−}. In fact, it can easily be verified that MX(λ) is the
Moore-Penrose g-inverse of RX(λ), which also implies that the latter is the Moore-
Penrose g-inverse of MX(λ).

The other is that RX(λ)MX(λ) is an MX(λ)-orthogonal projector under the
condition that rank(MX(λ)X) = rank(X). More specifically, it is the projector
onto Sp(X) along Ker(X ′MX(λ)). However, this is not all. It is also the usual
orthogonal projector onto Sp(X) (i.e., RX(λ)MX(λ) = PX). This is because
Sp(MX(λ)X) = Sp(X) (i.e., premultiplying X by MX(λ) does not change the
column space of X). Define

NX(λ) = Jp + λ(X ′X)+, (24)

where Jp is any matrix such that XJp = X (e.g., Jp = Ip, Jp = PX′ , etc.). Then,

MX(λ)X = XNX(λ). (25)

This implies Sp(MX(λ)X) = Sp(XNX(λ)) ⊂ Sp(X), but because rank(XNX(λ))
= rank(X), we have Sp(XNX(λ)) = Sp(X), which implies Sp(MX(λ)X) =
Sp(X). This in turn implies Ker(X ′MX(λ)) = Ker(X ′). It also shows that
rank(MX(λ)X) = rank(X), the condition required for RX(λ)MX(λ) to be a pro-
jector.
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3.4. When X is partitioned into K disjoint subsets
So far we’ve been treating X as a single matrix. What happens if it is partitioned

into K disjoint subsets? Let X = [X1, . . . , XK ] be an n by p row block matrix,
where the Xk (n by pk and k = 1, . . . , K), are assumed to satisfy the disjointness
condition

rank(X) =
K∑

k=1

rank(Xk). (26)

Then,

X ′
kM(λ)Xj =

{
X ′

kXk + λPX′
k

(k = j),

X ′
kXj (k 6= j),

(27)

where PX′
k

= X ′
k(XkX ′

k)−Xk is the orthogonal projector onto Sp(X ′
k). (Note that

PX′
k

reduces to Ipk
if Xk is of full column rank.)

This follows from Theorem 1.2 of Anderson and Styan (1982), which states
that AkA−Ak = Ak and AkA−Aj = 0 for k 6= j if and only if rank(A) =∑K

k=1 rank(Ak), where A =
∑K

k=1 Ak. By setting Ak = XkX ′
k in this theorem, we

obtain A = XX ′ =
∑K

k=1 XkX ′
k =

∑K
k=1 Ak, so that rank(A) =

∑K
k=1 rank(Ak)

is equivalent to rank(X) =
∑K

k=1 rank(Xk). It also holds that

XkX ′
k(XX ′)−XjX

′
j =

{
XkX ′

k (k = j),

0 (k 6= j).
(28)

By pre- and postmultiplying (28) by (X ′
kXk)+X ′

k and Xj(X ′
jXj)+, respectively,

we obtain

X ′
k(XX ′)−Xj =

{
PX′

k
(k = j),

0 (k 6= j),
(29)

It is interesting to observe that MX(λ) has no effect if k and j are distinct, but
it adds an extra term λPX′

k
if k and j coincide. When the Xk are not disjoint (do

not satisfy (26)), we have PX′
k
≥ X ′

k(XX ′)−Xk in general (Yanai and Mayekawa,
1988), where A ≥ B means A−B ≥ 0.

3.5. When K = 2
We focus on the special case of the above in which K = 2, and derive decompo-

sitions of RX(λ) analogous to the well-known decompositions of projectors (Rao
and Yanai, 1979; Takane and Yanai, 1999; Yanai, 1990). We still assume that X1
and X2 are disjoint. Let X = [X1, X2], and let RX1(λ) and RX2(λ) be as defined
analogously to (15). Then,

RX(λ) = RX1(λ) + RX2(λ), (30)

if and only if X ′
1M(λ)X2 = X ′

1X2 = 0. By a standard decomposition of a
projector, we have RX(λ)MX(λ) = RX1(λ)MX(λ) + RX2(λ)MX(λ). We can
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then get rid of MX(λ) at the end of each term by postmultiplying both sides by
MX(λ)+ = RX(λ).

When X1 and X2 are not mutually orthogonal, we first orthogonalize them and
then apply the above decomposition. We have

RX(λ) = RX1(λ) + RSX1 (λ)X2(λ) = RX2(λ) + RSX2 (λ)X1(λ), (31)

where RSX1 (λ)X2(λ) = SX1(λ)X2(X ′
2SX1(λ)X2 + λRX′

2
)−X ′

2SX1(λ) and
RSX2 (λ)X1(λ) is analogously defined. Note that X1 and SX1(λ)X2 are orthogonal
with respect to MX(λ) (We say that X1 and SX1(λ)X2 are MX(λ)-orthogonal.),
and so are X2 and SX2(λ)X1. This decomposition is useful when we fit X1 first
and then X2 to residuals from X1, or vice versa.

We may also split Sp(X) into two MX(λ)-orthogonal subspaces and obtain

RX(λ) = RXT (λ) + RXH(λ), (32)

where H is such that Sp(H) = Ker(T ′X ′M(λ)X) for a given T , or T is such
that Sp(T ) = Ker(H ′X ′M(λ)X) for a given H. It is clear that XT and XH
are MX(λ)-orthogonal. This decomposition is useful when we have an additional
restriction on B in the form of B = TB∗ for some B∗ and for a given constraint
matrix T , thereby splitting the effect of X into the effects of XT and its MX(λ)-
orthogonal component XH.

We may combine (31) and (32) to obtain more complicated decompositions,
e.g.,

RX(λ) = RRX2 (λ)X1T (λ)+

RRX2 (λ)X1A(λ) + RSX2 (λ)X1T (λ) + RSX2 (λ)X1G(λ) + RX2C(λ), (33)

where A, G, and C are such that Sp(A) = Ker(T ′X ′
1RX2(λ)MX(λ)X1), Sp(G) =

Ker(T ′X ′
1SX2(λ)MX(λ)X1), and Sp(C) = Ker(X ′

1X2).

3.6. Generalized ridge operators (GRO)
The ridge operator and the ridge metric matrix can be generalized by replacing

PX′ in (12) by L, and by introducing a weight matrix W as in (8). Let L be any
nnd matrix such that Sp(L) = Sp(X ′), and let W be any nnd matrix such that
rank(WX) = rank(X). Let

f
(W,L)
λ (B) = SS(Y −XB)W + λSS(B)L (34)

be the weighted ridge LS (WRLS) criterion. Then, a generalized ridge operator
(GRO) is obtained by

R
(W,L)
X (λ) = X(X ′WX + λL)−X ′W. (35)

Mitra (1975) called the (X ′WX+λL)−X ′W part of this matrix an optimal inverse.
This matrix has similar properties as RX(λ). This generalization is useful when
we need a regularization term more complicated than PX′ . Such cases arise,
for example, when we wish to incorporate certain degrees of smoothness in the
estimated curves by way of regularization (Adachi, 2002; Ramsay and Silverman,
2006). Define the generalized ridge metric matrix by
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M
(W,L)
X (λ) = Jn + λ(XL−X ′W )+W,W , (36)

where (XL−X ′W )+W,W = X(X ′WX)−L(X ′WX)−X ′W is the weighted Moore-
Penrose g-inverse of XL−X ′W with respect to the weight matrices W and W .
(The symmetry conditions among the four Penrose conditions are satisfied only
with respect to these weight matrices.) Then, X ′WX + λL = X ′WM

(W,L)
X (λ)X,

and the GRO can be rewritten as

R
(W,L)
X (λ) = X(X ′WM

(W,L)
X (λ)X)−X ′W. (37)

Note that M
(W,L)
X (λ) is itself not symmetric, but it is always used in the form of

WM
(W,L)
X (λ), which is always symmetric.

A canonical form representation of the GRO is useful in characterizing vari-
ous properties of the operators. Let X = UDV ′ represent the generalized SVD
(GSVD) of X with respect to metric matrices W and L− (which we write as
GSVD(X)W,L−), where U and V are such that U ′WU = Ir, V ′L−V = Ir, and D
is a pd diagonal matrix of order r. Then,

R
(W,L)
X (λ) = UD2(D2 + λIr)−1U ′W. (38)

3.7. WRLS in terms of WLS
The WRLS criterion can be reformulated in the form of a WLS by redefining

Y , X, and W as follows (e.g., Ramsay and Silverman, 2006, section 5.2.7). Let

Ỹ =

[
Y

0

]
, X̃ =

[
X

(λL)1/2

]
, and W̃ =

[
W 0

0 I

]
.

(This is analogous to partitioning X̃ into two blocks rowwise as opposed to colum-
nwise as we have done previously.) Then, (34) can be rewritten as

f
(W,L)
λ (B) = SS(Ỹ − X̃B)W̃ . (39)

This leads to a partitioned W̃ -orthogonal projector

PX̃/W̃ =

[
R

(W,L)
X (λ) A

A′W C

]
, (40)

where A = (λ)1/2X(X ′WX + λL)−L1/2, and C = λL1/2(X ′WX + λL)−L1/2.
From the idempotency of PX̃/W̃ , it follows that

R
(W,L)
X (λ)− (R(W,L)

X (λ))2 = AA′W ≥ 0, (41)

C − C2 = A′WA ≥ 0, (42)

and

R
(W,L)
X (λ)A + AC = A. (43)

(41) generalizes (17).
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4. Concluding remarks
Much has been done on the utility of the ridge type of regularization in regres-

sion analysis (Gruber, 1998), but not so much in other contexts until recently. This
situation is rapidly changing with the effect of regularization amply demonstrated
in other techniques of MVA, and there is now a solid mathematical foundation
behind the operation.
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