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Abstract Late Professor Yanai has contributed to many fields ranging from aptitude diagnostics,
epidemiology, and nursing to psychometrics and statistics. This paper reviews some of his accomplish-
ments in multivariate analysis through his collaborative work with the present author, along with some
untold episodes for the inception of key ideas underlying the work. The various topics covered include
constrained principal component analysis, extensions of Khatri’s lemma, the Wedderburn-Guttman
theorem, ridge operators, decompositions of the total association between two sets of variables, and
ideal instruments. A common thread running through all of them is projectors and singular value
decomposition (SVD), which are the main subject matters of a recent monograph by Yanai, Takeuchi,
and Takane [35].
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1 Introduction

Professor Yanai passed away due to prostate cancer in December, 2013 at the age of
73. A quick glance at his home page reveals that his contributions extend over 7 broad
categories, including aptitude diagnostics, test theories, educational psychology, epidemi-
ology, nursing, linear algebra, statistics, and multivariate analysis (MVA). Here we focus
on his contributions in the last category, namely multivariate analysis, through his collab-
orative works with me. Professor Yanai has been the most influential person in my career.
In particular, if I had not met him when I was in the third year of college, I would not have
been a statistician. We have 15 joint publications, including two books one in English [35]
and one other in Japanese. The specific topics we cover today are:

(1) Constrained principal component analysis (CPCA)
(2) Khatri’s lemma

(3) The Wedderburn-Guttman theorem

(4) Ridge operators

(5) Generalized constrained canonical correlation analysis
(6)

6) Causal inference

Professor Yanai’s idea about MVA can be most succinctly summarized as “partitioning
the space of dimensionality n (the number of cases) into meaningful subspaces” identified by
some external information or by some internal criterion (Takeuchi, Yanai, and Mukherjee
[27]). Two major tools for partitioning are:

(1) Projectors

*Corresponding author. Email: yoshio.takane@mcgill.ca



(2) Singular value decomposition (SVD)

which are the main subject matters of a recent monograph by Yanai, Takeuchi, and Takane
[35]. As is well known, projectors are used to partition the space of observation vectors on
criterion variables into subspaces that can and cannot be explained by predictor variables,
and SVD seeks to find the subspace most representative of the original subspace.

Before we begin, let us introduce some basic notations we use throughout this paper:

Let Sp(X) denote the space spanned by column vectors of X, and let Ker(X’) denote the
orthogonal complement subspace to Sp(X). Let

Py = X(X'X) X' (1)
denote the orthogonal projector onto Sp(X), and let
Qx =1-Px (2)

denote the orthogonal projectors onto Ker(X’). Then,
Py =Px, Qx = Qx (symmetric).
P% =Px, Q% = Qx (idempotent).
PxQx = QxPx = O (orthogonal).

These projectors are useful in partitioning y, the vector of observations on the dependent
variable in regression analysis, into P xy, the portions of y that can be accounted for by
the predictor variables X, and Qxy, the portions of y that cannot be accounted for by X.

Slight generalizations of the I-orthogonal projectors above lead to K-orthogonal pro-
jectors, which are useful in weighted least squares (LS) estimation in regression analysis:
Let K be an nnd matrix such that rank(KX) = rank(X). Then,

Py x = X(X'KX) XK, (3)

and
Qx/k =1-Px/k (4)

are called K-orthogonal projectors onto Sp(X and Ker(X’), respectively, with respect to
the metric matrix K.

These projectors have properties similar to those of the I-orthogonal projectors:
(KPx/k) =KPx/k, (KQx/x) = KQx/x (K-symmetric).
P% k= Px/i, Q%) = Qx/x (idempotent).
P’X/KKQX/K = Q’X/KKPX/K = O (K-orthogonal).

These projectors are useful in weighted LS (WLS) estimation in regression analysis. When
K is set to K = P, the K-orthogonal projectors effect instrumental variable estimation.
See Yanai [33] for other types of projectors.

2 Constrained Principal Component Analysis (CPCA)

In as early as 1970, Professor Yanai (Yanai [32]) proposed so-called partial principal
component analysis (PPCA) to extract components unrelated to certain prescribed effects
such as differences in gender, age, levels of education, etc., which amounts to SVD of QY
(where Y is the matrix of criterion variables, and G the matrix of predictor variables whose
effects are to be eliminated). This process consists of two phases, decomposing Y int PgY
and Q¢Y, and applying SVD to the latter. While Yanai himself did not explicitly suggest



the SVD of PgY, it was known as redundancy analysis, a special case of reduced-rank
regression. The two phases may be called External and Internal Analyses.

Similarly, CPCA consists of two major phases: External Analysis and Internal Analy-
sis. External Analysis decomposes the main data matrix according to the external informa-
tion about the row and columns of a data matrix, which amounts to projections. Internal
Analysis further analyses the decomposed matrices into components, which is equivalent
to SVD (singular value decomposition).

In CPCA, we consider not only the row-side constraints, G, but also the column-side
constraints H, analogously to growth curve models (Potthoff and Roy [12]). This leads to
a four-way decomposition of the main data matrix Y (Takane and Shibayama [20]):

A similar decomposition is also possible with K-orthogonal projectors.

The decomposition above is a very basic one. When G and/or H consist of more than
one set of variables, finer decompositions of Y are possible, corresponding to analogous
decompositions of P and.or Py (e.g., Takane [17]; Takane and Yanai [21]):

Let G = [M, N], for example. Then,

(1) P =Py +Py < M'N = 0. (M and N are mutually orthogonal.)

2)Pe=Py+Py—PyPy < PyPy =PxyPy. (M and N are mutually orthogonal,
except their common space, e.g., ANOVA w/o interactions).  (3) Poc =Py +Po,n =
Py + Pg, . (Fit one first and the other to the residuals from the fist).

(4) Pg =Puoy +Puyg,, © rank(G) = rank(M) + rank(N). (M and N are disjoint.
Fit both simultaneously).

(5) P =Pga+Pea)-5 & A'B =0, and Sp(A) ® Sp(B) = Sp(G’). (A matrix of
regression coefficients C constrained by C = AC* or by B'C = O).

The first four decompositions above were noted in Rao and Yanai [13], while (5) is due to
Yanai and Takane [34]. Analogous decompositions are possible for Py, Pg/x, and Pyyp.

In Internal Analysis, on the other hand, we apply PCA to terms obtained by the
external analysis, e.g., P YPy, which amounts to SVD(PsYPy), whose computation
time can be economized considerably by the following procedure:

A theorem on SVD(PsYPy) (Takane and Hunter [18]): Let Fe and Fy be columnwise
orthogonal matrices such that Sp(G) = Sp(F¢g) and Sp(H) = Sp(Fy). Then, P YPy =
FeF,YFyF). Let SVD(F,YFy) be denoted as UDV’, and let SVD(FcF.YFyF%;)
be denoted as UD*V*'. Then, U* = FcU, V* = FyV, and D* = D.

3 Khatri’s Lemma

Toward the end of 1980’s, I was interested in the relationships among various methods
of constrained correspondence analysis (CCA), a special case of CPCA. When I looked
through the literature on CCA, I found that there were two ways of incorporating the
constraints. Let U denote the row representation matrix. (For explanation, we consider
only the row side constraints.) Two equivalent ways of constraining U are: (1) U = AU*
(e.g., ter Braak [28]), and (2) B'U = O (e.g., Bockenholt and Béckenholt [1]), where A
and B are mutually orthogonal, and jointly span the entire row space of a contingency
table. The relationship is rather trivial, i.e.,

P,=A(A'/A)"A'=1-B(B'B) B = Qg, (6)



if the identity metric is used. I was not sure what would happen if non-identity metric
K is used. Khatri’s lemma states the exact relationship for this case (Takane, Yanai, and
Mayekawa [26]):

Let A (p x ) and B (p x (p — r)) be matrices such that rank(A) = r, rank(B) = p — r,
and A’B = O. Then (Khatri [9]),

I=A(A'’KA)'AK + K 'B(B K 'B)"'B/, (7)

where K is a symmetric pd (positive definite) matrix.

Several remarks are in order on Khtri’s original lemma given above. Khatri’s lemma
may sometimes be expressed in an alternative form:

K =KA(A'KA) 'AK +B(B'K'B)"'B’. (8)

Note also that K and K~! are interchangeable. Khatri’s lemma is useful for rewriting
P-type projectors into Q-type projectors (LaMotte [11]; Shapiro [15]; Seber [14]; Takane
and Zhou [24]; Verbyla [30]). Khatri’s lemma has been generalized in various ways, e.g.,
let K be square, but not necessarily symmetric or nonsingular, but Sp(B) C Sp(K) and
Sp(B) € Sp(K’). Then (Khatri [10]),

K = KA(A'’KA)"A'’K+B(B'K B) B’ (9)

Professor Yanai (Yanai and Takane [34]) further extended Khatri’s lemma as follows;
Let A (pxr) and B (p x (p —r)) be matrices such that rank(A) = r and rank(B) = p —r,
and let M and N be nnd matrices such that
(i) AAMNB = O,
(i) rank(MA) = rank(A),
(iii) rank(NB) = rank(B).
Then,
I=A(A'MA)"A'M + NB(B'NB) B'. (10)
This reduces to the original lemma when M = K and N = K~!. Takane [17] further

extends it to a rectangular K.

4 The Wedderburn-Guttman (WG) Theorem

The Wedderburn-Guttman (WG) theorem is stated as follows: Let Y (n x p) be of
rank 7, and let A (n x s) and B (p X s) be such that A’YB is invertible. Then,

rank(Y,) = rank(Y) — rank(YB(A'YB)'A’Y) (11)
= rank(Y) — rank(A'YB) = r — s, (12)

where
Y, =Y - YB(A'YB)'A'Y. (13)

Wedderburn [31] first proved the theorem for s = 1. Guttman [5] extended it for s > 1.
Guttman [6] further proved the reverse, i.e., Y; must be of the above form to satisfy the
rank condition stated above.

Guttman [5] used the matrix rank method for a proof of the above theorem. In this
method, we apply a series of elementary block matrix operations to a matrix to derive a
rank formula. We apply another series of elementary block matrix operations to the same
matrix to derive another rank formula. Neither operations change the rank of the original



matrix, so the two must be equal. Guttman’s proof is given in the appendix. Yongge
Tian (many papers) derived many interesting rank formula based on this method. Tt is
intriguing to find that Guttman [5] already used the method in 1944 (cf. Khatri [8]).

My initial interest in this theorem stemmed from Hubert’s talk (Hubert, Meulman,
and Heiser [7]) at the 1989 Meeting of the Psychometric Society at Illinois. This talk
was to criticise the ignorance of numerical analysts (e.g., Chu, Funderlic, and Golub [2])
about Guttman’s contributions (Guttman [5, 6]) in the WG theorem. When the talk was
over, I asked a question: When A’YB is not invertible, can we replace it by a generalized
inverse? I had a feeling that it was possible, while Hubert said it was probably impossible.
It has turned out that both of us are only half correct. The answer is yes, but it requires
a condition. I initially thought this was purely a rank additivity (subtractivity) problem.
That is, we are to prove that

rank(Y — YB(A'YB) A’Y)
= rank(Y) — rank(YB(A'YB) A'Y). (14)

This supposition also included that
rank(YB(A'YB) A’'Y) = rank(A"YB) (15)
always holds. However, Tian and Styan [29] showed the following always holds:
rank(Y — YB(A'YB)"A’Y) = rank(Y) — rank(A'YB). (16)

This implies that (15) requires a condition, as does (14), and that the two conditions are
equivalent.

The necessary and sufficient (ns) condition is stated as follows (Takane and Yanai
[22]): Let C = B(A"YB)~A’. Then, the ns condition for (14) and (15) to hold is:

YCYCY = YCY. (17)

There are a number of equivalent conditions, e.g., (YCYY " )2=YCYY ™ & (Y YCY)?
=Y "YCY. There are also a number of interesting sufficient (but not necessary) condi-
tions, e.g., (YC)? = YC or (CY)? = CY, and CYC = C (Cline, Funderlic, and Golub
[3]; Galantai [4]). The latter is even stronger than the idempotency of YC or CY.

The WG theorem states the rank condition for the residual matrix. However, from a
data analytic viewpoint, the decomposition of the data matrix Y the theorem implies is
even more interesting:

Y = YB(A'YB)"A'Y + (Y - YB(A'YB) A'Y). (18)

Takane and Hunter [19] developed a new family of CPCA almost exclusively based on this
decomposition. The second term of the above decomposition involves a Q-type projector,
but it can be replaced by a P-type projector as follows (Takane [17]): Let A, B be matrices
such that

(i) Sp(A) € Sp(Y),

(i) Sp(B) € Sp(Y’),

(iii) rank(A’YB) + rank(B’Y ~A) = rank(Y),

(iv) AYY"A = A’A = O,

(v) BY"YB=B'B=0.
Then,

Y =YB(A'YB)"A'Y + ABBY A) B’ (19)



5 Ridge Operators

In the mid 2000’s, I was interested in extending the ridge-type of regularized least
squares (RLS) estimation to various multivariate (MV) techniques. These extensions were
rather straightforward, and I wrote most of the papers on them with my graduate students.
I did not have to bother Professor Yanai. However, as I applied the RLS to so many MV
procedures, I thought it would be important to write a paper on ridge operators, which
was a common thread running through all of them (Takane [16, 23]).

The simplest form of ridge operators is defined as:
Rx(\) = X(X'X + A\Px/) X/, (20)

where Py, = X/(XX’)"X is the orthogonal projector onto Sp(X’). (Px, = Iif X is
columnwise nonsingular.) This operator arises in the RLS estimation min. = ¢,(c) in
regression analysis, where ¢, (c) = SS(e) + ASS(c)p,, and e = y — Xc. (We assume, w/o
loss of generality, that Sp(c) C Sp(X’).)
The Rx () and S x(\) have properties similar to those of Px and Qx, where Sx(\) =

I - Rx(A). For example:

Rx (M) and Sx(\) are symmetric and invariant over the choice of a g-inverse of (X'X +
APX/).

Rx(VKx(MRx(A) = Rx(A) (ie, Kx(A) = Rx(A)*.).

Rx(A\) —Rx(A\)?=Rx(N)Sx(A\) =Sx(AM)Rx(\) > O.

Rx()\)Kx()\) = Px, etc.
Similar decompositions of Ry (\) to those of Px are also possible.

The ridge operators defined above can be rewritten as follows using a ridge metric
matrix defined below: Let

Kx(\) = Px + AM(XX')" (Ridge Metric Matrix). (21)
Then, Rx () can be rewritten as:
Rx(\) = X(X'Kx(M)X)" X" (22)

The simple ridge operators introduced above can be generalized into generalized ridge
operators:
R (\) = X(X'WX + AL)" X'W, (23)

where L is an nnd matrix such that Sp(L) C Sp(X'), and W is an nnd matrix such that
rank(WX) = rank(X). As before, the generalized ridge operators can be rewritten as
follows using a generalized ridge metric matrix defined below: Let

K" (M) = Px + AX(X'WX) LX'WX)" X'W. (24)
Then,
R () = X(X'WK WD () X)"X'W. (25)

6 Generalized Constrained Canonical Correlation Analysis

In the external analysis of CPCA, a data matrix is decomposed into several compo-
nents by external information. I initially thought we could do the same in generalized
constrained canonical correlation analysis (CANO). We decompose X and Y (the matrix
of observations on the two sets of variables) separately into several orthogonal components,



and then choose one term from each decomposition, and apply CANO to the pair, which
amounts to SVD of the product of the orthogonal projectors. It has turned out that this
strategy will not do.

CANO analyzes total association between X and Y, i.e., tr(PxPy). However, X =
M + N, where M'N = O does not guarantee Px = Py, + Px. This may be contrasted
with a similar situation in which X = [M, N]|, where M'N = O, in which case we indeed
have Px = P/+Px. This suggests that we need orthogonal decompositions of orthogonal
projectors to derive additive decompositions of the total association.

Takane, Yanai, and Hwang [25] derived the following two orthogonal decompositions
of Pix g by combining two orthogonal decompositions ((3) and (5)) of the orthogonal
projector given in the CPCA section:

(1) Let A, B, and W be matrices such that Sp(A) = Ker(H'X'PsX), Sp(B) =
Ker(H'X'QeX), and Sp(W) = Ker(X'G). Then,

Pix.c) =Pp.xa +Proxa+Pooxna +Pooxs + Pow. (26)

(2) Let K, U, and V be matrices such that Sp(K) = Ker(H'X'X), Sp(U) = Ker(G'XH),
and Sp(V) = Ker(G'XK). Then,

Pxc) =Ppyye +Pxuv +Ppyia + Pxrv +Poga. (27)

We can derive similar decompositions of Py ¢, (The subscript Y is put on G to
indicate that this is a G for Y.) We take one term each from a decomposition of Px ¢ ]
and that of P(y,q,], and apply SVD to the product of the two, e.g.,

SVD(Pqe, xuxPyuyuy ) (28)

7 Causal Inference

Causal inference is one of the most important roles of statistics. This was the topic of
our conversation when I met him last in the fall of 2013. When randomization is unavail-
able, there are a lot of pitfalls in establishing causal relationships based on correlational
relationships alone. One crucial aspect of the problem is how to eliminate the effects of
confounding variables.

The easiest way is to include the effects of the confounding variables in regression
analysis along with the predictor variable of interest, although this is easier said than
done. Identifying the set of confounding variables is not so easy, although here we assume
that they are known. Let y denote the criterion variable, let x: denote the predictor
variable of interest, and let U denote the matrix of confounding variables. The suggested
regression model can be written as:

y =xa; + Uc +e;. (29)
The ordinary least squares (OLS) estimate of xa; is given by

Xa; = Pw/Quy (30)

Consider next the regression of x onto U, i.e.,

X = Ud—f—eg. (31)



The OLS estimate of Ud is given by
Ud = Pyx. (32)

We call Pyx linear propensity scores. Residuals from the above regression Qyx represent
the portions of x left unaccounted for by U.

We now consider using Pyx instead of U in the first regression, i.e.,
y = xas + Pyxb + es. (33)

The OLS estimate of xas is given by

XAy = Pw/QPUzya (34)
where Qp,, = I — Pyx(x'Pyx)~'x'Py.
Since
Qpyox = x — Pux(x'Pyx) 'x'Pyx = Qux, (35)
we obtain
Pz/QPUmy =Pu/quy- (36)

This means (30) and (34) are equivalent. This gives the rationale for replacing U by Pyx.
The latter is more convenient because it is a single variable, and matching on a single
variable is much easier than matching on multiple variables.

More recently, methods of of causal inference based on instrumental variables are
getting popular. An instrumental variable z has the following properties:

(1) ZU = 0 (z and U are uncorrelated),
(2) zZx # 0 (z and x are correlated),
(3) 2'Qu,e)y = 0 (i.e.,z has a predictive power on Y only through x).

How is z related to Pyx or Quyx?

Assume z = cQux, where ¢ is a normalization factor. This z satisfies (1) and (2)
above. That it also satisfies (3) can be seen from:

(1/0)2'Qu,ay = X' QuQu,a)y = X' Qu,.jy = 0. (37)

Consider the regression model:
Yy = Xaz + €4. (38)

The IV estimate of xas3 is given by
xiy = Pa/p.y = Pajquy- (39)

Since P, = Qux(x'Qux) 'x'Qu and x'P, = x'Qy, this is identical to (30) and (34). This
implies that the z defined above is an ideal IV.

8 Conclusions

This paper overviewed Professor Yanai’s contributions to MV analysis. He adamantly
emphasized linear algebraic aspects of MV analysis. His framework was grad, yet easy to
understand. After almost half a century since I got to know him, I am still working within
the framework of Professor Yanai.



9 Appendix: The Matrix Rank Method used by Guttman
The following is the proof of the original WG theorem by Guttman [5]. Let

c_[ L @yBay] . [ I O
~| YB Y » YT -YB 1)

. { I —(A’YB)'A'Y } '

o I
Then,
I, O
eor-[5 21
so that
rank(C) = s + rank(Y). (40)

On the other hand, let

-4} e[ 9]

Then,
O O
con-[8 2]
so that
rank(C) = rank(Y). (41)
We obtain the WG theorem by combining (40) and (41).
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