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A STATISTICAL PROCEDURE FOR THE
LATENT PROFILE MODEL

YOSHIO TAKANE!

Department of Psychology, University of Tokyo

A maximum likelihood estimation procedure is presented for the latent profile
model when the conditional distributions of manifest variates given specific
latent classes are assumed to be normal, together with the associated tests of
the goodness of fit. By incorporating means of constraining estimated para-
meters in various ways, an important class of statistical hypotheses, constant
and equality, about the structures of latent classes can be tested. Illustrative
examples are included with the results suggesting strongly the usefulness of the

current approach.

Gibson (1959), proposing the latent pro-
file model as an extention of the latent
class model of the latent structure analysis,
discussed possible failures of the usual
(linear) factor analysis. One such- situa-
tion is when test items with wide range
of difficulties are factor-analyzed simul-
taneously. Due to the nonlinear relations
between test scores, some superfluous fac-
tors tend to appear (McDonald, 1965).
This is called a difficulty factor problem.

The latent profile model (LPM) presents
one approach to nonlinearity problems
(Anderson, 1959; McDonald, 1962); it
enforces linearity of the relations between
manifest variates and latent variates by
constraining the latter to be dichotomous.
Since 07»=0, 1»=1 and 071™=0 for n and
m being any natural numbers, and by the
orthogonality conditions of latent variates
(no observational units belong to more
than one latent class simultaneously), all
nonlinear terms of polynomials in latent
variates necessarily vanish. Thus, a poly-
nomial model always reduces to a linear
one (Takane, 1972).

1 T would like to thank Drs. Tanaka, Shiba and
Yanai for their helpful comments on earlier draft
of this paper. A request for the reprint should
be directed to Dept. of Psychology, Univ. of
Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo.

In addition to the ability of coping with
the nonlinearity which exists among data
elements LPM has a conceptual advantage
over the usual factor analysis model with
its rotational indeterminacy. LPM solu-
tions, on the other hand, are unique (or
at least locally identifiable in the sense of
McHugh, 1956) under some general re-
gularity conditions (Neyman, 1949).
Moreover, the natural interpretation of
factors (latent variates) is already em-
bedded in the structural features of the
model; i.e., they represent latent classes
from which each observational unit is
recruited.

In this paper we give a maximum likeli-
hood estimation (MLE) procedure for the
latent profile model when within-class dis-
tributions of manifest variates are assumed
to be normal. The major consequences
of the procedure are that the likelihood
ratio statistic is now available for the test
of the goodness of fit of the model and for
the test of the number of latent classes,
and that specific hypotheses about the
structures of latent classes, which can be
expressed by linear equality constraints,
can be tested. This latter case permits
confirmatory type analyses (Joreskog,
1969) with the latent profile model. Be-
sides MLE generally yields estimates of
parameters with statistically better pro-
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perties; it gives BAN (Best Asymptotically
Normal) estimates, though not necessarily
unbiased, while the existing procedures
which are applicable to the latent profile
model provides only CAN (Consistent
Asymptotically Normal) estimates (Ander-
son, 1954).

EsTIMATION PROCEDURE

We state the latent profile model as

t

Se; 6) = Zfoxi; a)ea M
where f(x;; ) is the marginal density of
x; which is an n-component vector of k£'th
observation on n manifest variates (N is
the sample size), f,(x:; 6,) is the condi-
tional density of x, given latent class a,
g. is the relative class size of latent class
a (marginal probability of latent class a),
¢t is the number of latent classes, and 6
is a vector of unknown parameters of the
form

0 = (g, 0o; a=1,..., 1)

in which @8, is the vector of latent class
parameters of class 2. We assume that

j;,(xk; -041,) = ilillﬁa(xki; 0:0) (2)

(Local Independence) where 6,=(61q,
.v» O4), and further that f;,(vu; 6.0) is
normal with mean m;, and variance s;,2
so that 0;,=(mi, $:.2). Given N sets of
observations x; the likelihood function L
can be stated as

L= i ; ' 3
= 1ftxs 0 ®)
where
Jo(%e; 64)
{i§1(1/2_“3m)}- | 2

Since we should have

Ze=lL @

we are to maximize the log of L under the
restriction (4) with respect to latent para-

meters. Consider the quantity
Q=ml-ALe-1)  ©
where

InL =k§1 In f(xe; 6) ®)

and 11is a Lagrangean multiplier. We are
to solve the zeros of the first derivatives of

Q0 with respect to unknown parameters.
We have

90Jog. = T (fulxes 02)
Sxe; 0)}—12. _ @)
Hence setting 90 [0g,=0 gives

1= 5 (fulss 0lfm; ). (®)

(Here and elsewhere we omit all ~ sym-
bols for the estimates in order to avoid
awkward notations.)

Multiplying both sides of (8) by g, we
obtain

gr = 3 (falmss 0galflmss )

“'kz {fa(xk’ a; 0a)/.f(xks 0)} b]
| P ©)

where f, (%, a; 8,) is the joint probability
density of manifest response pattern x; and
latent class a. If we sum (9) over the
latent classes (a=1, ..., f) we have

a

A= laS;‘,lg., —k 1{az=:1 Ja(xs, a5 0a)]
 fms o)]} N (10)

by noting that

agﬂ(xk, a; 6.) =f(x:; ).
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Hence by (9) and (10) we obtain

go = 3 Ui, @5 02)fs; O)N. (11

We next differentiate Q with respect to
m;, and set the derivative to zero.

5Q Jomy, = gak}::: 1 ftxe, 8))-
@falxe; Oa)ami) = 0.

Assuming g,+0 we have

(12)

2 (1ftxs 6)-
(0 fulxe; 8)omi) =0 - (12)

where

afa(xk; 0a)/amia =fa.(xk; 0a)'

(Xei—Mia) 5502 (13)

Thus, again assuming that s,,2 is finite we
have

kgl {fa(xk; oa)lf(xk; 0)} *

(%xi—mia) = 0. (14)

Solving (14) for m,, we obtain ‘
N ‘
mm4=k§1{fa(xk; 00)[f(x1; 0)} xs. (15)

Differentiating Q with respect to s;,2 we
have )

90 05s* = g0 (13 0)):

@fulxis 600D =0 (16)
where I
o O fa(Xes oa)/a_sia2 = fa(X; 0a)f
{(xes— Mo )2 5102 — 1}/2552. %))
Substituting (17) into (16) we obtain
S (a3 0If(xs; O))-
(s —mi)2si2—1} = 0. (18)

Solving this equation for s;,%, we have

S1a? = é{mxk; 8.)f(xe; 8)}-

(xki - mia)2 .

19)

Since the conditional probability of latent
class given manifest response pattern x;,
Ja(®es 0.)[f(xe; 0)=fa(a] x; 6), is 2
function of latent parameters, (11), (15)
or (19) do not give completely explicit
solutions of g,, m;, or s;,2. However, they
can be used as updating equations for the
estimates of latent parameters in the itera-
tive scheme, together with Eqs. (1) and
2y.

Similar MLE procedures have been de-
veloped for the latent class model with
dichotomous manifest variates by Good-
man (1974) and Henry (1975), and a
minimum chi-square method by de Leeuw
(1973) which gives BAN estimates as does
a maximum likelihood method.

Although the convergence characteristic
of the iterative scheme presented (which,
in numerical analysis term, may be ap-
propriately called nonlinear block Gauss-
Seidel method), has not been established
theoretically, in all cases we. have tested
it consistently maximizes the likelihood
function (3) (i.e., the value of the likeli-
hood function never goes down), provided
a good initial start is available at the time
of initiation of the iterations. Unfor-
tunately sensible initial estimates of para-
meters are important for our iterative pro-
cedure to work reliably. We use Mooi-
jaart’s (1973) procedure as an initialization
procedure to our algorithm. His proce-
dure is an extention of Lazarsfeld-Ander-
son (Lazarsfeld & Henry, 1968; Anderson,
1954) type procedures which, unlike
Green’s (1951) procedure, avoids ad hoc
estimations of unobservable quantities by
splitting manifest variates into non-over-
lapping subsets, and by considering only
the moments of variables belonging to dif-
ferent subsets. The difficulty with these
procedures, however, is that they use only
partial information pertaining to the data,
and consequently at an unnegligible rate,
result in unfeasible solutions. It is re-
ported that Mooijaart’s procedure, by the
use of Moore-Penrose inverse, substantially
reduces the probability of improper solu-
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tions. Nonetheless, Mooijaart estimators
are only CAN, giving a justification to
develop an MLE procedure in the present
study.

StaTisticar. HypoTuEsis
TESTING

A Goodness of Fit Test

A reasonable test statistic for the good-
ness of fit of the model can be derived
based on Neyman-Pearson’s general meth-
od of a likelihood ratio. Define

A = Lw,)/ L{w,)

where L(w) is the likelihood of the model
o whose parameters are estimated by an
MLE method and where the model o, is

subsumed under the model w,. It has
been shown (Wilks, 1962) that

2= —2In 2= —2{In L(w,)
—In L{w,)} (20)

is distributed asymptotically chi-square
with degrees of freedom being the dif-
ference in degrees of freedom between the
two models (The degrees of freedom of a
model is the number of observations (N n)
minus- the number of independently esti-
mated parameters), and provides a con-
sistent and the most powerful test of the
goodness of fit among consistent tests of
the same hypothesis. We have

lim Pr (2> y2(a)| Xe 0,) = a.
g—oo

Two most important applications of the
above general result are a test of the
number of latent classes and tests of spe-
cific hypotheses on parameters to which
we now turn.

A Test of the Number of Latent Classes

For the determination of the number of
significant latent classes we can rely on
essentially the same idea as discussed
above. In this case we compare the like-
lihood of a model with ¢ latent classes
against that of the model with ¢+ 1 classes.

Again the negative two times the log like-
lihood ratio is distributed asymptotically
chi-square, this time with 2n+1 df. If
it is significant the added class has sig-
nificantly improved the goodness of fit
and the number of latent classes is at least
t+1. We continue the comparison until
no additional class contributes to the good-
ness of fit significantly. ‘

Tests of Specific Hypotheses on Parameters

At the final stages of a research we may
have more or less specific hypotheses about
the parameters being estimated. Note
that statistical hypotheses are restrictions
on a model. In the next section we dis-
cuss ways of incorporating such constraints
into the iterative scheme presented earlier.
A statistical test of specific hypotheses con-
sists, again, of the comparison of the
likelihoods of two models, one with the
restrictions and the other without the
restrictions. Then the y? defined in (20)
is asymptotically chi-square with df equal
to the difference between the degrees of
freedom of the two models, which is the
reduction in the number of free parameters
as a consequence of imposed constraints.

OTHER INGREDIENTS OF THE
MLE PROCEDURE

Constraints

We discuss ways to incorporate two
types of constraints currently availabe in
the program, MAXLPM, which has been
written along the line presented in this
paper. One is fixed value constraints and
the other equality constraints.

The fixed value constraints prescribe
certain parameters to fixed values. It is
easy enough to implement this type of
restrictions in the present iterative scheme,
except perhaps the restrictions on class
sizes which are already constrained to
add up to unity so that the additional
constraints may interact with the previous
one. However, it can be shown that the
fixed constraints on class sizes can be
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resolved in the same way as those on con-
ditional expectations and variances. In
any case we just skip the updating phase
of the parameters whose values are fixed
to constants throughout iterations.

Equality constraints are those which
specify subsets of parameters whose esti-
mates supposedly take equal but non-
prespecified values. Currently equality
constraints can be imposed within the same
types of latent parameters. That is, equa-
lity constraints such as my,=s;,2=g. are
not permissible.

For illustrative purposes, assume ;=
mye. Then we have the derivative of Q
(Q defined in (5) with m,, replaced by
m;,) with respect to m;,:

90 fomea = (1f(x3 0)-

[ga(afa(xk; 0.)/om;,)
+ 208 for(Xx; Bar)/0mia)] .

Hence,

N
Mya® = [(ga/smz) kglxmfa(xk; 8)/
f(xk, 0)+ (ga'/st'a’z) *
N
S fulmes 0)fems o)

-N(ga/sia,z‘l'gu.’/s('a'z)
= (mia(u)galsta2+mt'a' (")ga'/5¢'a'2)/
(ga,/sta.z'l'ga'/st’a'z) . (21)

where m;,© and m;,® are constrained and
unconstrained estimates of m;,. Similarly
we have, for constraints, $;a®=Sye* and
Lo 8ars .
sia(c)2 p— (gasta(u)z+ga’st'a,’(u)2)/

(ga+ ga’) (22)

‘where 5;,®2 and sy, 2 are constrained
and unconstrained estimates of 5,.2, and

2. = (ga® + g ™)[2. (23)

You will note that in any case constrained
estimates are weighted or unweighted
averages of corresponding unconstrained
estimates.

Among other types of constraints which
are interesting in terms of empirical re-
levance, but yet unavailable in the current
version of MAXLPM is

Siq = CiaMiq

for some constant ¢;,, where we may fur-
ther constrain

o = ¢ for all i and q,

¢, for allra,

Cia
Ciq = Cq for all i

This is essentially equivalent to Weber’s
law in psychophysics. It is our ultimate
hope, however, that the general linear
equality and inequality constraints of the
form K@ 3> ¢ be incorporated in the estima-
tion procedure.

Some Acceleration Techniques

The MLE procedure described in this
paper may sometimes be slow in con-
vergence, particularly when the numbers
of observation units and of manifest vari-
ates are very large. Here we suggest
possible acceleration techniques for more
rapid convergence.

A particularly relevant technique for
the type of fixed point iteration ‘method
as the one employed in MAXLPM, the
introduction - of -a relaxation - parameter
may significantly cut down the number of
iterations required of convergence (Ortega
& Rheinbolt, 1970; Ramsay, 1975). For
some relaxation parameter o the updating
equation can be written

0(k+1) o w(lc)a(k) +(1 _w(lc))G(o (k))

where G(#%) is the updating equation of
@ before the relaxation parameter is in-
troduced, and the parenthesized subscripts
on # and w indicate iteration numbers.
The w must be strictly less than 1. If G
is a linear function, an optimal relaxation
parameter can be analytically solvable.
However in nonlinear case only approxi-
mate updating scheme for adjustable w®
has been given. The effectiveness of the
relaxation parameter, however, has been
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confirmed elsewhere by the present author
in the alternating least squares iterations
for estimating an additive constant in
metric multidimensional scaling.

Ariother possibility is to use the higher
order information. Newton-Raphson
method at least reduces the number of
iterations needed for convergence, though
it takes more time per iteration since extra
computation is required to evaluate the
second order derivatives. However, a
fewer iterations may well make up for the
additional time required per iteration and
still leave some surplus, since the calucula-
tion of f,(a|x;; ) and taking various
means with f,(a|x; 8) as weights are the
main computational load. It is suggested
that Newton-Raphson method be applied
separately for the estimations of class sizes,
conditional expectations and variances in
order to avoid the large order Hessian
matrix which is to be inverted. An im-
portant by-product of using the second
order method is that the negative of the
inverse of the Hessian evaluated at the
convergence point is proportional to the
variance-covariance estimates of the esti-
mated parameters.

Although MAXLPM does not use the
Newton-Raphson method, we give the
expressions of the second order derivatives
which can be evaluated at the optimal
point, then inverted and finally multiplied
by #2/df to obtain the variance-covariance
estimates,

We give only the general expressions.

dln L6, = ﬁl(a In f(x,; 6/36;) (24)

N
22In L[36,00, = gl(azlnf(xk; 0)/

00,06,) (25)
91n f(x; 6)/30, = (1/f(x; 0))-
(0f(xe; 6)]06,) (26)

3*1n f(xi; 6)/06,00, = (1/f(x; 6)):
(02 (x5 6)/36:004)—(1/f(xe; 6))*
(@f(xe; 6)[06.)(f(xe; 6)[364) (27)

. the data were generated);

. For the specific results we refer to Takane

(1976).

REesurLts AND DiscussioN

In this section some empirical evidence
as to the feasibility of the procedure will
be presented. The first example is arti-
ficial in which an arbitrary set of * true’
latent parameters are hypothesized and
observations are generated according to
the structural model of the hypothesized
latent classes. Assumed latent parameters
are given in Column (A) of Table 1. This
case is error free in terms of the structural
model (i.e., no error was added when
there is, of
course, some sampling error, since the
sample size is finite (N¥=100). With the
artificial data we have prior knowledge
as to which latent class each observation
unit is recruited from, so that we can
calculate estimates of latent parameters
based on the class assignment of the ob-
servations (which, of course, is unknown
in practice). The estimates are given in
Column (B) of Table 1 along with the
standard errors of the estimates. The
corresponding MAXLPM results are listed
in the third column of Table 1 in the same
format as in the second column. The con-
vergence is obtained in 13 iterations for
the stopping criterion being that the rela-
tive improvement in the log likelihood be
less than 1.0 X 1078 starting from the initial
estimates (Column (D)) obtained by
Mooijaart’s procedure.

The next result is with the same data,
but the solutions are obtained under sev-
eral external constraints; m,; and m,, are
fixed to .9, m,;, and m,, are set equal, and
within-class dispersions are also set equal
across latent classes. The estimates under
these restrictions are given in Column (E)
of Table 1. The difference in the fit be-
tween the constrained- and unconstrained
cases is chi-square 44.782 with 8 degrees
of freedom, which is significant. Thus,
the constrained latent structure is not
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TasLE 1
Hypothesxzed latent parameters and their estimates in the ﬁrst example
Size
(A) (B) (G (D) - (E)
Class 1 .600 .590 (.049) 649 (.085) .535 . .658
mean vari. mean vari. mean vari. .| mean vari. mean vari.
Manifest
variates o
1 .900  .090 | .896 .082 | .878 .075 | 910 .112 | .900% 108
(.038)  (.015) | (.063)  (.014) ’ '
2 .200 .160 151 .173 .212 .208 440 .265 .220 .163
. : (.055)  (.032) | (.061)  (.039)
'3 .800 .160 .807 .135 845 131 .626 .261 .825 171
- (.049)  (.025) | (.048)  (.025)
4 .400 .240 442 .186 .437 176 .370 -,.207 .592# .207
(.057) © (.035) | (.054)  (.032)
5 .900 .090 .936 .085° .938 .061 1.070 .021 .952 .089
(.039)  (.016) | (.033)  (.012)
' Class 11 400 .410 (.049) 351 (.085) |  .465 |  .342
Manifest - » ’
variates ‘
1 700 0 .210 | 743 139 | 749 169 | 744 112 | .737  .108
(.059)  (.081) | (.078)  (.042) |
2 ’ .900 - .090 877 -+ 087 | .888 073 |- .459 .265 .900# .163
(.039). . (.019),| (.050)  (,020) | .
3 S .400 .240 .302 207 | .168 206 { .586 .261 .189 171
.| (.087) (.067) | (.082) (.052) .
4 .800 .160 .808 .158 .879 .138 .847 .207 .592# .207
: (.063) (. 035) (.069)  (.05) :
5 .500 .250 .390 .188 | .294¢ .185 .316 .021 .250 .089
. (.068)  (.042) | (.080)  (.050) :

 (A) Hypothesized latent parameters

(B) Estimated latent class parameters based on the prior knowledge of class ass1gnmcnt

(C) Unconstrained estimates of latent parameters from MAXLPM

(D) Initial estimates of latent parameters by Mooijaart’s procedure

(E) Constrained estimates of latent parameters from MAXLPM

Standard errors of estimates in parantheses. ‘The # indicates that the parameters are either fixed or
equated (All within-class variances are equated across classes, but not indicated in the table).

acceptable against the unconstrained struc-
ture, and the specific hypothesis implied in
the constraints should be rejected on the
statistical ground. The convergence is
obtained in six iterations starting from the
unconstrained estimates.

“The next example is also hypothetical
and has been adapted from Example III
from Gibson (1959). He illustrates how
a ridiculous interpretation may be . led
from the factor analysis result of these

data. Hypothesized structure is given in
Fig. 1. For illustrative purposes let us
suppose that the manifest variates in this
example measure some kind of ability of
subjects. Suppose further that they all
measure the same ability and that higher
scores mean more able. We have three
latent classes, one with low ability (Class
I), another with middle ability (Class II)
and a third with high ability- (Class III).
Manifest variates 1 and 2 discriminate
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TABLE 2 .
Estimates of latent parameters in the second example: Three-class solution
Latent class
Manifest
variates ! 2 3
mean vari, mean vari. mean vari.
1 —3.163 '1.029 1.027 1.003 0.997 0.923
2 —2.946 0.962 0.983 1.008 1.169 0.973
3 —2.871 1.171 —0.066 1.085 3.016 1.017
4 —2.472 1.206 —0.030 1.068 2.467 0.930
5 —1.928 0.892 —0.075 1.000 1.876 +0.942
6 —1.471 0.956 0.200 1.010 1.389 1.150
7 —0.961 1.058 0.017 0.097 0.715 1.070
8 —0.791 0.958 —0.907 0.946 2.917 0.913
9 —0.904 1,000 —0.926 0.958 2.837 1,023
Class size .250 .530 .220
Class I from the other two classes, but in 7). Within-class variances are assumed

does not differentiate between Class II
and Class ITI, whereas manifest variates 8
and 9 discriminate Class ITI from other
classes but does not differentiate between
Class T and Class II.  Other variates have
equal discriminating power over the entire
range of population, there are distinct dif-
ferences in the over all discriminating
power among variates (high in 3 and low

Values of the within—class means of
manifest variates

3
2
1
7 Latent
Class I classes
ClassIll
(8,9)
_1_
6
5 =21
4 3
_3 L
(1,2} ¢
Class1I
Fic. 1. Hypothesized ¢true’ structure in the

second example.
Class sizes are .25, .50 and .25, respectively.

to be umity for all variates. Note that
variates 1, 2, 8 and 9 are nonlinearly
related to latent classes in reference to
other variates (there is no necessity for the
classes to be equally spaced, but even if
we can space them off so that these variates
are linearly related to latent classes, then
other variates will no longer be related
linearly to the classes).

A typical factor analysis of these data
obtains two relatively independent factors
which represent high and low portions of
the same ability, which intuitively violates
the assumption that the manifest variates
measure one ability. The enforcement of
linearity leads to a conclusion that high
and low portions of an ability are two d1f-
ferent abilities.

A set of observations are generated ac-
cording to the hypothesized structure and
then submitted to MAXLPM. When the
data are generated a small random error
(about 1/10 of the within-class standard
deviation in magnitude) is added to each
observation. The three class solution
from MAXLPM is given in Table 2. The
result clearly indicates the adequacy of the
latent profile model for the type of hidden

underlying structure hypothesized as well
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as the feasiblity of the estimation procedure
in the presence of random error perturba-
tions. The same set of data has been
analyzed under the different hypothesis
about the number of latent classes. The
two-class solution indicates that the dif-
ference in the chi-square statistic from the
three-class solution is 297.250 with 19 df
which is significant at 19} level. Thus,
the addition of the third class has improved
the goodness of fit significantly and the
number of latent classes is at least three.
An attempt has been made to make the
same type of comparison between three-
and four-class solutions. However, Mooi-
jaart’s procedure has failed to obtain any
feasible initial estimates. Apparently four
- latent classes are an overestimation.

In this paper it has been demonstrated,
through these admittedly small Monte
Carlo experiments, that our estimation
procedure works reasonably well even in
the presence of structural errors of certain
degrees as well as in the presence of sam-
pling errors. Associated goodness of fit
under the various restrictions provide use-
ful information pertaining to the covaria-
tion structures among manifest variates,
particularly when the covariation is non-
linear.
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