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1 Introduction

We exemplify the equivalence between the MPE acceleration method and the
vector € (v-¢) method when the iterate is linear and the exact k is chosen.
General results have been given in McLeod (1971), and Graves-Morris (1983)
among others, as discussed by Smith et al. (1987). Let

x@t) — Hx@ 4+ p (1)

represent the basic iterate, where it is assumed that the largest absolute
eigenvalue of H is strictly smaller than unity. The closed-form solution to

the above system is given by
s =x®) = (I-H) b, (2)
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where I — H is nonsingular.

Let

u@ = x(a+D) _ (@)

(3)

In the MPE method, k represents the order of minimal polynomials that

annihilates u®. Let

In the MPE method, s is obtained by
s = Xc/d,

where X = [X(0)7 e 7X(k)]7 and d = ]-;c—‘rlC.

In the v-¢ method, we define €4 = 0, ¢l = x@ for ¢ = 0,1, - --

+1 +1 _
6 = e+ (67 =g

where the inverse of a vector a is defined to be

a!=a/aa.

(4)

(8)

(This is called the Samelson inverse of a, and is equal to the transpose of the

Moore-Penrose inverse of a considered as a matrix.) Then,

)

9)



2 Demonstrations of the equivalences

2.1 A case of scalar variable

We assume there is a single variable in x, which will be denoted as z. Suppose

we have the following updating formula:
2 = (1/2)2D 4+ 1. (10)

the closed form solution to this system is s = 1/(1/2) = 2. Suppose that the

iteration starts at (9 = 0. Then we have

Table 1: Successive updates of (9 and resultant u(9.

+(0 e )
0 1 1.5
) e
1 D
In the MPE method, we obtain cg = —u®/ul® = —5 and ¢; = 1 (by
definition). so that
©) W —5(0)+1(1
otV +azh (0) + ():2. (11)
Cco+C1 —5+1

The general formula for s is given by
2(04,1) _ (1), (0)

u — 0)

s = (12)

In the v-e method, we would like to get
= (-,
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where

and

& = e () — )

See Table 2 below. We have

and

so that

k=-1 k=20 k=1

6_0% =0
() = 20

) =0 e = (u®)-1
e(()l) — M

6,2% =0 egl) = (u(l))*1
6((]2) = (@




The general formula for s is given by

s = W+ (@) = @)
MOME)
w® — M
1@ 2D _ (041 1 3,0,
20 — 4@
(1),,(0)
©

= .T(

(0), (M —
Py x (13)
u®) —
which is identical to (12).
The above line of argument remains essentially the same if we start from

a different value of 2?0, for example, (¥ = —1.

2.2 A two-variable case

We consider
70 1

= x\? . (14)
0 .3 2

x(@+1)

(Matrix H may be assumed diagonal without loss of generality.) The closed-

form solution is given by

3.3333
s = . (15)
2.8571

We obtain the following table.
For the MPE method with k£ = 2, we have

— [u(1)7 u(2)]_1u(3)
c= X =1 -1 |. (16)



Table 3: Successive updates of x@ and resultant u'@ for the two-variable

case.
x(0) x@) x@ x(3) x®
0 1 1.7 2.19 2.533
0 2 2.6 2.78 2.834
u©® ua® u® u®
1 7 .49 .343
2 .6 A8 .054
Thus,
s— {21 0 1 1 1 1.7 V)21 = e J21 = 3.3333
0 2 2.6 .6 2.8571
(17)
For the v-¢ method, we would like to get
O (-,
where
&) = e + (e =),
4D = P 4 (2 )
and

0 1 1 0)y—
o =a’ —(a) —a”)"

The €? for ¢ = 0,1,2 we need to calculate i for ¢ = 0,1, on the other
hand, are obtained by

& =l (- )
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and
) = e + (&Y — )7,

The 65(” for ¢ = 0,1,2,3, in turn, are obtained by €]
See Table 4 below.

Table 4: The € table for the v-¢ method.

(q+1) + (6(()11-1-1) _ 66‘1))—1.

k=-1 k=0 k=1 k=2 k=3 k=4
e,of =0
=0 e = (@)1
661) =xM ego)
e@ =0 egl) = (u)~! eéo)
@ _ 5 e o
6(_3% =0 6&2) = (u@)~! el!
663) = x©®) et
=0 e = (u®)-1
W _ @)
We have

for ¢ = 0,1, 2,3, where

)1 2 ) 8235 |
4 7059



4D = X () = (@) )
(1 8235 2\ [ 22007
N (2) ((.7059)(.4)) (2.6341)’
4 = X () )
e 1.7982 8235 _1_ 2.7238
N ( 2.6 ) ! (( 6606 ) - ( 7059 )) N ( 2.5524 ) ’
and
&) = x4 (@)~ @)™
[ 219 2.8449 1.7982 _1_ 3.1075
N ( 2.78 ) " (( 4479 ) - ( 606 )) N ( 2.5936 ) '
Finally,
& = (@O (@ (@) ) () (@) )
[ 30625
N ( 2813 )
) = )7 @ 4 (@) - @®) T (@) - @®) )
[ 43750
N ( 9375 )
and

-1
0) 2.7238 4.3750 3.0625 3.3333
64 - + - - .
2.5524 9375 2813 2.8571
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Again, we get an identical result from the two methods.

) .
4

A general formula for €, is given by

) = x4 ()t — (@) )+
()7 + @® + (@) = @) ) — (@) (@)
@) = (@ + (@) = @) = (@) = @) )

(18)

This should theoretically be identical to (Smith, et al., 1987, Sect. 5)

k
S — Z ’yqx(q),
q=0

where
k
Yq = Cq/ Z Gy,
j=1

although it is by no means obvious from these formulas.
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