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A MAXIMUM LIKELIHOOD METHOD FOR NONMETRIC

MULTIDIMENSIONAL SCALING:

I. THE CASE IN

WHICH ALL EMPIRICAL PAIRWISE ORDERINGS
ARE INDEPENDENT—THEORY

YOSHIO TAKANE!

Department of Psychology, McGill University

A maximum likelihood estimation procedure is developed for nonmetric
multidimensional scaling (MDS) which applies to the situation in which all
empirical pairwise orderings of dissimilarities are assumed to be independent.
The proposed method, while formulated within Thurstonian framework, does

not presuppose initial unidimensional scaling of * observed >’ distances.

Rather,

the original nonmetric data (which are the set of empirical ordinal relations
on the dissimilarities between stimuli) are directly related to the representation
model (which is a distance function of some form) through a single optimiza-
tion criterion based on the maximum likelihood principle.

There are various experimental pro-
cedures in which ordinal dissimilarity
measures arise. Three broad categories
of experimental operations will be dis-
tinguished for the present discussion.

One is the pair comparison type methods
in which subjects are required to make a
set of pairwise ordinal judgments of dis-
similarities between pairs of stimuli. The
methods of tetrads and the method of
triads (Torgerson, 1952, 1958) are in this
category. The two methods are dis-
tinguished in terms of the sets of pairs of
dissimilarities on which empirical orderings
are defined.

Another class of methods is the rating
type methods, such as the method of suc-
cessive categories (Messick, 1956). Rat-
ing scales could be combined with the
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L. L. Thurstone Psychometric Laboratory, the Uni-
versity of North Carolina. Requests for reprints
should be addressed to Yoshio Takane, Department
of Psychology, McGill University, 1205 McGregor
Avenue, Montreal, Quebec, Canada, H3A 1Bl.

pair comparison type judgments providing
a method which might be appropriately
called the successive categories method
of tetrads following Sjoberg’s (1967) suc-
cessive categories method of pair com-
parisons.

The rank-order type methods constitute
yet a third class of empirical operations.
This includes the simple rank-order
method, and the conditional rank-order
method (Klingberg, 1941; Young, 1975)
and the method of triadic combinations
(Richardson, 1938) as two special cases of
the (partial) rank-order method.

The above distinctions are made, de-
spite the presence of certain intriguing
relationships among these methods, in
view of the ease with which the statistical
independence among observations may be
obtained. For example, in the method of
tetrads it is possible, at least in principle,
to obtain statistically independent ob-
servations (i.e., independent pairwise or-
derings), while in the rank-order type
methods order statistics are, totally or
partially, dependent with each other.
Particular dependence structures assumed
of observations (or of statistics derived
from observations) play a crucial role in
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the specification of the likelihood function.

In this paper we are primarily concerned
with the development and evaluation of
a maximum likelihood (ML) estimation
procedure for nonmetric multidimensional
scaling (MDS) specifically designed for the
first type of empirical operations for
obtaining ordinal dissimilarities. In sub-
sequent papers we consider some plausible
extensions of the current approach to other
experimental situations in which data are
collected.

The now classical approach to ordinal
empirical dissimilarities in MDS, as most
notably exemplified by Torgerson (1952),
is to scale the original observations
into ‘“ observed >’ distances. Those ‘ ob-
served ’ distances are then subjected to
a metric MDS method to find a spatial
representation. A possible conceptual dif-
ficulty with this approach is that the ini-
tial transformation of the observed ordinal
relations is performed under an assump-
tion which has nothing to do with the
representation model of the data. A least
squares (LS) criterion is set up for the es-
timation of initial *‘ observed *’ distances,
and another for the spatial representation.
There are no logical connections bridging
the two LS criteria.

The advent of nonmetric MDS
(Shepard, 1962; Kruskal, 1964) partially
resolved the problem. As is well known,
Shepard-Kruskal type nonmetric MDS
utilizes only ordinal information in finding
a spatial representation, and yet does not
require preprocessings of ordinal informa-
tion into ‘‘ observed >’ distances. In fact,
the gist of the Shepard-Kruskal type of
nonmetric procedures is that they con-
sider both the optimal transformation of
data (under certain measurement restric-
tions) and the optimal estimation of model
parameters based on a single optimization
criterion.

However, inferential problems still re-
main unsolved. There does not seem, at
least to the present author, to be any pros-
pect of developing reasonable parametric

tests of statistical hypotheses within the
conventional LS framework (i.e., with
Kruskal’s transformational approach).
One may be tempted to suppose that the
theory of isotonic regression (Barlow,
Bartholomew, Bremner, & Brunk, 1972)
may directly apply to the present case.
However, viewed as an isotonic regression
problem, distances serve as observations on
the dependent variable whereas observed
dissimilarities are measures on the in-
dependent variable (defining a convex
cone of observations to which distances
are regressed), and disparties are the
parameters of the model to be estimated.
The difficulty is obviously that distances
calculated from a smaller number of para-
meters (stimulus coordinates) cannot be
statistically independent. We maintain
that the results of isotonic regression, par-
ticularly those pertaining to the distribu-
tion theory, do not carry over to the non-
metric MDS situation (despite the equiva-
lence of the algebraic operations involved
in the two problems). It seems necessary
to reformulate the estimation procedure
based on a criterion with statistically better
properties.

In this paper we develop a single step
ML estimation procedure for nonmetric
MDS, along with the associated tests of
the goodness of fit. One of the major
conceptual differences between Kruskal’s
formulation and the present one is that
we view distances (not disparities) as para-
meters which are further related to stimu-
lus coordinates by some specific distance
function. Distances are assumed to be
error-perturbed, and to give rise to a
particular set of observations (which are
the empirical ordinal relations among dis-
similarities) at a particular time. Due to
the error perturbation the observed ordinal
relations may sometimes violate the
““ true *’ orderings of underlying distances.
Nonetheless they should convey some in-
formation concerning the likely state of
underlying distances (i.e., large distances
tend to be judged larger more often). We
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attempt to recover the ‘ true > distances
in such a way that the likelihood of the
observed orderings of dissimilarities is
a maximum.

An ML estimation procedure has been
proposed for metric MDS by Ramsay
(1976, 1977) under the distributional
assumptions similar to the present case.
However, it should be emphasized that the
present method is the first ML procedure
which directly applies to nonmetric data.

THEORETICAL DEVELOPMENTS

The Representation Model

It is the usual practice in statistical
analyses of data to isolate systematic
variations in data from random compo-
nents. Systematic variations are identified
with representation models of data and
random components with stochastic error
models. We construct estimation pro-
cedures of parameters both in representa-
tion and error models based on some
plausible distributional assumptions on
random components.

For representation models we employ
a particular class of distance functions
called Minkowski power metric models

7 1/p
dij = {El [xia_xja ]p}
(Gyj=1..,n (1)

for p>1, where d;; is the distance between
stimuli 7 and j, x;, is the coordinate of
stimulus ¢ on dimension a, 7 is the dimen-
sionality of the space, p is the power of
the metric space, and 7 is the number of
stimuli. Without loss of generality, we
assume that the stimulus coordinates are
dimensionwise centered, and that the
overall size of the stimulus configuration is
constant.

The Error Model

We assume that d;; in (1) is error-per-
turbed by processes of indeterminate
nature. We consider two different man-

ners in which errors are exerted on dis-
tances. We then discuss the most critical
assumption; i.e., conditions for independ-
ence of observations.

The additive error model. Errors are
assumed to operate on distances in an
additive fashion. That is,

;0 = d,; e, (2)

where €;;® is the error random variable.
The parenthesized superscript indicates
occasion. (Unless necessary to avoid con-
fusions, the occasion index will not be
explicitly specified in the following dis-
cussion.)

[Normal errors] We assume that e;; is
normally distributed with zero mean and a
finite, but unknown, variance ¢;,2. That is,

e ~ N, ;%) &)

where o,; is the discriminal dispersion.

It might be noted that the normality
assumption here is by no means the most
“natural ” distributional assumption in
the present context. Suppes and Zinnes
(1963), for example, derived a noncentral
chi-square model for squared Euclidian
distances based on the assumption that
stimulus coordinates are independently
normally distributed with a constant vari-
ance across stimuli and dimensions. The
noncentral chi-square model is intuitively
more appealing particularly in light of the
fact that distances, by definition, can
never be negative. In contrast, 4;; as
defined in (2) can be negative under the
normality assumption on e;;. However,
the ratio of two independent noncentral
chi-square variables (with the same de-
grees of freedom) has a doubly noncentral
F distribution whose integral should be
evaluated in order to obtain Pr{2;;>2;).
This evaluation involves double summa-
tions of infinite series. One may con-
sequently have to resort to some approxi-
mation methods, either by taking a finite
sum of the infinite terms (Saito, 1974), or
by taking an appropriate normal integral
(Zinnes & Griggs, 1974).
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The numerical complications and limita-
tions which arise from the noncentral chi-
square model have been the major obstacle
toward a further progress along this line.
Perhaps for this reason Ramsay (1976) has
discarded this intuitively more attractive
assumption, and has proposed a maximum
likelihood estimation procedure for metric
MDS based on a distributional assumption
which is essentially equivalent to (3).
Nakatani (1972) has also employed the
normality assumption for his multidimen-
sional confusion-choice model for pure
recognition experiments.

The negative 4;; may still be a problem,
particularly in the metric case where o;;=
2;;, which tempts one to interpret 2;; as
an observed distance. We avoid this in-
terpretation following the lead of Nakatani,
who simply regards a set of 2;; as “ quan-
tities which are positively and linearly
correlated with interpoint distances.” We
use a noncommittal term, discriminal pro-
cess, for ;;.

Note that this neutral interpretation is
afforded by the fact that 2;; is completely
a hypothetical construct in the present
case (as well as in Nakatani’s case).
Furthermore, we are only concerned with
the ordinal property of the 2;;. The
possibility of negative 4;; will not be a
problem since there is no difficulty in
establishing ordinal relations between two
negative values or between positive and
negative values.

[Structures on discriminal dispersion]
The discriminal dispersion 1;; may be
different from one pair of stimuli to an-
other. However, the principle of par-
simony dictates a preference for the small-
est possible number of parameters in the
model. The effective number of inde-
pendent parameters may be reduced by
assuming various structures on the dis-
criminal dispersion. The structure must
be a plausible one reflecting reasonable
assumptions about the data. We have
chosen to impose

0.2 = o¥d®, 4)

and to restrict our attention to the follow-
ing three cases (Ramsay, 1976).

When s=0, Eq. (4) reduces to the con-
stant variance assumption. When s=2,
which postulates that the discriminal dis-
persion is proportional to the correspond-
ing mean (distance), Eq. (4) roughly
simulates the situation implied by Weber’s
law. When s=1 and ¢=2, Eq. 4)
approximates the relation (variance pro-
portional to mean) which holds between
mean and variance of the noncentral chi-
square distribution.

The multiplicative error model. We may
alternately assume, instead of (2), a
multiplicative model,

2,0 = d,e,® (5)

which reduces to a linear (additive) model
like the one in (2) by the logarithmic
transformation,

2 =dg ey (6)

where 2;/=In2;, d;/=Ind;; and e;/=
Ine;. We assume that e;; is normally
distributed; i.e.,

e ~ N, a:7). 7

Then 2;; follows the log-normal distribu-
tion (Aitchson & Brown, 1963) with the
median of d;;. The log-normal assump-
tion on 4;; has been discussed by Ramsay
(1977).

One of the desirable consequences of the
log-normal distribution, besides asymmetry
(positive skewness) of the distribution, is
that ;; assumes only positive values. The
conceptual difficulty associated with the
possible negativity of ;; we have encoun-
tered in the additive model does not exist
in this case. Furthermore, the dispersion
of 1;; is proportional to its median (d;)
with the approximate proportionality con-
stant of exp (¢;2). This proportionality
holds over different o,; if ¢, is constant for
all ¢ and j. Note that this is equivalent



Maximum Likelihood Method for NMS 11

to assuming s =0 in (4). Yet the constant
variance assumption on e;;/ leads to the
dispersion being proportional to the me-
dian for e;;, the relation we have observed
by setting s=2 in the additive model.

Independence. The independence con-
sideration between distinct observations is
very crucial in the current developments,
since the definition of the likelihood func-
tion (Eq. (18)) is critically dependent on
this assumption. The simplest case is
when discriminal processes at different
occasions take place in different individu-
als. This requires single-judgment sam-
pling (Bock & Jones, 1968) in which a
subject makes one and only one judgment.
Then the independence assumption can
reasonably be made. However, it would
be unrealistic to employ single-judgment
sampling in all situations for which the
current procedure is designed. Most often
we have to employ multiple-judgment
sampling in which a subject makes more
than a single judgment. Then we should
take the covariance structure of observa-
tions into account in constructing the
likelihood function. However, it can be
shown that the independence assumption
is still valid for multiple-judgment sam-
pling, if certain conditions (much weaker
than the complete independence) hold
on the covariances between discriminal
processes. The importance of the follow-
ing development, which to the best of the
author’s knowledge has not be explicitly
noted before, should not be overlooked.
Bock and Jones (1968), for example,
develop various procedures for pair com-
parisons almost entirely based on Thurs-
tone’s case V, which implies an equal
covariance between two discriminal pro-
cesses involved in a single judgment (Most-
eller, 1951), across different judgments,
and yet they fail to observe that multiple-
judgment sampling reduces to single-judg-
ment sampling, if the equal covariance
assumption holds between discriminal pro-
cesses involved in two distinct judgmental
processes.

Let e® and e%*’ be two-component
vectors of random errors associated with
the discriminal processes involved in judg-
ments t and t' (t=t’). If the matrix of
covariances between e® and e®?, namely
Cw i expressible in the form of

C®» = 1g’/+hl’ ®)

for arbitrary two-component vectors g and
h, and a two-component vector of ones 1,
two difference processes at two distinct
occasions t and t° will be statistically
independent. Define

1 =10 07 _T[ar
A=l o 1 l=lal

e’ = (e(t)” e(t’)’) .

and

We have

t
eij( )

__ekl(t) ‘t)1
Ae = (ei’j’ <t'>_ek,l,<c'>> = (bz) )

The covariance between b; and b, is given
by

Cov(b, b)) = a,/V(e)a, = q’Cet"q, (10)

where V(e) is the variance-covariance

matrix of e, and g¢’=(l, —1). Since q’l
=1'q=0, we have
q'Cug =0. (11)

Similar conditions for the variance-covari-
ance matrix of repeated measures have
been discussed by Huynh and Feldt (1970).
Note that equal covariance cases follow
as special cases by setting both g and h
to be constant vectors (all four covariances
are equal), only g to be a constant vector
(covariances are rowwise equal), and only
h to be a constant vector (covariances are
columnwise equal).

It is important to realize that the equal
covariance assumptions are much weaker
than the strict independence assumption,
and that, so far as the serial effects persist
over only a few trials, it should not be too
difficult to arrange the judgment sequence
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(i.e., the order of stimulus presentation)
so that either one of the equal covariance
conditions will be satisfied.

Likelithood Function

Unless otherwise specified we assume
the additive model for the discriminal pro-
cess throughout this section.

We have as observations a set of empiri-
cal orderings on a well defined set of pairs
of stimuli. Define

_ 1, if O35 >0
Yo = {O: if o< oy (12)
where o,; is the (possibly unobserved) em-
pirical dissimilarity measure between
stimuli ¢ and j, > is the empirical ordering
defined on a subset £ of 52 where & is
the set of pairs of stimuli such that ¢>j.
We assume that Y;;,,=1 whenever ;; de-
fined in (2) is greater than 24, and con-

sequently that
Pr(Yiju = 1) = Pr(4;> ;2a)
= Pr(2;;—2.>0) (13)

which is an important assumption implied
by Thurstone’s law of comparative judg-
ment. Note that for the multiplicative
model we have correspondingly that

Pr(Yijk; = l) = Pr(]n 2”—11'1 2kl>0)
= Pr(zij,*2k1/>0) . (14‘)
By the normality assumption we obtain

hiy

kL
Pr(2;;> ) = I_ f(z)dz = Fu(hu) ,
(15)

where fis the density function of the stand-
ard normal distribution and where

hijkl = (dij—du)/”ijkz . (16)

The o;;; in the present case assumes the
form

Oigir = (02 +0uB)V2 = o(d; f+dps)V2 (17)

by virtue of (4).
The likelihood function L can now be

stated as
L= l;[ Tijkl, (18)

where
T = Foju¥im(l —F )t~V , (19)

which is the simple Bernoulli distribution.
The F,j;, in this case is, of course, related
to stimulus coordinates x;, through (15),
(16), (17) and (1).

The definition of the likelihood function
as the product of T, is justified by the
independence assumption of the observa-
tions, which, in turn, is justified by the
particular experimental operations for
obtaining empirical orderings of dissimi-
larities for which the present method is
specifically designed.

We are to determine stimulus coordi-
nates x;,, and dispersion multiplier g, so
that L defined in (18) is maximal, or
equivalently the log of L,

is a maximum. (It might be pointed out
at this point that in either the additive
model with s=2 or the multiplicative
model the h;,;; defined in (16) is invariant
over the choice of ¢. In either case we
can arbitrarity choose the value of ¢ and
there exists no estimation problem there-
of.)

Replications. When there are more than
a single observation per tetrad, we may
incorporate the number of replications in
the estimation procedure. This can be
done by defining the likelihood function
as

==z

L - n Tz‘jkl(a) B (21)
1 Qa

a

where « is the index of replications (note
that we have introduced a parenthesized
subscript («) to indicate Ty ; for a particu-
lar replication). N is the total number of
replications. The Qa is the set of pairs of
dissimilarities for which an empirical
ordering is obtained for replication a.
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By rearranging (21) we have

L= IT I Tijkl(a) =I_(;[ Tijkl*, (22)

2 R

N
where 2= U £,, R, is the set of replica-
1

a=

tions for which T, is defined, and
where Ti*= [T Tisiw. We thus ob-

ifkl
tain, by defining N, 4, to be the number of
replications for a tetrad involving (i) and
(ki) pair (e., Niju:RZ (1)), and Z;u

ijkL

ZRZ Yimw (Yigiw is the Yy, defined
ijkl

in (13) for replication «), that

L= H Tijkl*
2

=[] FijuZim(l =F )N Zigm . (23)
/]

This familiar looking expression is the
product of the portion of the binomial
probability distribution related to para-
meters of the distribution.

Goodness of Fit Tests

Reasonable test statistics for the good-
ness of fit of a model can be readily con-
structed based on the general principle of
the likelihood ratio criterion (Wilks, 1962).
Define

0 = MAX L(z)/MAX L(z;)  (24)
where MAX L(z) is the likelihood of

model 7 maximized over its associated

parameters. Model 7; is subsumed under
model z,. Then
¥=—-2Iné
= —2{Iln MAX L(z;)—1n MAX L(z;)}

(25)

is distributed asymptotically according to
chi-square with degrees of freedom equal
to the difference in the number of pa-
rameters in the two models.

For the general test of the goodness of
fit we find that

MAX L(7Z'1)
— ]!;[ Fijklzijkl(l—Fijkl)Nijkl_zijkl s (26)

where ¥y, (defined in (15)) is evaluated
at the ML estimates of model parameters,
and

MAX L(zs)
= 1] PA‘ijkI.Z””(l _FAijkl)N”“—z”“ ,» (27)
1]

where ¥ =Ziu/Niz (we define 00=1)
which is an ML estimate of a sample
proportion. The degree of freedom is
ny—n; where ny is the number of elements
in 2 and », is the number of prameters
in model ;.

An important class of tests of the good-
ness of fit in the present context is the test
of the number of significant dimensions.
In this case = is associated with the solu-
tion with one dimension less than the
number of dimensions in 7,. Under the
representation model (1), the number of
independent parameters is determined by
the following rule. As has been alluded
to earlier, we need only one degree of
freedom for ¢ which is counterbalanced by
a degree of freedom for the uniform dila-
tion of stimulus coordinates in the additive
error model with s=0 or 1. The number
of parameters in the stimulus configuration
is nr for n stimuli and r dimensions.
However, distances are invariant over the
translations (shifts) of origin of the stimulus
coordinates (for any Minkowski power
metric models) so that r of nr parameters
may be chosen arbitrarily, leaving r(n—1)
parameters to be estimated. In case of
the Euclidian distance we have another
kind of indeterminacy; i.e., the Euclidian
distance is also invariant over the orthogo-
nal transformations of stimulus coordinates.
An additional r(r—1)/2 parameters are
arbitrarily chosen in order to make the
solution unique. Thus, we have for the
Euclidian model r(n—1)—r(r—1)/2 free
parameters in the model. In the additive
model with s =2 or the multiplicative error
model, the h;y;, defined in (16) and con-
sequently the likelihood L, are invariant
over the choice of 6. We need to fix one
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more parameter in these cases to obtain
a unique solution, so that the numbers of
free parameters are one less than that
given by the above formulae.

A third class of tests of the goodness of
fit involves specific hypotheses on para-
meters. In the course of data analyses
one may have more or less specific hy-
potheses about the parameters being es-
timated. In the next section we discuss
an important class of such hypotheses.
Statistical tests of specific hypotheses con-
sist, again, of comparisons of the like-
lihood of two models, one (z;) with the
restrictions which follow from the hy-
potheses and the other (z;) without restric-
tions. Then the 3% defined in (25) is with
degree of freedom equal to the number of
(linear) constraints (the difference in the
number of independent parameters be-
tween the two models), which is the reduc-
tion in the number of free parameters as
a consequence of imposed constraints.

An interesting statistical criterion which
serves as a guide for choosing appropriate
models (appropriate specifications of a
model) is the Akaike Information Criterion
(the AIC; Akaike, 1976) defined by

AIC (z) = —2In MAX L()+2n,

where n, is the number of free parameters
in model . The usefulness of the statistic
has been amply demonstrated in similar
situations; e.g., in the determination of
the appropriate numbers of common
factors in factor analysis and in the ap-
propriate choice of a model in regression
analysis. We choose the model which
minimizes the AIC (MAICE: Minimum
AIC Estimator).

Linear Constraints

We discuss a special type of constraints
(among general linear hypotheses) that
may be made about the parameters, and
that are particularly interesting in the
present context, namely the equality con-
straints.

The equality constraints specify subsets

of parameters which assume equal, but
unknown, values. Notice that a set of
equality constraints can generally be
represented in matrix notation as

8 = Ag*+h (28)

where 8 is a vector of parameters in the
original set, and @* is a vector of para-
meters in the constrained set, b is a vector
of fixed values, which is identically 0 (a
zero vector) for equality constraints, and
A is a matrix defining some linear de-
pendence (relations) among parameters.
Matrix A also has a specialized pattern
for equality constraints, consisting of only
ones and zeros. For example, if 6;=6,
=03*, then the second and fourth rows
of A contain a one in the third column
with all other columns filled with zeros.

The necessary modification in the es-
timation procedure in the presence of
constraints characterized in the form of
(28) is given in the derivatives section.
An interesting application of equality con-
straints will be demonstrated in the com-
panion paper (Takane, 1978).

Numerical Method

To optimize L defined in (23), the de-
rivatives of In L with respect to unknown
parameters (X and ¢) are set to zero to
obtain likelihood equations, which may
be solved numerically by various methods.
Among the most promising alternatives we
illustrate the Gauss-Newton method, which
has been incorporated in the current
MAXSCAL-1 (Fortran IV program writ-
ten along the theoretical developments
presented in this paper), and which has
a certain convenient characteristic in the
present context. It has been shown that
for the regular exponential type of
distributions, the maximum likelihood
method yields estimators which are asymp-
totically equivalent to those derived from
the weighted LS criterion (Bradley, 1973),
and that Fisher’s scoring algorithm for
maximum likelihood equations is equiva-
lent to the Gauss-Newton algorithm for
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weighted LS problems (Jennrich & Moore,
1975), if weighted and reweighted pro-
perly in each iteration. We exploit this
fact to construct the Gauss-Newton al-
gorithm for our ML estimation problem.

The updating equation for the Gauss-
Newton algorithm for minimizing the
weighted LS criterion,

¢ = E-£yw(E-1),

where f is the vector of F' 11, £ 1s the vector
of Fi, and W is the diagonal matrix of
Nijkl/Fijkl(l_Fijkl), iS giVCn by

6V = g0 +H(I@)'g(0@), (29)
where

H(8) = (9f/06)YW(3£/56),  (30)
and

g6) = (of/aeyWE—£), (31

and where @ is the general representation
of the vector of unknown parameters,
The ¢ is the step size and the parenthesized
superscript indicates the iteration number,
It has been proved that H(#) is equivalent
to Fisher’s information matrix I(#) which
is defined by

I(6) = E(s(6)s(6)" ,

where s(§)=(d1nL/##) is Fisher’s scoring
vector, which also coincides with the
negative gradient —g(#) derived from ¢.
Equation (29) is iteratively applied until
convergence is reached. Computational
details of the Gauss-Newton implementa-

tion of the algorithm can be found in
Takane (1977).

Derivatives

In this section we collect expressions for
the derivatives necessary for the optimiza-
tion procedures discussed in the previous
section.

For the general result we have

dInL/ad; = 38 In T, ;,*/80,

= 3(a In Tijkl*/aFijkl)(aFijkl/aas) s
(32)

where 0, is any parameter.
For specific results we have

dIn Tijkl* _ (Zijkl_Nijleijkl)

» (83)

¥ Fiju(1—Fyz)
OF _
—W = (aF”kz/aqz;kZ)(aqul/aﬁs) ] (34)
and
0T ;1 _
—aa;]k; = f(qijkl) ) (35)
where
Qe = (dij—dp)/o(ds 2+ dp®)2  (36)

By rearranging (33) into
Nijkl

T:‘m:FTJJ (Fimi—Fin)
it may be seen that it is equal to W(f'—f)
part of (31). What we need is a complete
expression for 8q; . /6Xnqe, which is equiva-
lent to f/8@ part of (31).

We have
2q; jkl/ (7). 9%
= a(dij/gijkl)axma_a(kl/gijkl)axma ) (37)
9(dsyoi5u)
0%ma
_ Uijkz(adij/axma)—dzij(aﬂijkz/axma) (38)
Gkl
and
adij/axma
_ ABim =0 m) [ Xia —X 0[P signum (x;5—X4)
- d, »t
ij
(39)

where we tacitly assumed that d,;;#0 for
all 7 and j such that ;. Finally we have

ao’i- l 1,8
_rx:: = —Q—U(dijs‘*‘dkls) L2
d;; d
rs{am 2 g 2 “l, o)

aqmz/ao = _qijkl/a . (41)

For the multiplicative model (5) and (6)
we obtain
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adij’/aﬁs =9 In dij/aﬁs
= (1/d;;}(8d;;/a0,) . (42)

For the constrained case in which the
original parameters @ are further related
to a smaller set of parameters §* by a
linear function as in (28), we have

d1lnLja6* = (66/06*)(0InL/36), (43)
and

80/86* = A .

This means, for the special case of equality
constraints, that the gradients of 6,* are
just the sums of the gradients for 4,’s which
are assumed to be equal to 4,*. The 4,*
and 6, are the elements of #* and @,
respectively.

SUMMARY

In this paper a maximum likelihood es-
timation procedure is described for non-
metric multidimensional scaling focussing
on its conceptual and mathematical foun-
dations. Thelikelihood function is derived
making strong parametric assumptions on
the process generating a set of ordinal
judgments. Note that  nonmetric’’ does
not mean °‘‘ nonparametric’’, nor does
it necessarily imply ° transformational ”’.
Rather, the essence of a nonmetric pro-
cedure is in its exclusive use of ordinal
information in finding a representation.

Empirical evaluations of the procedure
will be reported in the companion paper
(Takane, 1978).
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