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Glossary

Multidimensional scaling (MDS): A set of data analysis techniques for analysis of sim-

ilarity or dissimilarity data. It is used to represent (dis)similarity data between objects

by a variety of distance models.

Distance Models: The models used to represent (dis)similarity data in MDS. Although

there are other distance models, the Euclidean distance model is the most popular one

used in MDS. The exact definition is described in section 2 of this article.

(Dis)similarity: The term similarity is used to indicate the degree of “likeness” between

two objects, while dissimilarity indicates the degree of “unlikeness”. For example, red

and pink are more similar (less dissimilar) to each other than red and green. (Red and

green are more dissimilar (less similar) than red and pink.) In the similarity data a

larger value indicates more similar objects, while in the dissimilarity data a larger value

indicates more dissimilar objects.

Unfolding analysis: One way of representing individual differences in preference judg-

ments. In unfolding analysis, subjects’ ideal objects and actual objects are represented

as points in a joint multidimensional space in such a way that the distances between
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them are as inversely related to the observed preferences as possible.
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Abstract

Multidimensional scaling (MDS) is a set of data analysis techniques used to explore

the structure of (dis)similarity data. MDS represents a set of objects as points in a

multidimensional space in such a way that the points corresponding to similar objects

are located close together, while those corresponding to dissimilar objects are located

far apart. The investigator then attempts to “make sense” of the derived object config-

uration by identifying meaningful regions and/or directions in the space. In this article,

we first introduce the basic concepts and models of MDS. We then discuss a variety of

(dis)similarity data and their scale levels, and the kinds of MDS techniques to be used

in specific situations such as individual differences MDS and unfolding analysis.
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BODY OF THE ARTICLE

The notion of similarity plays a fundamental role in human cognition (Takane, Jung,

and Oshima-Takane, 2009). It serves as an organizing principle by which people cat-

egorize, generalize, and classify objects. Multidimensional scaling (MDS) is a set of

data analysis techniques for representing (dis)similarity data (similarity or dissimilar-

ity data) by spatial distance models (Takane, 2007). In this article, we explicate the

purposes, the mechanism, and the variety of uses of MDS.

This article consists of the following sections: (1) Introduction, via an example, to

illustrate the basic roles and the uses of MDS, (2) Distance models, fitting criteria, and

the data collection methods, (3) Scale levels and data transformations, (4) Dimension-

ality selection, (5) Individual differences MDS, (6) Unfolding analysis, and (7) Software

for MDS.

1 Introduction

Some objects are more similar (or dissimilar) to each other than others. For example,

red and pink are more similar than red and green. MDS represents the similarity or

dissimilarity data among the objects by mapping the points (representing the objects)

into a multidimensional space in such a way that the distances between them best accord

with the observed (dis)similarity data between the objects. In the above example,

the points representing red and pink are located closer in the space than the points

representing red and green. By virtue of MDS, we can visually inspect the (dis)similarity
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data among the objects and investigate the principle underlying the organization of the

(dis)similarity data.

To further illustrate the role of MDS, let us take a look at the data in Table 1.

This table shows dissimilarity data among eight different sports. The names of two

sports were presented each time to the subjects, who were asked to indicate the degree

of dissimilarity between them on a 11-point rating scale. Entries in the table indicate

average dissimilarities between the sports across ten subjects. The eight sports are: 1.

baseball, 2. basketball, 3. rugby, 4. soccer, 5. softball, 6. table tennis, 7. tennis, and

8. volleyball. MDS was applied to the table, and the derived object configuration is

presented in Figure 1.

***** Insert Table 1 and Figure 1 about here *****

By inspection, it can be readily seen that MDS indeed located points corresponding

to similar objects close together, while those corresponding to dissimilar objects far

apart. Figure 1 shows that the eight sports are roughly classified into four groups, one

consisting of rugby and soccer, the second consisting of volleyball and basketball, the

third consisting of baseball and softball, and the fourth consisting of tennis and table

tennis. This is consistent with our intuition that the sports within the groups have much

in common. The four groups of sports may further be combined in various ways to form

larger clusters. For example, baseball, softball, rugby, and soccer might be grouped into

one, and the remaining sports (basketball, volleyball, tennis, and table tennis) into the

other. Since the first group occupies upper right portions of the configuration, and the
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second group lower left portions, we may interpret the direction from upper right to

lower left contrasting sports that use a big outdoor field with those that require only

a medium to small size court. We may also group baseball, softball, tennis, and table

tennis into one group, and the remaining ones (rugby, soccer, volleyball and basketball)

into the other. The former use a relatively small ball, while the latter a big ball. We

may call the direction from upper left to lower right the ball size dimension. MDS,

simply stated, is a sort of “gadget” that draws a map like the one presented in Figure 1

based on a set of distance-like quantities (similarity or dissimilarity data) like the ones

given in Table 1. The map facilitates our intuitive understanding of the relationships

among the objects represented in the map.

2 Distance models, fitting criteria, and the data col-

lection methods

As noted above, MDS represents inter-object (dis)similaities by inter-point distances.

While there are a variety of distance models that may be used in MDS, the one most

frequently used is the Euclidean distance model. Let xir denote the coordinate of point

i (object i) on dimension r. Then the Euclidean distance between points i and j is

calculated by

dij = {
R∑

r=1

(xir − xjr)
2}1/2, (1)

where R indicates the dimensionality of the space. Once xir’s are given, we can locate

the points in the space using a Cartesian coordinate system, and we can calculate
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the distance between them using the above formula. Suppose that R = 2, and the

coordinates of point 1 on the two dimensions are 3 and 2 (x11 = 3, and x12 = 2), and

the coordinates of point 2 are 1 and 4 (x21 = 1, and x22 = 4). Then these two points

can be located as indicated in Figure 2. The Euclidean distance between them can be

calculated by d12 = {(3−1)2 +(2−4)2}1/2 =
√

8 ≈ 2.828. MDS locates the points (i.e.,

finds their coordinates) representing the objects in such a way that the set of distances

calculated from the coordinates “best” agree with the observed (dis)similarities between

the objects.

***** Insert Figure 2 about here *****

One important feature of the Euclidean distance is that it is invariant over the choice of

origin and orientation of coordinate axes. In MDS, we typically place the origin at the

centroid of the object configuration, and rotate the configuration in such a way that

the coordinate axes represent substantively meaningful attributes. (Note, however, that

some distance models used in MDS, e.g., the weighted Euclidean model, do not allow

rotation of axes without changing the inter-point distances. See section 5.)

Observed data typically contain a sizable amount of measurement errors, and an

exact representation of the data is usually impossible. Rather, we look for the “best”

approximation of the observed (dis)similarity data. To make this notion more rigorous,

we need to introduce an index that measure the goodness (or badness) of agreement

between the observed data and the distance model. This index also serves as a criterion

to be optimized in MDS. That is, an MDS procedure systematically looks for the
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object configuration that maximizes the goodness (or minimizes the badness) of fit of

the distance model to the observed (dis)similarity data.

Two broad classes of goodness of fit criteria have been used in MDS. One is the least

squares (LS) criterion (Kruskal, 1964a, b), and the other is the maximum likelihood

(ML) criterion (Ramsay, 1977, 1982). Although the latter has some appeal for its

statistical inference capabilities, the former has been far more predominantly used in

MDS for its simplicity and flexibility. Let oij denote the observed dissimilarity between

objects i and j (temporarily assumed to have been measured on a ratio scale; see

the next section for scale levels of measurement), and let dij denote the corresponding

distance between points i and j in the Euclidean space. Then, the LS criterion is defined

by:

φ({xir}) =
∑

i<j

(oij − dij)
2, (2)

where {xir} is a collection of object coordinates. (The LS criterion of the above form

is often called “Raw Stress” in the MDS literature.) This is a badness of fit criterion,

meaning that a larger value indicates a larger discrepancy between the distance model

and the observed dissimilarity data. The LS MDS attempts to find the set of object

coordinates {xir} so as to minimize the discrepancy between the observed oij and the

predicted dij.

A minimization of the LS criterion generally involves a very complicated process

because the distance model is not a simple linear function of its parameters (object

coordinates). The equations to be satisfied at the minimum of φ usually cannot be

solved in closed form, and some kind of iterative methods have to be used to solve the
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equations. In the iterative methods, successive approximations to the final solution are

obtained by gradually improving the goodness of fit of the solution, starting from an

initial guess, until a sufficiently close approximation is found. See Borg and Groenen

(2005) for more details of the algorithms used in MDS.

One potential danger of this kind of iterative optimization procedures is known

as the problem of convergence to non-global minima. The LS criterion used in MDS

may have multiple local minima, and iterative optimization procedures may be caught

up by one of them that are not the true minimum of the criteria we wish to find.

Fortunately, the computer nowadays are so powerful that it is not at all unrealistic

to obtain multiple solutions starting from many different initial estimates. Multiple

solutions may be compared in terms of their goodness of fit, and the best solution can

be chosen, which is more likely to be the globally optimal solution we want.

A variety of (dis)similarity measures may be used as input data to MDS, including

(dis)similarity ratings, sorting data, confusion data, frequency of co-occurrences, re-

sponse latency (reaction time data), frequency of social interactions, profile similarity,

etc. In the (dis)similarity rating methods, objects are presented in pair to the subjects,

who are asked to rate the degree of (dis)similarity between them on a rating scale.

(The example presented earlier on dissimilarity among eight sports were collected by

this method.) In the sorting method, subjects are given a set of objects and are asked

to group them into several groups in terms of their similarity. The number of times

two objects are put into same groups is counted over a group of subjects and used as a

similarity measure between the objects. See Takane et al. (2009) for more systematic
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descriptions of the data collection methods used in MDS.

3 Scale levels and data transformations

Scale levels refer to approximate relationships that may be assumed to hold between

observed dis(similarity) data and distances. The distinction between different scale

levels is important because certain MDS procedures only apply to dis(similarity) data

measured on certain scale levels.

There are four scale levels considered in MDS: ratio, interval, log-interval, and or-

dinal. Let oij denote the observed dissimilarity between objects i and j, and let dij

denote the corresponding distance. In the ratio scale level, it is assumed that oij ≈ dij,

where “≈” means “approximately equal.” In this case, dij can be directly fitted to oij

so as to minimize criterion (2). No data transformation is necessary. However, it is rare

to find the ratio-scaled measurement in social science research.

In the interval-scaled measurement, it is assumed that oij ≈ adij + b, where a is

+1 if the data are dissimilarity data, or -1 if they are similarity data (oij can be either

similarity or dissimilarity data), and b is an additive constant. In the case of interval-

scaled data, the fitting criterion is generalized into

φ({xir}, b) =
∑

i<j

(±oij − dij − b)2, (3)

and both the object configuration and an optimal value of b have to be estimated that

jointly minimize the criterion.

In a log-interval scale, it is assumed that oij ≈ bda
ij, that is, the observed (dis)similarity
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data are related to underlying distances by a power transformation. When the log is

taken on both sides of the above relationship, we obtain ln oij ≈ a ln dij + ln b, which

is a linear relationship between log oij and log dij similar to the interval scale level,

and hence the name log-interval scale. Not many MDS procedures recognize this scale

level as such, and the (dis)similarity data at this scale level are often analyzed as mere

ordinal scaled data.

In the ordinal scale level, oij and dij are assumed to be only monotonically re-

lated. That is, oij > oi′j′ implies dij ≥ di′j′ if the data are dissimilarity data, whereas

oij > oi′j′ implies dij ≤ di′j′ if the data are similarity data. MDS procedures that are

capable of handling ordinal (dis)similarity data are called nonmetric MDS (Shepard,

1962; Kruskal, 1964a, b) and enjoy widest applications. The fitting criterion in this

case is modified into:

φ({xir},m) =
∑

i<j

(m(oij)− dij)
2, (4)

where m denotes a monotonic (or an inversely monotonic) transformation. MDS pro-

cedures in this case have to find the best monotonic transformation of the ordinal data

as well as the object configuration {xir} that jointly minimize the above criterion.

We usually do not know a priori exact scale levels that the observed (dis)similarity

data satisfy. As a practical strategy, we may start with a weaker assumption, but as

soon as we find, as a result of the analysis, that a stronger measurement assumption

can be justified, we switch to the stronger assumption. In this way we can get more

reliable results while avoiding unaffordable scale level assumptions.
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4 Dimensionality Selection

One important decision that has to be made in MDS concerns the dimensionality of

the solution space. The dimensionality refers to the number of coordinates needed to

locate a point in the spatial representation of objects. There are several considerations

that should be taken into account in determining the number of dimensions. The de-

rived object configuration has to fit to the data at hand reasonably well, but should

not fit too well. A better fit to the data at hand can generally be achieved by merely

increasing the dimensionality of the solution space, and too good a fit may compro-

mise the predictability of the model for future observations. One practical strategy for

determining the adequate number of dimensions is to analyze the data under varied

dimensionalities, say from 1 to 4, plot the fit value against the dimensionality (this is

called a scree plot), and identify the point where the improvement in fit flattens out.

Such a point is called an elbow in the scree plot.

Another important consideration in determining the dimensionality of the solution

space is the interpretability of derived dimensions. Uninterpretable dimensions are

useless and should not be retained (even if they are necessary to account for the observed

(dis)similarity data sufficiently well).

In the example of sports data, the Raw stress values were .186 for the unidimensional

solution, .020 for the two-dimensional solution, .003 for the three dimensional solution,

and .001 for the four dimensional solution. The two-dimensional solution was easily

interpretable, whereas the third dimension was not. Thus, the two-dimensional solution
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was selected as the best solution.

5 Individual differences MDS

So far we have assumed that there is only one set of (dis)similarity data. In many ap-

plications of MDS, however, (dis)similarity data are collected from a group of subjects.

If no systematic individual differences exist, a single common Euclidean distance model

may be fitted to all of them simultaneously, or a single Euclidean distance model is fit-

ted to average (dis)similarity data, as has been done in the example presented earlier.

In many situations, however, the assumption of no systematic individual differences

is unrealistic. In such a case, each (dis)similarity matrix may be analyzed separately,

yielding as many object configurations as there are (dis)similarity matrices. A natural

question is how they are related. In most cases, there are both common and unique

aspects in (dis)similarity judgments obtained from different individuals. If so, we need

a methodology that captures both aspects.

The individual differences (ID) MDS model captures both commonality and individ-

ual differences in (dis)similarity judgments (Carroll and Chang, 1970). More specifically,

it postulates a common object configuration that applies to all individuals, but that

dimensions in the common configuration are differentially weighted by different indi-

viduals to give rise to differences in (dis)similarity judgments. The idea of differential

weighting of dimensions can be captured by the weighted Euclidean distance model:

dijk =

{
R∑

r=1

wkr(xir − xjr)
2

}1/2

, (5)
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where dijk is the distance between points (objects) i and j for individual k, xir is, as

before, the coordinate of object i on dimension r in the common object configuration,

and wkr is the weight attached to dimension r by subject k. To eliminate the size

indeterminacy between the object configuration and the individual difference weights,

the former is typically constrained to satisfy
∑n

i=1 x2
ir/n = 1 for r = 1, · · · , R. In contrast

to the simple Euclidean distance model (1), the orientation of the coordinate axes is

uniquely determined in the weighted Euclidean distance model. ID MDS estimates

both the object coordinates {xir} and the individual differences weights {wkr} in such

a way that dijk calculated from them best agree with the observed dissimilarity between

objects i and j by subject k.

As an example of ID MDS, let us look at the data in Table 2 obtained from ten

subjects. This is the original data from which the data in Table 1 were calculated by

averaging them over the ten subjects. Individual differences MDS was applied to the ten

dissimilarity matrices. Figure 3 displays the derived two-dimensional common object

configuration. In the figure, the sports that use a big ball are located toward right, and

those that use a small ball toward left, so that the horizontal axis can be interpreted as

representing the ball size dimension. The vertical axis, on the other hand, places the

sports that use a big field at the top, and those that use a small court at the bottom,

thus contrasting between the two. (As has been alluded to above, coordinates axes

are unrotatable in the weighted Euclidean model, so that we don’t have to search for

meaningful directions in the space. We simply try to interpret the directions of the

coordinate axes.) Figure 4 depicts the individual differences weights attached to the
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two dimensions by different subjects. In the figure two extreme subjects are identified

by subject numbers. Subject 6 puts the most emphasis on dimension 1 among all

the subjects, whereas subject 10 does so on dimension 2, although in this particular

example, the weights are relatively homogeneous, indicating that there are not much

differences in the way the two dimensions are evaluated by the different subjects. In

some cases, the weights may show interesting patterns of differences that may be related

to subjects’ background information such as gender, age, level of education, etc., but

unfortunately such information is unavailable in the present case. See Takane (2007)

for more examples of interesting applications of the ID MDS.

***** Insert Table 2, and Figures 3 and 4 about here *****

6 Unfolding analysis

Individual differences are far more prevalent in preference judgments. Preference data

are often analyzed by a variant of MDS called unfolding analysis (Coombs, 1964). In

unfolding analysis, each subject is assumed to have an ideal object represented as the

subject’s ideal point in the same space as actual objects are represented. The distances

between the ideal point and the object points are assumed to be inversely related to

the subject’s preferences on the objects. Let xir denote the coordinate of object i on

dimension r, and yjr the coordinate of subject j’s ideal point on dimension r. The

Euclidean distance between object point i and ideal point j is calculated by

dij =

{
R∑

r=1

(xir − yjr)
2

}1/2

. (6)
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The coordinates of the ideal and object points are determined in such a way that the

preference values of the objects for a particular subject are a decreasing function of the

distances between them. This implies that the closer an object point is to his ideal,

the more preferred the object is by that subject. The preference relations are thus

regarded as representing similarity relations between the subjects’ ideal objects and

actual objects. In unfolding analysis, we are given an N by n data matrix obtained

from N subjects making preference judgments on n objects. By subjecting the data

matrix to unfolding analysis, we obtain two coordinate matrices, one for object points,

and the other for subjects’ ideal points.

As an example of unfolding analysis, let us look at Table 3. Thirty one subjects

rank-ordered six different colors from the least preferred to the most preferred. The

data are thus similarity data with larger numbers indicating more preferred colors and

larger similarities between subjects’ ideal color and actual colors. Ties were allowed,

and were given the average of ranks they would have received if they were not exactly

tied. The six colors used in the study are: orange (o), blue (b), grass color (g1), green

(g2), red (r), and purple (p). PREFSCAL (Busing, Groenen, and Heiser, 2005) was

used to analyze the data.

Figure 5 depicts the joint MDS configuration of the subjects ideal points and the

six colors. The first five subjects in the data set are identified by the integers. By

inspection, colors most preferred by these subjects are located close to these subject’

ideal points. For example, subject 1 prefers blue and grass color, while subject 2 red

and purple. Subject 5’s ideal point is somewhat outlying (from the rest), indicating
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that another form of preference model called the vector preference model may be more

appropriate for the subject (Busing et al., 2005). The analysis was run under the interval

scale level assumption rather than the ordinal scale assumption, which was probably

more realistic. Nonetheless, the stronger assumption was deemed preferable because

of the small number of objects to avoid partially “degenerate” solutions. (Degenerate

solutions are those that exhibit an excellent fit, but are substantively meaningless, e.g.,

all object points collapsing into one, and all ideal points into another.)

Unfolding analysis is a very useful technique in marketing research. It allows us

to understand patterns of individual differences in preference judgments, and their re-

lationships to product features and subjects’ background information. This kind of

analysis may eventually help marketing analysts to develop practical marketing strate-

gies. Interested readers are referred to Takane (2007) for more examples of application

of unfolding analysis.

7 A summary and software for MDS

MDS is designed for visualization of observed (dis)similarity data by distance models.

In this article, we discussed essential ingredients for practical uses of MDS, such as the

distance models, fitting criteria, the data collection methods, and levels of measurement

scales. We also discussed several variants of MDS (simple MDS, individual differences

MDS, unfolding analysis) with concrete examples of application. For more detailed

discussions on these topics, see Takane et al. (2009), or any of the articles or monographs
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listed under “Further Reading” at the end of this article.

ALSCAL (Takane, Young, and de Leeuw, 1977) has been in SPSS (Statistical Pack-

ages for Social Sciences) for quite a long time now. However, it is slowly being super-

seded by a newer program PROXSCAL (Busing, Commandeur, and Heiser, 1997). The

latter directly fits the distance model (rather than the squared distance model), allows

multiple random starts (rather than a single rational start), and has better graphing

features in the output.

Unfolding analysis has been a difficult analysis to undertake because of many in-

stances of degenerate solutions. PREFSCAL (Busing, et al., 2005) seems to have largely

overcome the problem by incorporating a penalty term in the optimization criterion.

PREFSCAL has recently been incorporated into SPSS.

MULTISCALE, a maximum likelihood MDS program, can be downloaded freely at

ftp://ego.psych.mcgill.ca/pub/ramsay/multiscl/ along with the program manual.
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Table 1: Mean dissimilarity ratings among eight sports. The eight sports are: 1.

baseball, 2. basketball, 3. rugby, 4. soccer, 5. softball, 6. table tennis, 7. tennis, and

8. volleyball.

St 1 2 3 4 5 6 7
2 8.0
3 8.7 8.3
4 8.6 7.6 4.7
5 1.3 9.3 9.9 9.4
6 8.7 8.8 9.6 9.8 8.7
7 8.0 9.1 9.4 9.6 7.9 2.1
8 8.4 4.6 8.3 7.1 8.4 7.2 5.6
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Table 2: Dissimilarity ratings among eight sports by ten subjects

1 2 3 4 5 6 7
7
8 8
9 9 3

Sub. 1 2 9 10 10
9 9 10 9 8

10 10 10 10 10 5
10 4 9 4 9 9 8
8
9 7

11 4 4
Sub. 2 1 11 11 11

11 11 11 10 11
10 10 11 11 11 1
9 2 8 3 10 11 4
8

10 10
8 9 4

Sub. 3 1 9 10 9
10 10 10 10 10
10 10 10 10 9 1
9 6 10 10 9 10 6

10
11 8
9 9 7

Sub. 4 2 8 11 10
7 7 11 10 8
8 9 9 10 6 2
9 6 10 10 8 6 6
7
8 8

10 5 3
Sob. 5 1 8 9 8

4 7 9 6 4
4 7 7 8 4 2
6 5 7 5 6 5 4

25



Table 2 continued
5
8 6
7 7 4

Sub. 6 1 8 9 9
7 9 9 11 6
5 10 9 8 7 3
9 6 5 7 9 7 5
8
9 7
9 10 8

Sub. 7 1 9 9 9
9 10 9 10 10
8 10 10 10 7 2
6 6 8 8 8 7 4
9

10 10
9 10 5

Sub. 8 2 11 9 9
11 10 11 11 10
10 9 10 10 11 3
9 4 10 10 9 10 11

10
8 9

10 7 8
Sub. 9 1 10 11 11

10 10 11 10 11
6 9 10 11 10 1
8 5 8 8 10 4 5
8
6 10
4 6 1

Sub. 10 1 10 10 8
9 5 5 11 9
9 7 8 8 4 1
9 2 8 6 6 3 3
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Table 3: Preference rankings among six colors by 31 subjects. Stimulus labels are: o -

orange, b - blue, g1 - grass color, g2 - green, r - red, p - purple.

Sub/St o b g1 g2 r p
1 1.0 6.0 5.0 2.5 4.0 2.5
2 1.0 4.0 3.0 2.0 6.0 5.0
3 4.5 4.5 6.0 2.0 3.0 1.0
4 1.0 5.0 4.0 6.0 3.0 2.0
5 6.0 1.0 5.0 2.0 4.0 3.0
6 1.0 4.5 4.5 3.0 6.0 2.0
7 1.0 4.0 6.0 3.0 5.0 3.0
8 1.0 5.5 3.0 2.0 5.5 4.0
9 5.0 4.0 2.0 6.0 1.0 3.0
10 2.5 5.5 2.5 1.0 5.5 4.0
11 1.0 2.0 5.0 3.0 6.0 4.0
12 1.5 5.0 4.0 6.0 1.5 3.0
13 2.0 5.0 3.0 1.0 6.0 4.0
14 5.0 6.0 1.0 3.0 4.0 2.0
15 1.0 5.0 2.0 6.0 3.0 4.0
16 4.5 6.0 3.0 4.5 1.0 2.0
17 1.0 6.0 2.0 5.0 4.0 3.0
18 3.5 5.5 1.0 5.5 3.5 2.0
19 3.0 6.0 2.0 1.0 5.0 4.0
20 3.0 2.0 5.0 1.0 4.0 6.0
21 1.0 2.0 5.0 5.0 3.0 5.0
22 3.0 5.0 4.0 6.0 1.0 2.0
23 6.0 4.5 3.0 1.0 4.5 2.0
24 5.0 2.5 4.0 6.0 2.5 1.0
25 1.0 4.0 5.5 3.0 5.5 2.0
26 6.0 4.0 3.0 5.0 2.0 1.0
27 2.0 5.0 3.0 6.0 1.0 4.0
28 1.0 3.0 6.0 2.0 5.0 4.0
29 1.0 4.0 3.0 2.0 6.0 5.0
30 1.0 4.5 3.0 2.0 6.0 4.5
31 5.0 4.0 3.0 6.0 1.0 2.0
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Figure 1: The two-dimensional object configuration of the eight sports from average

dissimilarity ratings in Table 1. (A PROXSCAL solution obtained under the assumption

of interval scaled dissimilarity data and with 100 random initial starts. Normalized raw

stress = .020)
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Figure 2: Calculating the Euclidean distance between two points in the two-dimensional

space. (A PROXSCAL solution under the assumption of ordinal dissimilarity data and

matrix conditional. Normalized raw stress = .052
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Figure 3: The two-dimensional common object configuration of the eight sports ob-

tained by individual differences MDS of dissimilarity data in Table 2.
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Figure 4: The plot of individual differences weights attached to the two dimensions by

the ten subjects for the data in Table 3. (A PREFSCAL solution obtained under the

interval scaled similarity data.)
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Figure 5: The joint plot of object points (Asterisks) and subjects’ ideal points (dots)

for the preference data on six colors presented in Table 3. The objects are labeled, and

the first five subjects’ ideal points are numbered while the remaining ideal points are

merely indicated by dots. (Some subjects’ ideal points coincide.)
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