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Abstract
In common factor analysis, estimation of unique variances by unweighted least

squares (ULS), generalized least squares (GLS), and maximum likelihood (ML)
often leads to improper solutions. To deal with this problem, a new estimation
method of the unique variances was proposed by applying the idea of generalized
ridge regularization. In regularized common factor analysis (RCFA), unique vari-
ances are estimated under three alternative assumptions: 1) unique variances are
constant across variables (i.e., proportional to the unit variance), 2) unique vari-
ances are proportional to variances of anti-image variables, and 3) unique variances
are proportional to Ihara-Kano’s non-iterative estimates of unique variances. The
constant of proportionality (i.e., the regularization parameter λ) is then estimated
by ULS, GLS, or ML. Illustrative examples consisting of Monte Carlo studies and
a real data set were given to demonstrate the usefulness of the proposed method.

1. Introduction
Measurement errors are almost ubiquitous in any kinds of measurement in psy-

chological research. In contrast to principal component analysis (PCA), common
factor analysis (CFA) explicitly takes into account measurement errors in observed
variables. However, to do so requires estimation of variances of measurement er-
rors, and traditionally error variances are equated to unique variances, the vari-
abilities in observed variables which are not shared by other variables. Three
methods of estimation, unweighted least squares (ULS), generalized least squares
(GLS), and maximum likelihood (ML), are commonly used in estimating unique
variances. However, they often yield improper solutions (negative or boundary
estimates of unique variances). To avoid the problem, a new estimation method
for the unique variances is proposed by applying the idea of generalized ridge
regularization.

In ridge regression analysis (Hoerl & Kennard, 1970), estimates of regression
coefficients are obtained by adding a small positive value to the variances of pre-
dictor variables. This leads to estimates of regression coefficients, which are closer
to zero and are on average closer to the true population parameters than the
least squares estimates. Presumably, similar shrinkage effects can be obtained by
subtracting some positive values from the variances of criterion variables. Since
the observed variables are typically regarded as the criterion variables in the CFA
model, subtracting unique variances from the diagonals of observed covariance or
correlation matrices is expected to have a similar shrinkage effect on estimates of
factor loading matrices.

To illustrate, let us look at Tables 1 and 2. They were obtained by applying PCA
and ML CFA to 13 variables measuring organizational stereotype from Bergami
and Bagozzi’s (2000) social identity data. The sample size was 291. Permuta-
tion tests indicated two significant components. The varimax rotated component
loadings (Table 1) are almost consistently larger than the corresponding common
factor loadings (Table 2). The latter are shrunken toward zero, indicating the
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Table 1. PCA (Var. = Variable,
Comp. Cont. = Component con-
tributions)

Comp. loadings

Var. 1 2

1 -.667 -.308

2 -.219 -.711

3 -.196 -.686

4 -.703 -.112

5 -.067 -.625

6 -.481 -.448

7 -.091 -.649

8 -.489 -.424

9 -.757 -.184

10 -.784 -.212

11 -.777 -.098

12 -.746 -.104

13 -.755 -.206

Comp. Cont. 4.43 2.42

Table 2. Maximum likelihood CFA
(Var. = Variable, Fac. Cont. =
Factor contributions)

Factor loadings

Var. 1 2

1 -.606 -.346

2 -.136 -.725

3 -.172 -.589

4 -.612 -.214

5 -.148 -.366

6 -.374 -.506

7 -.159 -.402

8 -.390 -.474

9 -.737 -.211

10 -758 -.262

11 -.739 -.170

12 -.628 -.249

13 -.649 -.339

Fac. Cont. 3.61 2.13

possibility that they are closer to the population values than the former. The
factor (component) contributions (sums of squares of loadings) at the bottom of
the tables indicate the variances accounted for by respective factors (components),
which also indicate the shrunken nature of the CFA loadings relative to the PCA
loadings.

Common factor analysis can be viewed as a kind of shrinkage estimation. There
is a good theoretical reason for this (Yanai & Takane, 2007). Let X denote an
n-subjects by p-variables data matrix, and let M (L)(λ) = In + λ(XL−1X ′)+
represent a generalized ridge metric matrix (Takane & Yanai, 2006), where In
is the identity matrix of order n, λ is a regularization parameter, L is a nnd
(non-negative definite) matrix such that Sp(L) = Sp(X ′) (where Sp indicates a
range space), and the superscript + indicates the Moore-Penrose inverse. Then,
X ′M (L)(λ)X = X ′X + λL. When L is set equal to Ψ, the diagonal matrix of
unique variances (assuming temporarily that it is known), and the regularization
parameter λ is set equal to -1, X ′M (Ψ)(−1)X = C−Ψ or R−Ψ, where C and R are
sample covariance and correlation matrices, respectively, depending on whether
X is only columnwise centered or standardized. (In both cases, we assumed that
X was further normalized so that X ′X = C or X ′X = R without dividing X ′X
by n.) This is the matrix subjected to the eigen analysis to derive a factor loading
matrix in CFA (or more precisely, in a special kind of CFA called principal FA).
More specifically, eigen value decomposition (EVD) of R − Ψ is obtained in LS
FA, and generalized EVD (GEVD) of C − Ψ with respect to Ψ is obtained in
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Table 3. Frequencies of improper so-
lutions (out of 100).

Sample size ULS GLS ML

50 39 73 65

100 32 51 54

200 19 34 33

500 10 16 14

1000 4 4 5

50 11 27 22

100 5 6 5

200 0 0 0

500 0 0 0

1000 0 0 0

50 24 37 35

100 16 25 25

200 13 16 22

500 1 1 3

1000 1 1 1

Table 4. A population common fac-
tor loadings (F1 and F2) and
unique variances (Ψ)

Var. F1 F2 Ψ

1 .044 .899 .191

2 .807 .061 .345

3 .472 .063 .773

4 .385 .191 .815

5 .652 .207 .533

6 .870 .236 .187

7 .818 .188 .297

8 .635 .193 .559

9 .399 .737 .298

10 .817 .186 .299

GLS and ML FA, while EVD of R is obtained in PCA. Thus, the common factor
loadings tend to be shrunk due to a negative value of λ. (Indeed, in GLS and
ML FA, generalized eigenvalues of C with respect to Ψ are decremented by 1 to
obtain the factor loading matrix.)

In practice, however, Ψ is unknown and is to be estimated in some way. Various
methods (e.g., ULS, GSL, and ML) have been developed to estimate this quantity
along with the matrix of factor loadings. Most of these methods are iterative,
although several non-iterative methods are also available (Hägglund, 1982; Ihara
& Kano, 1986; Jennrich, 1987; Kano, 1990). As has been alluded to earlier,
these procedures are often susceptible to improper solutions. Furthermore, these
procedures can only be asymptotically justified, meaning that they are optimal or
nearly optimal for large samples, but are not necessarily so for small samples.

To see how serious the problem of improper solutions in CFA is, let us look at
Table 3. This table consists of three parts. The top subtable reports frequen-
cies of improper solutions obtained by applying three estimation methods, ULS,
GLS, and ML to 100 data sets generated from a population loadings and unique
variances postulated in Table 4. Note that there are only sampling errors in the
generated data sets. Solutions are judged as improper as one of unique variance
estimates gets smaller than .001 (virtually zero). There are so many cases of im-
proper solutions (these are out of 100); more than 30% of the solutions by GLS and
ML are improper even for the sample size of n = 200. This number is much less
in ULS, but still 19% of the solutions are improper. These frequencies decrease as
the sample size increases, but improper solutions can still be obtained for the sam-
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ple size as large as 1000. We conjectured that this could be due to the peculiarity
of the population factor structure. In particular, the second factor is relatively
weak. So we modified the population factor structure by adding .5 to the second
factor loading of variable 4 in Table 4. (This modified population factor loadings
will be again used for a Monte Carlo study.) The middle portions of Table 3 show
frequencies of improper solutions for the modified population structure, which are
much less than those on the top. However, improper solutions are still observed in
small sample sizes. The last portions of the table report frequencies of improper
solutions for the modified factor structure, but when the data were contaminated
by structural errors. (How the structural errors were built in will be explained
later.) These numbers are again very large (although not as large as those in the
first situation), indicating the need for further regularization in the estimation of
CFA.

Such problematic situations as above call for an estimation procedure that can
avoid improper solutions. A new estimation method (called regularized CFA, or
RCFA for short) for unique variances is proposed to meet this demand. More
specifically, it is assumed that the unique variances are proportional to some ten-
tative (mostly non-iterative) estimates of “unique variances”, and an optimization
is done only with respect to the constant of proportionality. Given a tentative es-
timate of unique variances obtained non-iteratively, the computation of RCFA
reduces to choosing the best value of the constant of proportionality (i.e., the
regularization parameter λ) in such a way that a discrepancy function associated
with ML, GLS, or ULS is minimized.

Three kinds of regularization scheme are considered in this paper. The simplest
case is to set Ψ = λ I (e.g., Anderson, 1984). This is based on the assumption
that unique variances are constant across variables. This should work reasonably
well when the unique variances are relatively uniform across manifest variables.
The second alternative is to set Ψ = λ diag(S−1)−1 (e.g., Yanai & Mukherjee,
1987), where S represents C for ML and GLS, and R for LS. In this scheme,
unique variances are assumed to be proportional to the variances of anti-image
variables. This is similar to image factor analysis proposed by Jöreskog (1969),
but the optimization is much simpler in our case because in Jöreskogs case, λ is
a function of the model, while here λ is a function of data. The third alternative
is to assume that Ψ is proportional to Ihara and Kano’s non-iterative estimates
of unique variances (Ihara & Kano, 1986; Kano, 1990). (See also Cudeck (1991)
for an account of the best possible subset selection.) We can derive a variety of
RCFA by all possible combinations of the three types of regularization scheme and
the three estimation criteria (ULS, GLS, and ML). We may regard those varieties
as one-parameter (λ) family of ULS, GLS, and ML, while traditional iterative
methods as full ULS, GLS, and ML.

2. Design of the study
A comparative study between RCFA and three widely used estimation methods

is conducted in three parts. The first two parts concern Monte Carlo studies to
demonstrate the usefulness of RCFA. The population covariance matrix is assumed
known from which a large number of data sets are generated. (We use the modified
population factor structure.) The difference between those two experiments is that
the first study considers data sets containing only sampling error, while the second
both sampling error and structural error. In the third part, RCFA is applied to
the same 13 variables from Bergami and Bagozzi’s data as introduced earlier to
demonstrate how well it works in the analysis of empirical data.
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2.1. Sampling error
One hundred replicated data sets of varying sample sizes (50, 100, 200, 500, and

1000) were generated using the hypothesized population obtained by modifying
the factor structure in Table 4 in the way described above. The first experiment is
designed to apply RCFA and the conventional estimation methods to these data
sets containing only sampling error.

2.2. Combining sampling error and structural error
We assume that there are many other influences (on covariances among ob-

served variables) from outside the area of interest which an experimenter has a
little or no control over. For example, an item score may be inadvertently influ-
enced by the item location (i.e., context effect) in a test in computerized adaptive
testing (CAT), in which difficulty of the item may depend on where it appears
to some extent. This concept was formulated as minor factors in the context of
CFA model (Tucker, Koopman, & Linn, 1969). Minor factors may be viewed as
structural error in the sense that the CFA model may not exactly account for
the population covariance matrix. Tucker el al. (1969) proposed a procedure to
generate sample correlation matrices containing the effect of minor factors, which
have some influence on measured variables. Following their procedure, structural
error is explicitly built in the population covariance matrix for the present study.
To incorporate such an error, minor factor loadings are computed on 50 factors.
The proportion of the variance in a measured variable accounted for by the minor
factors is set to 0.075 (for a good fit) equally across 10 variables in the population.
The total contribution of minor factors to the variance is distributed over a series
of minor factors in such a way that the contribution of each subsequent minor
factor is smaller than the preceding one. The unique variance of the measured
variable is then set in such a way that the total variance of the measured variable
is unity. As before both RCFA and the three full versions of ULS, GLS, and ML
estimation methods were applied to the generated data sets.

2.3. An empirical data set
The 13 variables from Bergami and Bagozzi’s (2000) social identity study mea-

sure organizational stereotype. Participants (n = 291) recorded their responses on
how much each of characteristics such as “innovative”, “dynamic”, “democratic”,
and so on describes their company, using 5-point scales (i.e., 1 = not at all, and
5 = very much).

3. Results
We shall first present results from the Monte Carlo studies and then the analysis

of a real data set. Since we may not assume that unique variances are uniform
across all the manifest variables, and since GLS has the same asymptotic proper-
ties as ML, we present the Monte Carlo results for one-parameter ULS and ML
methods only under the anti-image and Ihara-Kano’s estimator (the I-K estimator
for short). The quality of estimators is evaluated in terms of how close they are
on average to the population parameters. Mean square error (MSE) is calculated
to measure the average discrepancy, which is defined by 1

N

∑N
i=1 SS(θ̂i−θ), where

θ̂ is the vector of parameter estimates obtained from sample i, θ is the vector
of population parameters, and N indicates the number of Monte Carlo samples.
Here, θ could be a population covariance matrix, while θ̂i a reproduced covariance
matrix derived from the estimates of factor loadings and unique variances. The
MSE is then normalized by dividing it by SS(θ).
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Table 5. Normalized MSEs for full ULS and one-parameter family of ULS (sampling
error only). (n = sample size and Freq. = frequencies of improper solutions.)

ULS n Freq. Covariance matrix Factor loadings Unique variances
50 11 .077 .042 .061
100 5 .042 .022 .030

Full 200 0 .023 .011 .016
500 0 .008 .004 .006
1000 0 .004 .002 .003

50 0 .078 .043 .076
100 0 .042 .022 .048

Anti- 200 0 .023 .012 .036
image 500 0 .008 .005 .030

1000 0 .004 .003 .027

50 4 .077 .043 .074
I-K 100 3 .042 .021 .037
esti- 200 0 .023 .011 .018
mator 500 0 .008 .004 .007

1000 0 .004 .002 .004

3.1. Sampling error only
Table 5 gives the results of fitting the CFA model by full ULS and one-parameter

ULS under the two assumptions (anti-image and the I-K estimator) to 100 samples
generated from the population for sampling-error-only condition. As the sample
size increases, MSE decreases monotonically. One-parameter ULS under the anti-
image assumption yields reasonably good results compared to full ULS in all cases
of reproduced covariance and factor loading matrices. This method seems to work
well in approximating the population unique variances, particularly when sample
size is small. Note, in particular, that no improper solutions are obtained with
this procedure in all sample sizes. One-parameter ULS with the I-K estimator
shows good performance for approximating the population covariance and factor
loading matrices. It yields improper solutions for small sample sizes less frequently
than the full ULS. Perhaps for this reason, there are relatively larger MSEs for
unique variances for small sample sizes. When the sample size is large (more than
200), no improper solutions were found, and little difference between the full ULS
and one-parameter ULS with the I-K estimator was observed in estimating unique
variances.

Table 6 shows MSEs and frequencies of improper solutions obtained by the full
ML and one-parameter ML for the sampling-error-only condition. One-parameter
ML methods under both assumptions yield almost the same MSEs relative to the
full ML in all cases for reproduced covariance and factor loading matrices. The
one-parameter ML estimation method under the anti-image assumption works
well in approximating unique variances for sample size as small as 50, while one-
parameter ML under the I-K estimator works well from sample size 100 to 1000.
One-parameter ML under the I-K estimator yields more improper solutions than
the full ULS, but much less frequently than the full ML for the sample size of 50.
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Table 6. Normalized MSEs for full ML and one-parameter family of ML (sampling
error only) (n = sample size and Freq. = frequencies of improper solutions.)

ML n Freq. Covariance matrix Factor loadings Unique variances
50 22 .077 .042 .068
100 5 .042 .022 .031

Full 200 0 .023 .011 .016
500 0 .007 .004 .006
1000 0 .004 .002 .003

50 0 .078 .042 .076
100 0 .042 .022 .050

Anti- 200 0 .024 .012 .039
image 500 0 .008 .005 .031

1000 0 .005 .003 .029

50 6 .080 .048 .116
I-K 100 3 .043 .025 .040
esti- 200 1 .023 .011 .018
mator 500 0 .008 .004 .007

1000 0 .004 .002 .004

3.2. Sampling error and structural error combined
Table 7 shows MSEs by the full ML and one-parameter ML in the combined-

errors condition. The one-parameter ML method has almost the same MSEs as
the full ML for reproduced covariance and factor loading matrices. Due to the
structural error, MSEs of unique variances by both one-parameter ML and the
full ML are consistently larger than those in the sampling-error-only case. It is
shown that the one-parameter ML method with the anti-image scheme works well
in approximating the population unique variances for small sample sizes (e.g.,
n = 50 and 100), while the ML method with the I-K scheme for moderate to
large sample sizes (more than 200). In the combined-errors situation, the one-
parameter ML method under the anti-image assumption is likely to provide a
good (even a better for the sample size of 50) approximation to the true unique
variances for small sample sizes with no risk of improper solutions. (We do not
present any results from the ULS method for this condition because essentially
the same patterns of MSEs as found by the ML method were found in the ULS
method.) Since the structural error has been incorporated in the CFA model, the
true values of unique variances were set closer to zero than in the sampling-error-
only case. This might cause improper solutions more frequently under the I-K
assumption.

3.3. An empirical data set
We compare the results of the one-parameter ML method with the results from

the full ML method in Table 2. Table 8 reports estimated factor loadings and
unique variances obtained by the one-parameter ML method under the anti-image
assumption. Table 9 is essentially a replica of Table 2 with the estimates of unique
variances by the full ML method appended as the last column. It is clear that the
derived factor loadings in Table 8 are quite similar to those estimated by the full
ML method in Table 9. We may conclude that this proposed procedure performs
reasonably well in a real data set.
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Table 7. Normalized MSEs for full ML and one-parameter family of ML (sampling
error and structural error) (n = sample size and Freq. = frequencies of improper
solutions.)

ML n Freq. Covariance matrix Factor loadings Unique variances
50 35 .076 .043 .119
100 25 .040 .023 .067

Full 200 22 .018 .011 .057
500 3 .010 .006 .051
1000 1 .004 .004 .049

50 0 .077 .043 .102
100 0 .041 .023 .073

Anti- 200 0 .018 .011 .066
image 500 0 .010 .006 .061

1000 0 .005 .003 .059

50 17 .077 .044 .126
I-K 100 13 .040 .023 .076
esti- 200 7 .018 .011 .058
mator 500 1 .010 .006 .051

1000 1 .004 .003 .050

4. Concluding remarks
Common factor analysis (CFA) aims to discover a simple pattern of factor load-

ings which can account for structural relationships among observed variables. It is
important that it explicitly models measurement errors in observed variables, so
commonly observed in research in psychology and other social sciences. Loadings
on common factors are shrunken toward zero (relative to PCA loadings) to take
into account the measurement errors. However, the conventional estimation meth-
ods for unique variances often yield improper solutions. Computational remedies
have been proposed to prevent the problem (Harman & Fukuda, 1966; Jennrich,
1986; Jöreskog & Goldberger, 1972). Several strategies have been used in practi-
cal settings to deal with the problem in ML CFA (Jöreskog, 1967). Each strategy
(or a modification in the computational routine) might be an alternative, but not
a resolution. Using the traditional methods, CFA always suffers from a potential
risk of improper solutions.

To avoid the problem of improper solutions, we proposed a new approach of
estimation called regularized CFA (RCFA) by applying the idea of generalized
ridge regularization. It is assumed that the unique variances are proportional to a
diagonal matrix of tentative estimates of unique variances obtained non-iteratively.
RCFA reduces the number of parameters in estimating unique variances, so that
it could dramatically decrease the frequency of improper solutions.

A variety of RCFA can be derived by combining three kinds of regularization
scheme and three widely used estimation criteria. We developed one-parameter
family of ULS, GLS, and ML, which are much simpler and efficient computa-
tionally, are much more stable numerically, and have no risk of improper solutions
unless tentative estimates of “unique variances” are improper to begin with (as are
possible in the case of the I-K estimator). The numerical results from the Monte
Carlo studies and a real data set are encouraging. Particularly when the sample
size is small, one-parameter ULS and ML estimation methods under anti-image
assumption are likely to produce estimates of unique variances which are good
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Table 8. One-parameter ML CFA:
Anti-image assumption

Factor loadings

Var. 1 2 Ψ̂

1 -.615 -.336 .497

2 -.170 -.648 .616

3 -.176 -.577 .657

4 -.617 -.207 .583

5 -.131 -.394 .756

6 -.374 -.520 .576

7 -.140 -.440 .741

8 -.387 -.496 .573

9 -.722 -.224 .444

10 -743 -.267 .404

11 -.731 -.169 .459

12 -.645 -.237 .513

13 -.663 -.324 .453

Fac. Cont. 3.608 2.084

Table 9. Full Maximum Likelihood
CFA

Factor loadings

Var. 1 2 Ψ̂

1 -.606 -.346 .513

2 -.136 -.725 .457

3 -.172 -.589 .624

4 -.612 -.214 .580

5 -.148 -.366 .763

6 -.374 -.506 .603

7 -.159 -.402 .800

8 -.390 -.474 .623

9 -.737 -.211 .413

10 -758 -.262 .357

11 -.739 -.170 .425

12 -.628 -.249 .544

13 -.649 -.339 .464

Fac. Cont. 3.609 2.133

approximations to the population unique variances. For moderate to large sam-
ple sizes, one-parameter ULS and ML methods under the I-K estimator perform
reasonably well with a few exceptional cases of improper solutions.

Estimation of unique variances in CFA is generally difficult when the sample
size is small. In such cases, the sample covariance matrix may be singular (or
near-singular) and cannot be inverted, which causes all sorts of algebraic and
numerical problems. To resolve the singularity problem, Yuan (2007) recently
proposed to use a regularized covariance matrix which is obtained by adding a
small positive value to the diagonal elements of the sample covariance matrix. The
full ML estimation method is then used for the modified covariance matrix. This
procedure may not only be able to deal with the singularity problem, but may also
be effective in reducing the frequency of improper solutions. The comparison of our
procedure with this method would undoubtedly be interesting. The regularized
covariance matrix might be useful in medical imaging analysis (e.g., fMRI), where
the number of subjects is much smaller than the number of variables.
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