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ON THE RELATIONS AMONG FOUR METHODS
OF MULTIDIMENSIONAL SCALING

Yoshio Takane*

Some intrigning relationships among four methods of metric and nonmetric
multidimensional scaling (MDS) are explicated. It is shown that all four methods
of MDS considered here amount to solving, explicitly or implicitly, the stationary point
of a matrix which can be generally represented as 4’HA, where 4 is a difference matrix
(to be defined), and where H depends on a particular criterion being optimized. H
may be a matrix of fixed constants or of functions of unknown parameters (stimulus
coordinates) of the representation model. A conceptual distinction is made as to the
scale level of measurement in reference to MDS methods and solutions.

1. Introduction

Okamoto and Toda (1973) compared two methods of multidimensional scaling
(MDS) in terms of their performance. The two methods discussed are Hayashi’s
quantification method IV (Hayashi, 1952) and Torgerson-Gower type (Torgerson, 1952;
Gower, 1966) principal coordinates method of MDS, which may be more appropriately
ascribed to Young and Householder (1988). (For simplicity and for the purpose of avoid-
ing the unnecessary confusion, however, the former will be referred to as Q4 and the
latter as the T-G method.) In this paper we explicate some interesting relationships
among four methods of multidimensional scaling. It is deemed to shed a further
light on the characterizations of the two methods, 04 and the T-G method, in a more
general perspective by clarifying certain aspects of formal structures of solutions. It
is interesting to note that the two methods have been used as initialization procedures
(to obtain a good initial start) in two representative methods of nonmetric MDS, Q4
in SSA (Smallest Space Analysis: Guttman, 1968) and the T-G method in TORSCA
(Young, 1968) and in KYST (Kruskal, Young & Seery, 1973), which is a merger of
TORSCA and MDSCAL (Kruskal, 1964a, 1964b).

2. Representations of solutions

The problem we face with MDS in general can be stated as follows. Given a set
of empirical dissimilarities (or similarities) between pairs of stimuli assumed to be
measured at a certain scale level, we are to find a configuration of points in a space
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whose mutual distances, in some sense, best represent the observed dissimilarities.)
Three conditions must be prescribed; one is the assumed scale level of measurement of
observed dissimilarities, another is the specific form of a distance function to be
employed, and the third is the exact statement of the optimality of representations.

The first point relates to what empirical relations we may legitimately use in deriv-
ing the spatial representation, and to how we concepualize the nature of errors. The
point will be more fully discussed in Section 3 of this paper, since it plays a crucial role
in the metric and nonmetric distinction of MDS methods. Throughout Section 2 we
assume that the observed dissimilarities are fixed constants, an assumption which is
usually made in the metric MDS. :

We will not be concerned with the form of distance functions in any general
perspective. We simply assume the Euclidean distance model,

d.gj = aél (xs'a'—xja)z (1)

where d;; is the distance between stimuli 7 and j, x;, is the coordinate of stimulus %
on dimension a, and ¢ is the dimensionality of the space. The Euclidean distance is
the only metric to which all of the methods to be considered in this paper can apply.
We further assume that £ is given.

In the remaining of this section we will elaborate the third point in more detail,
which amounts to how we measure the goodness of representations, and how we attain
the optimality. Specifically we attempt to characterize four methods of MDS in terms
of 1) optimization criteria and 2) formal structures of solutions. The methods to be
discussed are Hayashi’s Q4, the T-G method for scalar product optimization, Guttman’s
C-matrix method for distance optimization, and de Leeuw’s successive refactoring
method for squared distance optimization. We note that a distance optimization
method has been originated by Kruskal’s NDSCAL, and that a squared distance
optimization method has been implemented by ALSCAL (Takane, Young & de Leeuw,
1977).

2.1 Symbolism

The following symbols will be used in the following discussion.
e or ¢;: observed similarity (between stimuli 7 and j)

ooro;;: observed dissimilarity (between stimuli < and §)

dor d;;: distance (between stimuli < and §)

#: the number of stimuli

E: annXn matrix whose (4, 7) element is ¢;;

0: an nXn matrix whose (7, 7) element is 0;1

D: annXn matrix whose (3, §) element is 4;;

O0®:  an nXn matrix whose (%, 7) element is 0% i

1) The MDS, in its broader sense, only presupposes multiplicity of representations.
However, we use the term in a narrower sense; i.e., a method which involves distance
models of some form for the representation of dissimilarity data.



FOUR METHODS OF MULTIDIMENSIONAL SCALING 31

D®:  an nXn matrix whose (3, j) element is d};

n*: n*=n(n-1)/2

D,: a diagonal matrix of order n* whose diagonal elements are, say, s;;’s arranged
in a prescribed order (e.g., Sy Sis» ***» Sim Sagr ' s Sams * 7 s S(s-1ya)e  Sij MAY

be —e;;, 045, 0%;, df; or 0;j[d;;. We assume that observations are symmetric;
ie., Cii==Cj; and 04§==0;.

A: an n*Xn difference matrix which takes pairwise differences of stimulus
coordinates. For n=4, A looks like:

"1 -1 0 0-
1 0 -0 0
1 0 0 -1
o o0 -1 0
0 1 ~1
0 0 1 -1

J: a centering operator matrix of order » (Takeuchi & Yanai, 1972). Let p,;
be the (7, j) element of J, then p;;=38;~1/n where 3;; is a Kronecker delta.
Note that '

Al, =0,, 2)

where 1, is an #-component vector whose elements are all unity and 0,, an #*-
component zero vector, and that

A'A =n]. | @)

X: an#nX¢matrix of stimulus coordinates whose (¢, a) element is x;,. We assume,
without loss of generality, that

JX=X. @
which implies that X is columnwise centered.
diag(S): a diagonal matrix whose diagonal elements are those of S for any square
matrix S. '
off(S): off(S)=S-diag(S).
2.2 Quantification method IV (Q4)

The Q4 maximizes
8, — % tr(—ED®) = tr(X'A'D_,AX) (5)

under the ortho-normalization restriction that X'X=1.2 Tt follows immediately
that the above optimality condition leads to a stationary equation which amounts to

2) The normalization restriction is not included in Hayashi’s original formulation (Hayashi,
1952). The XQ for any positive diagonal matrix Q is legitimate as a solution.. However,
the solution derived under the restriction in the text is the only case in which distances
can be defined in the usual way (i.e., by (1) ). It is conventional to use Q=418 where 4 is
a diagonal matrix of # dominant eigenvalues of matrix G in (6).
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solving (normalized) eigenvectors®) corresponding to ¢ dominant eigenvalues of a
certain matrix. This matrix can be written, using the above notation, as

G=AD_A. 6)

It can be readily seen from this representation of G that it is positive semidefinite if all
—¢;; are nonnegative?), and that the solution X remains invariant over positive affine
transformations of —;;%. For the later comparison it is convenient to represent G yet
in another form: '

G = A’ [ ding (——;—A(—E)A’)] 4. ™)

2.3 Torgerson-Gower type scalar product optimization method (the T-G method)
Define
0, =tr(P—XX")? ®
where

1
~ -4 Jo®J. ©)

The matematical operation expressed by (9) is often called the Young-Householder
transformation.® It is well known that the minimum of (8) is attained by

X =Udpi (10)

where 4, is the diagonal matrix of ¢ dominant eigenvalues of P, and U, is the matrix
of corresponding (normalized) eigenvectors. To make X defined in (10) the unique
solution the restriction that X'X=4, has been imposed. It is also tacitly assumed
that at least ¢{ dominant eigenvalues are nonnegative?, and that they are all distinct
(and f#'th eigenvalue is distinct from #+1'st). Obviously the solution remains

3) Still some indeterminacy exists in the solution. Any orthogonal transforms of the matrix
of eigenvalues are also solutions.

4) This property has been noted and proved by Okamoto and Toda (1973). Non-negative
definiteness of G can be easily verified by noting that G=A'D_ABD_a24=B’B where B=
D_j4. The decomposition D_,=D_2/*D_,2/* is justified by the non-negativity of all —;;.
Positive definiteness follows immediately from (3).

5) A formal proof of this property has been given in Saito, Ogawa and Nojima (1972).
In reference to the representation of G matrix in (6), however, it can be more easily shown
that

G* = A’Dy(- )44
for some constants b and ¢ has an identical set of eigenvectors to those of G (Eigenvalues may
well be different). The G* can be expanded as :
G* = bA’D_,A+cA’A = bG+ncf .

Now the J has #—1 unit eigenvalues and a single zero eigenvalues. Eigenvectors cor-
responding to the #—1 unit eigenvalues cannot be uniquely determined, but an arbitrary
set of »—1 orthogonal eigenvectors can be constructed in the subspace of dimensionality
n—1 (orthogonal to the subspace of dimensionality 1 spanned by the #-component constant
vector which is an eigenvector of G* corresponding to the zero eigenvalue), and they can be
made identical to the »— 1 nonconstant eigenvectors of G corresponding to the #—1 nonzero
eigenvalues. Since G also has a constant eigenvector corresponding to the zero eigenvalue,

all of the » eigenvectors of G* and G should agree with each other, establishing the desired
result. i
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essentially invariant (i.e., invariant except for the change in the overall size of the
configuration) over positive similarity transformations of observed dissimilarities.
However, the solution is generally not affine invariant. It is noted that a monotone
invariant procedure (called INDISCAL: de Leeuw, Takane & Young, in preparation)
has been developed within the scalar product optimization framework.

By noting (3) P can be restated as

P =4[~ 4004 4p

1
—A'|D,. —AO0®@4’ 2
A [Do +off( o Aowa )]A/n ) (11)
which may render more direct comparisons with other methods.

2.4 C-matrix method for distance optimization

Curiously a distance optimization method has been originated as a nonmetric
procedure (Kruskal, 1964a, 1964b). It is because the T-G method is vastly superior
when the observed dissimilarities are measured up to a ratio scale. Nonetheless Kruskal
type iterative procedure can be applied, at least theoretically, to metric data as well.

Let
03 = tr(0—D)2. (12)

The soft-squeeze®) phase of Guttman’s SSA (Guttman, 1968) also optimizes 8 under an
appropriate normalization restriction on X. This leads to a stationary equation of
the form

X = —)—l\—C(X)X/n (13)

6) It has been proved by Young and Householder (1938) that D% is transformed into XX’ by
(9) in an exact sense. This can be readily seen by noting that D®) can be expanded as

DW= x4 - 2X X' 41,253V
where x?) is an n-component vector whose i’'th element is the sum of squares of coordinates

t
of stimulus ¢ across dimensions, namely foa. We apply J1,=0, and Eq. (4) to obtain
a=1

the desired result.

7) In case not all { dominant eigenvalues are non-negative, the LS estimate of X in the sense
of (8) is given by replacing negative eigenvalues in 4; by zero (de Leeuw, 1974).

8) The fact that the soft-squeeze phase is suffifficient to optimize (12) has been overlooked by
Guttman (1968) and his collaborators (Lingoes & Roskam, 1973). This is partly because
the gradient (of 8, with respect to X) does not vanish at the stationary point of X in (15),
since in nonmetric procedures observations are not fixed constants but may be monotonically
transformed, so that 6, can always be made smaller by shrinking the size of X while X is
normalized in each iteration. A further complication is introduced by the use of non-
optimal monotonic transformation of data called the rank-image, which often .causes
fluctuation of 8, in the process of iterations. This observation has tempted Guttman to
propose a supplementary process (called the hard-squeeze phase) for more rigorous
optimization. However, it has turned out that the hard-squeeze procedure still suffers from
the use of the rank-image transformation; either the gradient is only approximate (one-
step procedure) or the monotonic transformation is non-optimal (two-step procedure).
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where A is the normalization factor, and where
C(X) = A4'D,34 , (14)

assuming that d,,==0 for ¢+;.%) Equation (13) is, of course, not a completely explicit
form of the solution for X. Rather, it is used as an updating equation for successive
approximations of X. When this fact is taken into account, it is written as

1
X k1) = — C(X M) X By (15)
where the parenthesized superscript indicates the iteration number. If the normaliza-
tion restriction on X is such that

ty(X(h+1)'X(k+1)) =1,
then A® is given by
A®) = tr(X ¢V C(X B)2X ()72,

The iterative scheme (15) is called Guttman’s C-matrix method, which has been
shown to be a special case of Kruskal’s steepest descent algorithm (Gleason, 1967).
Note that C(X) is a function of unknown parameter X, and consequently should be
updated for the new estimate of X. Otherwise Eq. (15) constitutes a power-method-
like iterative procedure. If X* is a fixed point of (15), then obviously its column
vectors, when appropriately rotated, should correspond to some (denormalized) eigen-
vectors of (1/A*)C(X*)/n. However, those eigenvectors do not necessarily correspond
to the ¢ dominant eigenvalues, nor are the dimensionwise variances of X* (diagonal
elements of X* X* assuming that X* is already rotated to principal axes orientation;
ie., X* X* itself is diagonal) proportional to the magnitudes of eigenvalues associated
with the eigenvectors which correspond to the solution, which should all be equal since
we have a-C(X)=X for some constant @. (Some numerical results regarding this fact
will be presented in the discussion section.)

The convergence characteristic of (15) has always been observed (Lingoes &
Roskam, 1973). The formal proof of the monotone convergence property of the matrix
method has been established by de Leeuw (1976) based on the convexity property
of distance functions.

An interesting fact exploited by de Leeuw in the convergence proof of the C-matrix
method is that the minimization of 8; over all (centered) X is equivalent to the
maximization of

6; — —;—tr(OD) — 1 X'C(X)X) (16)

over all (centered) X such that (1/2)rD2=n tr(X'X)=n (or any arbitrary constant, for
that matter). The apparent similarity of 6; to 8, defined in (5) may been seen if we

9) All gradient type methods within the distance optimization framework (e.g., MDSCAL, SSA)
tacitly assume this. Otherwise the gradient is not properly defined (The d;; appears in
the denominator of the gradient). The point relates to the identifiability property of the
MDS methods discussed by Okamoto and Toda (1973). Thus, algorithmically the gradient
type methods do not possess the identifiability property. However, it has been shown by
de Leeuw (1976) that defining o;;/d;;=0 for which 4;;=0 (i%j) is the rational treatment
consistent with the monotone convergence property of the C-matrix method.
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put O=-E and replace D by D® in (16). However, for the maximization of 6, to be
equivalent to the minimization #(~-E-D®)2, a least squares (LS) criterion obtained by
replacing O by ~E and D by D® in 8,, the associated normalization restriction must
be fr D®?2=n, which is clearly different from the normalization restriction adopted in
Q4. Unfortunately the optimization of 8, with this new restriction is unwieldy. The
Q4 does not seem to bear any simple relationship to any LS methods considered in
this paper. (However, the optimization method for r(OB-D@)2 will be discussed in
the next section, which is equivalent to #(-E-D®)2 if we put 0®=-F).

Finally, it is noted that a convergent algorithm can be readily constructed within
the distance optimization framework (SMACOF: de Leeuw, 1976) by combining the
C-matrix method and Kruskal’s LS monotonic transformation of observed dissimilarities.

2.5 Successive refactoring method for squared distance optimization (S-R method)

A squared distance optimization principle has been found particularly useful in
the nonmetric extention (ALSCAL: Takane, Young & de Leeuw, 1976) to the individual
differences model (Carroll & Chang, 1970) in MDS. ALSCAL can of course be applied
to metric data and to the simple (unweighted) Euclidean distance model as well.
However, for the present purpose (of comparing the formal structures of various solu-
tions of MDS methods) a particularly interesting procedure is de Leeuw’s (1975a)
ELEGANT algorithm, which is also based on the alternating least squares (ALS)
methodology (Young, de Leeuw & Takane, 1976) as is ALSCAL, and which optimizes
the same LS criterion (defined on the squared distances) that ALSCAL optimizes,

Let
' 0, =tr(0®—DEN2, (17)

We are to minimize 8, with respect to X under an identification restriction that X’X =
4 (a diagonal matrix), which amounts to solving a stationary equation of the form:

A’ [{Dos—diag (AXX'A")}n*] AX =0. (18)
Equation (18) may be solved iteratively. Let

B(X) = A’ [Dos+off (AXX'A")] A[n2, (19)
then

BX)X =X4. (20)

If the X in B(X) is held constant (which can be legitimately done in the ALS
framework), Eq. (20) states an eigen equation with 4 being a diagonal matrix of ¢
dominant eigenvalues of B(X). We may use the estimate of X from the previous
iteration, say &’th, which is denoted as X®), to define B(X®n0, then X®&+1) can be
obtained by the eigenvalue-vector decomposition of B(X ®). 8, is ultimately optimized
by successive refactorings of B(X) which is redfined in each iteration for the new X.

10) B(X'®) should be kept constant until X+ converges completely (if Clint and Jenn-
ings type simultaneous power method is used), which ensures the LS estimate of X for fixed
B. The stationary equation is B(X®))Xk+1)= X (*+1)4(h+1) when the iteration namber is
explicitly indicated, and not B(X¥#N)X®*) =X ®#+1) a5 in the C-matrix method.
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Let
H® = D,o4off (AXPXE'A"),
then

_;-9([“) =t(H®O—AX *+1DX R1)4")2

= tr(H®M2) 2ty Jh+12

We see that the minimum of §,(*+1) is attained by the set of eigenvectors corresponding
to the ¢ dominant eigenvalues of B(X®), We have

X (+1) X (R+1) == A(R+1)

In computation it is more convenient to use
B(X) = A'(Dos—Djs)An2+ XX’

where D,s=diag(4XX'4’).
Again, the extention to nonmetric data is straightforward using Kruskal’s LS
monotonic transformation.

2.6 Discussion

It has been shown that in all cases we have discussed solutions are given as
stationary points of matrices which can be generally represented as A'HA. The
specific forms of H depend on the particular optimization criteria being optimized, and
are summarized in Table 1. Elements of H are fixed constants in Q4 and in the T-G
method for scalar product optimization, while they are functions of unknown
parameters (hence written as H(X) in the table) in the C-matrix method for distance
optimization and in S-R method for squared distance optimization. This difference in
the formation of H matrices makes the first major distinction of the solutions. If H is
a matrix of fixed constants, the solution is analytic (at least in principle} and is exact,
otherwise it is iterative and only approximate.

Table 1
Comparisons of H matrices in the four methods of MDS
Name Criterion Representation of matrix H
04 MAX tr(0DW) H=D_, = diag (- %A(—E) A’) =D,

' —_ 4 — l ’ ’, 2 — —_ l (’) ’ ]
T-G method MIN #(P—XX')s H=— 3 A0WA'/nt = [D°-+oﬁ( A0 )]/n
C-matrix method | MIN #(0—D)s H(X) = Dyq
S-R method MIN #(0®—D®)r | H(X) = [D,s+off(AXX’'A’)]/n®

In Table 1 we find an interesting status of Q4 in reference to the other three
methods based on some LS criteria; Q4 can be regarded as an approximate method in
two different ways.

First, let 02=—e, and ignore all off-diagonal elements of H in the T-G and S-R
methods, then they both reduce to a form essentially equivalent to Q4 except for a
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multiplicative constant. Tt is difficult, however, if not totally impossible, to predict
what extraneous effects this reduction (of zeroing all off-diagonals) may have on the
solution of MDS.11)

Second, let 0=—¢ and assume that all d;i's are constant in the C-matrix method,
then H(X) for the C-matrix method reduces to a matrix of fixed constants, and

C(X)=Coc AD'"_ A

which is equivalent to G in Q4 (Eq. (6)). Guttman (1968) proposed to use this
approximate C-matrix method for obtaining an initial estimate of stimulus configura-
tion in SSA. His intuitive rationale for the procedure is as follows. Suppose #
stimuli are arranged in such a way that they are equi-distant from each other. This
would be the case if no information whatsoever is available as to their mutual distances.
How should one then modify the equi-distant configuration (which in itself is not
informative at all) in light of the information regarding dissimilarities between stimuli ?
One defines the C-matrix with available information, observed dissimilarities and equi-
distances, and obtains the approximate C-matrix method. The —¢4; may be converted
into an initial distance rank number as in MINISSA (Lingoes & Roskam, 1973).
Guttman refers this initialization procedure to his paper published in the middle of
1940’s (Guttman, 1946). However, it does not seem to be too obvious, at least to the
present author, where in the paper the method is specifically referred to.

Another remarkable property of Q4 can be revealed by looking at it as an
approximate C-matrix method. Okamoto and Toda (1973) compared the speed of
decrease in the magnitudes of eigenvalues of G and P matrices. They consistently
observed that the decrease is more rapid with P than with G, which implies that for
fixed dimensionality the solution X obtained by the spectral decomposition of P
contains more information pertaining to P than the solution X obtained from G
contains information pertaining to G. Indeed, in case of the T-G method a rapid
decrease in the size of eigenvalues of P is a desirable property of solutions since it is
explicitly intended to be so; the optimization criterion for T-G method can be rewritten
as

0, =trd:_,
where 4,_, is a diagonal matrix of #-¢ non-dominant eigenvalues of P, and hence the
minimization of , is equivalent to putting #~¢ non-dominant eigenvalues as close to zero
as possible. However, in case of Q4 regarded as an approximate C-matrix method,
just the opposite is true. Suppose 0;5=d;; for all 7 and j (the case of perfect fit), then
the C-matrix reduces to

_ CX)=mn].
It is well known that J has #-1 eigenvalues of size unity and one zero eigenvalue. Thus
eigenvalues of the C-matrix in this limiting situation are completely levelled (except

11) On the contrary, the difference between solutions: of the T-G and S-R methods are very
subtle. In the former off-diagonal elements of H are derived from observations, whereas in
latter they are functions of distances (which presuppose that the stimulus coordinates are
already known). It can be shown, however, that when O0%)=D®) H matrices in the two
methods become identical and that 6,=9¢,.
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of course for one zero eignevalue). Therefore we conjecture that the more homogeneous
are the diagonal elements of D,;; (which is what happens when the fit is improved in the
sense of 8,), the more levelled are the eigenvalues of the C-matrix.

In Table 2 we present lists of eigenvalues of several matrices. The first three
columns have been extracted from Okamoto and Toda (1973), who analyzed three sets
of similarity measures derived from the same set of similarity data concerning 22 food
textures by Q4. The three sets of measures are monotonically related with each other.
Eigenvalues listed in the fourth column are obtained by Q4 using rank numbers of
similarities (obtained by ranking similarities, which is still another monotonic tran-
sformation of the original similarities) as input data. They correspond to the
eigenvalues of the initial matrix in MINISSA. In columns 5 and 6 two sets of
eigenvalues of the C-matrices at the convergence points of SMACOF (a nonmetric
procedure combining features of the C-matrix method and of Kruskal’s LS monotonic
transformations of observed dissimilarities to optimize a slightly generalized version of
8,: de Leeuw, 1976) are listed for two and four dimensional solutions, respectively. The
—¢;; is used as the observed dissimilarity. We see that the degree of levelings of
eigenvalues is roughly in the order of Q4(2)<MINISSA (initial) <Q4(1) <Q4(3) <SMACOF
(dimension 2)<<SMACOF(dimension 4). At the bottom of each column a statistic
indicating the goodness of nonmetric fit is presented. It is found that the better fit

Table 2 Distributions of eigenvalues

Q4 MINISSA SMACOFt
(1) @ 3 (initial) | gy 9 dim. 4

1 6.71 7.78 5.88 7.54 5.60 4.94

2 5.64 5.87 5.60 5.67 5.26 4.92

3 5.05 5.73 5.13 5.58 5.17 4.86

4 5.04 5.70 5.08 5.57 5.07 4.84

5 5,02 5.44 5.07 5.52 497 4.814

6 5,01 5.25 5.02 5.31 4.84 4.806

7 4.9 4.80 4.9 475 4.83 4,789

8 4.89 4.63 4.90 4.69 4.82 4,719

9 4.82 4.62 4.70 464 474 476
10 4.81 4.49 4.65 4.59 4.65 4.747
11 477 4.43 462 457 4,643 4.7438®
12 471 4.41 4.56 454 4.6405% |  4.7436W
13 4.57 4.39 4.53 4.47 464000 | 4741 @
1 4.53 4.35 4.52 4.37 4.62 4739 @
15 4.42 4.26 4.51 4.29 4.59 4.731
16 4.34 411 4.50 418 458 4714

4 4.95 4.06 4.49 4.05 4.53 4711
18 4.23 4.03 441 3,98 447 4.703

19 414 4.01 4.37 3.95 4.46 4.696
20 411 3.85 4.21 3.93 4,45 4.68
21 4.04 3.79 4.21 3.86 4.42 4.55
22 0 0 0 0 0 0
o3 177 .436 .181 .435 . 057 .026

+ SMACOF results are those obtained with data set 1. Results with other
data sets are essentially equivalent to the presented results.

Eigenvalues corresponding to solution vectors should be all identical. They
are slightly different here because of insufficient number of iterations.
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roughly corresponds to the more leveled distribution of eigenvalues.®) The leveling of
eigenvalues is a desirable characteristic in case of Q4 in terms of the distance optimiza-
tion. It does not seem to be meaningful to decide the correct dimensionality of a solu-
tion by merely looking at the distribution of eigenvalues of G matrix in Q4.

The parenthesized numbers in columns 5 and 6 indicating dimensions of stimulus
coordinates in the order of magnitude are put to eigenvalues corresponding to the
eigenvectors of solutions. It can be observed that they do not necessarily correspond
to the first ¢ dominant eigenvalues, as has been alluded to earlier. Dimensionwise
dispersions of stimulus coordinates are 5.786 and 3.243 for dimensions 1 and 2,
respectively, in two dimensional solution, and 7.611, 4.715, 2.358 and 1.508 in four
dimensional solution. Evidently the sizes of eigenvalues corresponding to the
eigenvectors of solution, which are theoretically equal at a stationary point of the C-
matrix method, convey no information as to the relative importance of dimensions.

3. Measurement levels and invariance properties of the MDS methods

Up to this point observed dissimilarities (or similarities) are assumed to be fixed
constants. That is, the observed data are metric. However, as it has been suggested
earlier, the three methods, T-G, C-matrix and S-R methods, all based on LS criteria,
can be, and in fact have been extended to nonmetric procedures. The extention has
been carried out by allowing observed data to be monotonically transformed so that
they in the LS sense best accord with the model predictions (which therefore is called
optimal scaling of observed data). Algorithmically this amounts to alternate applica-
tions of model estimation procedures and some forms of quadratic programming
procedures. However, a more rigorous distinction of the concepts, metric and
nonmetric, seems to be in order at this point. Roughly speaking this is the problem,
which has been known as the scale levels of measurement in psychometric literature.

We define the scale level of data as the type of functional form through which
model predictions are related to observations, or vice versa. In the presence of various
measurement errors a qualification “within a reasonable amount of errors” may be
necessary to the above statement. Note that observations are the empirical dissimilarity
measures and model predictions are the distances derived from the stimulus configura-
tion in the cortext of multidimensional scaling. As you may have noticed, this
definition of the scale level is somewhat different from that of Stevens’ (1951) who was
the first to define the scale level of measurement in terms of invariance characteristic of
certain relations between data elements (more precisely, between numbers assigned to
data elements), and who inadvertently assumed that those invariant relations are
intrinsic properties of measurement, the presumption to which we do not quite agree.
On the contrary, we define the measurement level by the relation which exists between

12) Some complication arises by the use of the nonmetric fit measure in all cases. In the
first four cases, at least, the 6, may reflect the levelings of eigenvalues more accurately. The
6% is defined by
03 = tr(O*—D)2/tr(D?)
where O* is the matrix of optimally transformed dissimilarities under the monotonic
restriction.
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two distinct entities, observations and predictions. The same set of numbers may well
represent the different scale properties depending on which models the particular set of
data are related to.

The close relationship of the present definition and that of Stevens’ can be readily
seen by noting that the type of functional forms between observations and predictions
is also invariant over a certain class of transformations of data, and that the transforma-
tions must have the same type of functional forms as functions whose forms are to be
preserved through the transformations. The class of transformations over which the
type of functional forms is invariant is called the admissible transformation of the data
associated with the specific level of measurement. Thus, it can be said that our defini-
tion also rests on the invariance characteristic, but the invariance is in the relations
between observations and predictions and not in the intrinsic relations among observa-
tions themselves.13)

We presume that any methods of analysis (deemed to handle data measured at a
certain scale level) must give esssentially invariant results (i.e., estimates of model
parameters) over admissible transformations of data. The required property of
invariance, however, is not in an absolute sense, since model parameters may be
subject to change if the transformation preserves their scale properties invariant.

This presumed invariance property is demonstrated with SMACOF using Okamoto
and Toda’s data under the ordinal measurement assumption. Table 3 presents three
stimulus configurations obtained from three different sets of data, but are related
monotonically with each other. Agreements are quite impressive.lt) (Results with
data sets 1 and 2 are identical up to three decimal points. Only a result with data set
3 is slightly different from the other two.)

Obviously neither Q4 nor the T-G method (as it were) enjoy the invariance
property over monotonic transformations of observed dissimilarities, as has been
abundantly demonstrated by Okamoto and Toda (1973) and by Hayashi (1973).
Derived stimulus configurations may suffer from haphazard effects of monotonic
distortions of observations, however robust the methods may seem against certain
degrees of systematic perturbations of data. In terms of the above invariance
criterion the T-G method (as well as others LS methods) is a ratio scale procedure, while
Q4 is an interval scale procedure (showing the invariance over affine transformations of

13) Two closely related, but distinct, concepts often confused with each other and with the
scale level of data are the scale level of model predictions and the scale level of model
parameters. The former is defined by the invariance characteristic of defining properties of
a specific model over a certain class of transformations of model predictions. For example,
the defining properties of distances, the three metric axioms, remain valid over similarity
transformations of distances, but not necessarily over other more general types of
transformations. Hence, distance (as a model) is said to constitute a ratio scale. The scale
level of model parameters, on the other hand, is defined in reference to model predictions.
It is the type of transformations of model parameters over which model predicﬁons remain

“essentially’”’ unchanged.

The stimulus coordinates in the distance model constitute dimensionwise mterval scales
with a common multiple across dimensions, since the intrinsic properties of distances are
invariant over positive affine transformations of X.

14) Stimuli 18 and 19 should have an identical location. Results indicate a slight displacement
in all cases perhaps due to insufficient numbers of iterations.
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Table 3
SMACOF solutions with three sets of data
Data 1 Data 2 Data 3
Dimension
1 2 1 2 1 2
1 1.101 .101 1 1. 101 .101 1 1.097 —.104
2 .884 . 265 2 .884 . 265 2 .89 —.281
3 1.232 —.638 3 1.232 —.638 3 1.214 . 652
4 1. 159 —.838 4 1.159 —.838 4 1,167 845
5 1.327 —.612 5 1.327 —.612 5 1.297 638
6 1.196 —.101 6 1.196 —.101 6 1.221 072
7 1.352 —. 168 7 1, 352 —.168 7 1.311 209
8 1.036 .251 8 1.036 .251 8 1.041 —.253
9 . 545 —.493 9 .545 —.493 9 546 .471
10 1.118 . 000 10 1.118 . 000 10 1111 .001
: 11 1. 246 —.333 11 1. 246 -.333 11 1.253 .31
Stimulus 12 | .244 | 1253 | 12| .244 | 1288 | 12 | .251 | —1.266
13 -.325 1,357 13 -.326 1.357 13 —.323 | ~-1.370
14 —.29%4 1.357 14 —.204 1.357 14 -.294 | —1.371
15 -.620 1.244 15 —.620 1.244 15 —.625 | —1.259
16 | —1.278 .3853 16 | —1.278 .353 16 | —1.284 —. 366
17 | —1.724 —.357 17 | —1.74 —.357 17 | —1.733 .842
18 | —1.823 —.4093 18 | —1.823 —.493 18 | —1.806 .512
19 | —1.818 —. 478 19 | —1.818 —.478 19 | —1.804 .498
20 | —1.833 —.464 20 | —1.833 —.464 20 | —1.841 . 469
21 | —1.863 —. 477 21 | —1.863 —.477 21 | —1.831 .494
22 —. 860 —.730 22 —.860 —-.730 22 -.863 . 726
Dispersion 5,786 3.243 5.786 3.243 5.763 3.284
Stress . 057 . 057 . 057
Iterations 50 50 50

The over-all size of configurations is such that #(X’'X)=unt.

data). However, it should be noted that in case of Q4 this invariance property does not
conform to the type-of-functional-form definition of the scale level of observed data.
The Q4 reveals the invariance property over any affine transformations of data
irrespective of the “true” functional relationship between observations and predic-
tions.19 This is due to its somewhat arbitrary construction of the optimization criterion
in Q4.

We maintain that the invariance property which is not conformable to the type
of true functional relationships between observations and predictions is not very
meaningful, since, say, monotone-invariant procedures can otherwise be easily
constructed by simply rank-ordering observed dissimilarities. Another more powerful
concept should be established which can effectively exclude the possibility of the
“trivial” invariance property as possessed by Q4, and which also generalizes the
concept of “faithfulness of representation” (Okamoto & Toda, 1973). The “recovery
of stronger scale properties” seems to serve this purpose. To explicate, a procedure

15) The Q4 is approximate no matter what conditions are satisfied, while the T-G method is
exact when the data satify certain conditions. As approximate methods (such as initializa-
tion procedurds) both work reasonably well. Discussion as to the superiority of one over
the other in this respect is somewhat elusive, since it is not very difficult to construct
examples on which either one works better.
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ought to be able to recover the true functional relationship even when a weaker
scale level assumption is made, provided that the data convey enough information
to constrain model parameters uniquely under the weaker assumption. All nonmetric
versions of the LS methods discussed in this paper, at least in principle, are supposed to
have this desirable feature (despite the existence of the well-known numerical difficulty
called a local minimum problem).

4. Summary

In this paper a unified way of representing solutions of four methods of MDS,
Hayashi’s quantification method IV (Q4), Torgerson-Gower type principal coordinates
method (the T-G method), Guttman’s C-matrix method and de Leeuw’s successive
refactoring method, is discussed. The discussion, while primarily not concerned with
the development of a new procedure, is deemed to have some informative values to
MDS methodologists.
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