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1 Introduction

We exemplify the equivalence between the MPE acceleration method and the

vector ε (v-ε) method when the iterate is linear and the exact k is chosen.

General results have been given in McLeod (1971), and Graves-Morris (1983)

among others, as discussed by Smith et al. (1987). Let

x(q+1) = Hx(q) + b (1)

represent the basic iterate, where it is assumed that the largest absolute

eigenvalue of H is strictly smaller than unity. The closed-form solution to

the above system is given by

s = x(∞) = (I−H)−1b, (2)
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where I−H is nonsingular.

Let

u(q) = x(q+1) − x(q). (3)

In the MPE method, k represents the order of minimal polynomials that

annihilates u(0). Let

U = [u(0), · · · ,u(k−1)]. (4)

We define c = (c0, · · · , ck−1, 1)′ by

c =



−U+u(k)

1


 . (5)

In the MPE method, s is obtained by

s = Xc/d, (6)

where X = [x(0), · · · ,x(k)], and d = 1′k+1c.

In the v-ε method, we define ε
(q)
−1 = 0, ε

(q)
0 = x(q) for q = 0, 1, · · ·, and

ε
(q)
k+1 = ε

(q+1)
k−1 + (ε

(q+1)
k − ε

(q)
k )−1, (7)

where the inverse of a vector a is defined to be

a−1 = a/a′a. (8)

(This is called the Samelson inverse of a, and is equal to the transpose of the

Moore-Penrose inverse of a considered as a matrix.) Then,

s = ε
(0)
2k . (9)
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2 Demonstrations of the equivalences

2.1 A case of scalar variable

We assume there is a single variable in x, which will be denoted as x. Suppose

we have the following updating formula:

x(q+1) = (1/2)x(q) + 1. (10)

the closed form solution to this system is s = 1/(1/2) = 2. Suppose that the

iteration starts at x(0) = 0. Then we have

Table 1: Successive updates of x(q) and resultant u(q).

x(0) x(1) x(2)

0 1 1.5

u(0) u(1)

1 .5

In the MPE method, we obtain c0 = −u(1)/u(0) = −.5, and c1 = 1 (by

definition). so that

s =
c0x

(0) + c1x
(1)

c0 + c1

=
−.5(0) + 1(1)

−.5 + 1
= 2. (11)

The general formula for s is given by

s =
x(0)u(1) − x(1)u(0)

u(1) − u(0)
. (12)

In the v-ε method, we would like to get

ε
(0)
2 = ε

(1)
0 + (ε

(1)
1 − ε

(0)
1 )−1,
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where

ε
(1)
0 = x(1),

ε
(1)
1 = ε

(2)
−1 + (ε

(2)
0 − ε

(1)
0 )−1,

and

ε
(0)
1 = ε

(1)
−1 + (ε

(1)
0 − ε

(0)
0 )−1.

See Table 2 below. We have

ε
(0)
1 = (u(0))−1 = (1)−1 = 1,

and

ε
(1)
1 = (u(1))−1 = (.5)−1 = 2,

so that

ε
(0)
2 = s = x(1) + ((u(1))−1 − (u(0))−1)−1 = 1 + (2− 1)−1 = 1 + 1 = 2.

Table 2: The ε table for the v-ε method.

k = −1 k = 0 k = 1 k = 2

ε
(0)
−1 = 0

ε
(0)
0 = x(0)

ε
(1)
−1 = 0 ε

(0)
1 = (u(0))−1

ε
(1)
0 = x(1) ε

(0)
2

ε
(2)
−1 = 0 ε

(1)
1 = (u(1))−1

ε
(2)
0 = x(2)
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The general formula for s is given by

s = x(1) + ((u(1))−1 − (u(0))−1)−1

= x(1) +
u(0)u(1)

u(0) − u(1)

=
u(0)x(1) − u(1)x(1) + u(0)u(1)

u(0) − u(1)

=
x(0)u(1) − x(1)u(0)

u(1) − u(0)
, (13)

which is identical to (12).

The above line of argument remains essentially the same if we start from

a different value of x(0), for example, x(0) = −1.

2.2 A two-variable case

We consider

x(q+1) =




.7 0

0 .3


 x(q) +




1

2


 . (14)

(Matrix H may be assumed diagonal without loss of generality.) The closed-

form solution is given by

s =




3.3333

2.8571


 . (15)

We obtain the following table.

For the MPE method with k = 2, we have

c =



−[u(1),u(2)]−1u(3)

1


 =




.21

−1

1




. (16)

5



Table 3: Successive updates of x(q) and resultant u(q) for the two-variable

case.

x(0) x(1) x(2) x(3) x(4)

0 1 1.7 2.19 2.533

0 2 2.6 2.78 2.834

u(0) u(1) u(2) u(3)

1 .7 .49 .343

2 .6 .18 .054

Thus,

s = {.21




0

0


− 1




1

2


 + 1




1.7

2.6


}/.21 =




.7

.6


 /.21 =




3.3333

2.8571


 .

(17)

For the v-ε method, we would like to get

ε
(0)
4 = ε

(1)
2 + (ε

(1)
3 − ε

(0)
3 )−1,

where

ε
(1)
2 = ε

(2)
0 + (ε

(2)
1 − ε

(1)
1 )−1,

ε
(1)
3 = ε

(2)
1 + (ε

(2)
2 − ε

(1)
2 )−1,

and

ε
(0)
3 = ε

(1)
1 − (ε

(1)
2 − ε

(0)
2 )−1.

The ε
(q)
2 for q = 0, 1, 2 we need to calculate ε

(q)
3 for q = 0, 1, on the other

hand, are obtained by

ε
(0)
2 = ε

(1)
0 + (ε

(1)
1 − ε

(0)
1 )−1,

6



ε
(1)
2 = ε

(2)
0 + (ε

(2)
1 − ε

(1)
1 )−1,

and

ε
(2)
2 = ε

(3)
0 + (ε

(3)
1 − ε

(2)
1 )−1.

The ε
(q)
1 for q = 0, 1, 2, 3, in turn, are obtained by ε

(q+1)
−1 + (ε

(q+1)
0 − ε

(q)
0 )−1.

See Table 4 below.

Table 4: The ε table for the v-ε method.

k = −1 k = 0 k = 1 k = 2 k = 3 k = 4

ε
(0)
−1 = 0

ε
(0)
0 = x(0)

ε
(1)
−1 = 0 ε

(0)
1 = (u(0))−1

ε
(1)
0 = x(1) ε

(0)
2

ε
(2)
−1 = 0 ε

(1)
1 = (u(1))−1 ε

(0)
3

ε
(2)
0 = x(2) ε

(1)
2 ε

(0)
4

ε
(3)
−1 = 0 ε

(2)
1 = (u(2))−1 ε

(1)
3

ε
(3)
0 = x(3) ε

(2)
2

ε
(4)
−1 = 0 ε

(3)
1 = (u(3))−1

ε
(4)
0 = x(4)

We have

ε
(q)
1 = (u(q))−1

for q = 0, 1, 2, 3, where

(u(0))−1 =




.2

.4


 , (u(1))−1 =




.8235

.7059


 ,
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(u(2))−1 =




1.7982

.6606


 , (u(3))−1 =




2.8449

.4479


 ,

ε
(0)
2 = x(1) + ((u(1))−1 − (u(0))−1)−1

=




1

2


 +







.8235

.7059


−




.2

.4







−1

=




2.2927

2.6341


 ,

ε
(1)
2 = x(2) + ((u(2))−1 − (u(1))−1)−1

=




1.7

2.6


 +







1.7982

.6606


−




.8235

.7059







−1

=




2.7238

2.5524


 ,

and

ε
(2)
2 = x(3) + ((u(3))−1 − (u(2))−1)−1

=




2.19

2.78


 +







2.8449

.4479


−




1.7982

.606







−1

=




3.1075

2.5936


 .

Finally,

ε
(0)
3 = (u(1))−1 + (u(1) + ((u(2))−1 − (u(1))−1)−1 − ((u(1))−1 − (u(0))−1)−1)−1

=




3.0625

.2813


 ,

ε
(1)
3 = (u(2))−1 + (u(2) + ((u(3))−1 − (u(2))−1)−1 − ((u(2))−1 − (u(1))−1)−1)−1

=




4.3750

.9375


 ,

and

ε
(0)
4 =




2.7238

2.5524


 +







4.3750

.9375


−




3.0625

.2813







−1

=




3.3333

2.8571


 .
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Again, we get an identical result from the two methods.

A general formula for ε
(0)
4 is given by

ε
(0)
4 = x(2) + ((u(2))−1 − (u(1))−1)−1+

{(u(2))−1 + (u(2) + ((u(3))−1 − (u(2))−1)−1 − ((u(2))−1 − (u(1))−1)−1)−1

−(u(1))−1 − (u(1) + ((u(2))−1 − (u(1))−1)−1 − ((u(1))−1 − (u(0))−1)−1)−1}−1.

(18)

This should theoretically be identical to (Smith, et al., 1987, Sect. 5)

s =
k∑

q=0

γqx
(q),

where

γq = cq/
k∑

j=1

cj,

although it is by no means obvious from these formulas.
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