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A maximum likelihood estimation procedure was developed to fit unweighted and weighted
additive models to conjoint data obtained by the categorical rating, the pair comparison or the
directional ranking method. The scoring algorithm used to fit the models was found to be both
reliable and efficient, and the program MAXADD is capable of handling up to 300 parameters to be
estimated. Practical uses of the procedure are reported to demonstrate various advantages of the
procedure as a statistical method.
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Introduction

In many psychological phenomena a variable of concern can be expressed as an
additive function of its determining factors. The additive model is simple, often permitting
straightforward statistical analyses of data. It is no wonder that the analysis of additivity
has drawn the attention of so many researchers (see, for example, Anderson, 1974; Krantz,
Luce, Suppes & Tversky, 1971; de Leeuw, Young & Takane, 1976). Recently the simple
additive model has been generalized into the weighted additive model [Takane, Young &
de Leeuw, 19807, which accounts for individual differences in additivity by a differential
weighting of additive factors. However, existing procedures for nonmetric additivity analy-
sis (to obtain additive representations of ordinal data), such as MONANOVA [Kruskal,
1965], ADDIT [Roskam, 1968], TRADEOFF [Johnson, 1975], ADDALS [de Leeuw, et
al, 1976], MORALS [Young, de Leeuw, & Takane, 1976], and WADDALS [Takane et al.,
1980], are all based on the least squares principle, and are primarily descriptive in nature.
Within the least squares framework, it is not an easy task to evaluate the goodness of fit of a
model to nonmetric data [Takane, 1978]. The use of a Monte Carlo experiment [like the
one conducted by Takane et al. (1980) for their WADDALS procedure] may provide a
means of reducing the inconvenience associated with the lack of statistical inference capa-
bility in the least squares procedures. However, it must be rather extensive, and often
requires painstaking efforts on the part of the users. Furthermore a separate Monte Carlo
experiment must be conducted under each specific condition, since no proper error theory
has yet been offered which links the results of Monte Carlo studies carried out in different
contexts.

In this paper we develop a maximum likelihood estimation procedure for nonmetric
additivity analysis, when the data are collected by either the categorical rating method, the
pair comparison method or the directional ranking method. We call our procedure
MAXADD (M AXimum likelihood ADDitivity analysis procedure). In contrast to the least
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squares procedures the maximum likelihood method allows relatively straightforward hy-
pothesis testing via the asymptotic chi square statistic derived from the likelihood ratio
principle. The MAXADD procedure can fit both the simple and the weighted additive
models. We may thus fit the two models, compare their goodness of fit, and choose the one
which better fits a particular data set. The MAXADD procedure is also capable of incor-
porating various constraints on estimated model parameters. For example, certain par-
ameters may be fixed to certain prescribed values, nonlinear equality constraints may be
imposed on additive effects, etc. This leads to a number of interesting model comparisons
which have not been possible previously. Furthermore the AIC statistic [Akaike, 1974 ; see
also Takane, 1981], may be used to compare models which are not necessarily hierarchi-
cally ordered. This feature enables one to investigate additivity of prescribed dimensions in
a representation of dissimilarity data under a specific power transformation of the additive
model. The appropriate value of the power, on the other hand, may be determined by
systematically varying its value [Kruskal, 1964].

A maximum likelihood additivity analysis procedure has been developed for quantitat-
ive data by Winsberg and Ramsay [1980]. The MAXADD procedure, primarily designed
for nonmetric additivity analysis, should complement their procedure in terms of the vari-
ety of data that can be subjected to maximum likelihood additivity analysis. A procedure
similar to MAXADD has been developed by Falmagne [1978] for pair comparison data.
His procedure has been extended to multiple response data by Hamerle and Tutz [1980].
The MAXADD procedure is much more general in that it can also deal with directional
ranking data and the weighted additive model.

The Model and the Data

The Model

The additive model we discuss in this paper postulates that the dependent variable can
be expressed as an additive function of the independent variables. For illustrative con-
venience we focus our attention to the two-factor case. An extension to higher order designs
is relatively straightforward. Let «; and §; denote the additive effects of thei™ level of Factor
A and the j™ level of Factor B, respectively. The simple additive model (SAM) is then
written as.

SAM: Hij = % + ﬂja (1)

where y;; is the model prediction representing the combined effect of the i'® level of Factor A
and the j' level of Factor B. The key feature of SAM is that this combined effect is obtained
by simple addition of a contribution from Factor A and a contribution from Factor B.

We also consider the weighted additive model (WAM) [Takane et al., 1980], which is
an individual differences extension of SAM. Letw, , and w, 5 denote the weights individual k
attach to Factor A and Factor B, respectively. The WAM can then be stated as

WAM: Hije = Wiq 0 + Wip ﬁj’ 2

where «; and B; are the same as in (1), and p;; is analogous to y;;. However, it now has a
subscript k, implying that this quantity is specific to the k' individual. The WAM assumes
that the additive effects are constant across individuals. It also assumes that the individual
differences in additivity arise from the difference in the way individuals evaluate those
additive effects and combine them into a global judgment. The difference in individuals’
evaluation scheme is represented by the weights. The model is similar to Carroll and
Chang’s [1970] individual differences multidimensional scaling except that the additive
effects may not correspond to dimensionwise differences in stimulus coordinates in the
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present case. Instead the levels of the additive effects can be any classification categories of
observations. The nature of this model as well as its relationship to SAM has been fully
described elsewhere [Takane et al., 19807, so that the interested reader is referred to that
paper.

There is an indeterminacy problem associated with origins (zero points) of the additive
effects in SAM. In order to eliminate the indeterminacy we may either “center” the additive
effects (i.e., Y 74, ;=0 and ) 12, B; = 0 where n, and n; are, respectively, the number of
levels in Factor A and in Factor B), or simply assign some arbitrary value to a level in
Factor A and a level in Factor B. An additional indeterminacy problem exists in the case of
WAM. That is, there is a tradeoff between the scale factor of the individual differences
weights and that of the additive effects (i.e., for any constant c,, define w¥, = w,,c, and
af = o;/c, and we have wif, af = w, 4 ; ; the same for B; as well.) We may fix the scale of the
additive effects by requiring) 74, o? = n, and )2, B} = ny.

We assume that the model prediction given in (1) or (2) is error perturbed. This error
perturbed model prediction is denoted by y;; or y;; depending on the fitted model.
Subscript r is the index of replication. (For illustrative convenience we will assume that we
are fitting WAM throughout the following discussion. The case of SAM follows with minor
modifications.) In the metric approach the y;;, are assumed directly observable. In the
nonmetric approach, on the other hand, only some incomplete information about y;;, is
deemed accessible. The kind of incomplete information contained in the data depends on a
particular data collection method employed.

In this paper we consider three data collection methods, the categorical rating, the pair
comparison and the directional ranking methods. In the categorical rating method the
subject is asked to rate stimulus S;; (defined by the combined effect of thei*" level of Factor
A and the j™ level of Factor B) on a rating scale having a relatively small number of
observation categories (up to 7 or 9). In this case only category membership of y;;, is
observed. In the pair comparison method, on the other hand, the subject is asked to
compare two stimuli according to some prescribed criterion and to decide which one
“dominates” the other. In this case only pairwise ordinal relations between y,;’s are
observed. Finally, in the directional ranking method the subject is required to rank order
the §;’s in a specific order (either from the largest element to the smallest or entirely in the
opposite direction). Thus, only the (directional) rank order information about y;;, is ob-
tained.

It should be emphasized, however, that although the procedure we discuss in this
paper mainly focuses on the three data collection methods described above, it by no means
implies that the generalization to other data collection methods is impossible or even
difficult. As a matter of fact it has been shown [Takane & Carroll, 1981] that specialized
treatments of data conditionalities, missing data and tied observations in the directional
ranking method allow a still wider range of data including those obtained by the pick-m
largest (or smallest) method. Takane [Note 1] also suggests the categorical rating method
of pair comparisons as an interesting possibility. In this method the subject is asked to rate
the degree to which one stimulus “dominate” the other.

The Method

As we have seen in the previous section, the y;;, are not directly observed in the three
data collection methods. Some bit of information is assumed lost in the observation pro-
cess. For each data collection method we postulate a specific information reduction mecha-
nism which is presumed to underlie the subject’s judgmental process. The likelihood of
observed data given in a particular form is then stated in terms of the likelihood of the error
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perturbed model prediction via the model of this information reduction mechanism. (This
model is called the response model for the data.) We briefly discuss this model correspond-
ing to each data collection method in turn. More comprehensive treatments of this topic
can be found in Takane [1978, 1981] and Takane and Carroll [1981].

The Categorical Rating Method

We represent each category on a rating scale by an interval specified by its upper and
lower boundaries. We assume that S;; is judged to be in a certain category when the
corresponding error perturbed model prediction, y;;, , happens to fall in an interval corre-
sponding to that category. The probability, p; ;.. that S;; is classified into them™ category
by individual k, can then be stated as

Pijkm = Pr(bym— 1y < Yijir < bim)s 3

where by, and b, _,, denote, respectively, the upper and lower boundaries of category m
for individual k. Let

Fijiom = Pt(¥ijer < bi). )

Then we have p;j,, = Fijm — Fijgm—1)- The Fij,, defined above is a cummulative distri-
bution function of y;;, , and can be more explicitly written as

Fijm=[1+ exp{ —s(bym — /‘ijk)}]—l %)

under the logistic distributional assumption on y;;,. The s, is an inverse measure of
dispersion. (When category boundaries are considered random variables, we assume that
Vijir — bim i logistic and (5) follows.)

Notice that the above model is basically Thurstonian, except that the logistic distri-
bution, instead of the normal distribution, is assumed. It actually corresponds with the
simplest case of the law of categorical judgment [Torgerson, 1958, p. 209]. The major
difference between the classical and the present approaches is that we make a specific
structural assumption under p;; which is represented by (1) or (2), and directly estimates «;
and B; rather than y;; . Note that it is also possible to incorporate, as in the more general
cases of the law of categorical judgment [Torgerson, 1958], various variance components
models on s, (see also Ramsay, 1982).

The number of parameters to be estimated may be reduced by imposing various
structural assumptions on the category boundaries [Takane, 1981]. For example, the cat-
egory boundaries may be assumed linearly related to each other (i.e., by, = ym + 9), or it
may be assumed that there are no individual differences in the category boundaries (i.e.,
bm = b,, for all k). The most appropriate assumption can be chosen empirically by com-
paring their goodness of fit.

Let Z;;., denote the observed frequency with which §;; is classified into category m by
individual k. The likelihood of Z;j,, (m = 1, ..., M)is then given by

M
Pijx = n (v: jkm)ZUkm' (6)
m=1

The joint likelihood of the total set of observations is in turn given by the product of p;; .
This requires statistical independence of y,;,, so that the judgmental sequence should be
carefully arranged so as to minimize possible sequential dependency. For example, suc-
cessive presentations of stimuli involving the same level of a factor might be avoided.

The Pair Comparison Method

In this case we may assume that S;; is judged to be larger than S,, whenever the error
perturbed model prediction corresponding to y;; exceeds that corresponding to g,,,. The
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probability, p; ..., that S;; is judged larger than §,,, , is then given by

Pijuk = Ptijer > Vuokr)
= Pr(yijkr = Yuokr = 0) (7)

Under the assumption of the logistic distribution on y;j, — Yuukr»> Pijusx can be explicitly
written as

Pijuok = [1 + exp{ — sy(tij — JTHA ) 5 I (®)

Let Z;;,. represent the number of times S;; is judged larger than (or more preferable to) S,,,
among N ;. repeated trials. The likelihood of Z;,,, is then stated as

Pluok = (Pijuuk)zij"”k(l - pijuvk)NijWk—ZijWk' )]

The likelihood of the total set of observations in turn is given by the product of all p¥, -
The statistical independence of pf,,.’s within each k is obtained, if the two pairs of error
perturbed model predictions (y;5,’s) involved in two distinct judgments have pairwise equal
covariances [ Takane, 1978].

Again, the above model is essentially Thurstonian (Case V of the law of comparative
judgment). The logistic assumption makes it equivalent to the BTL model [Bradley &
Terry, 1952; Luce, 1959]. The BTL model (as well as Thurstone’s Case V) presupposes what
Krantz [1967] called “simple scalability”. That is, all aspects of a stimulus pertinent to
choice probability can be represented by a single number (u;;) irrespective of comparison
stimuli. This assumption is satisfied reasonably well, when the stimuli to be compared are
relatively homogeneous regarding the similarity between them. However, when this as-
sumption is untenable, the above model breaks down to varying degrees depending on the
seriousness of violation (see, for example, Restle, 1961; Tversky & Russo, 1969; Tversky,
1972; Halff, 1976). When two stimuli are more similar than others, they are more com-
parable, and consequently choice probability involving them tends to be more extreme than
what is predicted from (8). This situation may be remedied by incorporating a com-
parability index into s, (in a manner similar to Takane [1980], Edgell and Geisler [1980],
Strauss [1981] and Colonius [1981]), though the estimation procedure in this case would
naturally be much more complicated. We may avoid heterogeneous stimulus pairs by
excluding, for example, such pairs as S;; and S;,, which is easier to compare than§;; and§,,
(i # u,v;j # u, v), since the former shares the i*® level of Factor A.

Another kind of problem may potentially arise, when the subject takes a different
response strategy. We are assuming in this paper that stimuli are evaluated first for subse-
quent global (stimulus-by-stimulus) comparisons. We are also assuming that the evaluation
process is additive (as indicated by (1) or (2)), and that the global comparison process is
subtractive (as indicated by (7)). But what happens, if the subject first compares stimuli
within dimensions (factors) and then, based on the dimensionwise comparisons, forms a
global pair comparison judgment? In this case the additive representation, (1) or (2), no
longer holds as it were, except under specialized conditions [ Tversky, 1969].

Let us suppose, for simplicity, that the dimensionwise comparison process is subtrac-
tive, and that the evaluation (integration) process is additive. Then we obtain the general
(weighted) additive-difference model [ Tversky, 1969], which is written as

Pijuok = Gl a{wialo; — @)} + dp{wis(B; — B}] (10)

for the two-factor case, where ¢, and ¢ are monotonically increasing skew-symmetric
functions [i.e., ¢(—x) = —@(x)], and G is a distribution function of a symmetric distri-
bution about zero. If ¢, and ¢ are linear (in which case ¢, and ¢5 may be assumed to be
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identity without loss of generality), the argument in G above simplifies into:
Wi — ) + wis(B; — Bo) = Wia @ + Wi B)) — (Wiq &y + Wiep )
= Hijk — Huvk - (11)

If we further assume that G is logistic, (10) reduces to (8), and the additive-difference model
in this case is completely equivalent to the additive model postulated in this paper.

The additive model is thus a special case of the additive-difference model. On the other
hand, by taking the dimensionwise differences as levels of additive factors (see the second
example in the result section) and imposing appropriate equality and inequality restrictions
on the additive effects, the additive-difference model (10) can be directly fitted, as if it were a
special case of the additive model. Thus, it is possible, and may also be interesting, to
compare the goodness of fit of the two models and to see if the subject follows the holistic
(stimulus-by-stimulus) comparison process or analytic (dimension-by-dimension) compari-
son process (though, as mentioned above, in certain cases they are not empirically dis-
tinguishable).

The Directional Ranking Method

One of the most critical features of the directional ranking method is the directionality
of ranking process [Takane & Carroll, 1981]. That is, ranking is performed in a specific
direction, either from the largest element to the smallest or vice versa according to the
instruction. In this case it may be assumed that a rank order is obtained by successive first
choices. Suppose that the ranking is performed from the largest to the smallest, and that
there are M objects to be rank-ordered. The subject is first asked to choose the largest
element among the M objects, then to choose the next largest element among M — 1
remaining objects, and so on until a complete ranking is obtained among the M objects.

Let u{™ be the model prediction judged to be m™ largest by individual k at a particular
time. (If the m'" largest element happens to be 1, , then y{™ = y;;, ) Let {7’ denote the error
perturbed model prediction corresponding to u{™ generated at the r'® first choice. We may
assume that the stimulus corresponding to p{™ is chosen as the m™ largest element (among
M — m + 1 remaining elements after the m — 1 largest elements have been eliminated),
when y{™ exceeds all y{™ for m’ = m + 1, ..., M. Then the probability, p{™, that the stimu-
lus corresponding to u{™ is chosen as the m'™ largest element is given by

i = Pr(y{m > yim* b, .., yim > yi). (12

We use Luce’s model for first choice to state p{™ more explicitly [Luce, 1959]. That is,

=1+ 3 emlostr -] (13)

j=m+1

which is the distribution function of the multivariate logistic distribution. The likelihood of
a ranking is then defined as the product of the likelihoods of successive first choices. This
requires the statistical independence of successive first choices, which is obtained under a
similar condition to that in the pair comparison method. (A precise statement of the
condition can be found in Takane and Carroll [1981].) The joint likelihood of multiple
rankings is given by the product of the likelihoods of those rankings. When the ranking is
performed in the other direction (ie., from the smallest to the largest), we only need to
change —s; in (13) to s, .

Two major approaches have been proposed to the treatment of ties in a ranking
[Takane & Carroll, 1981]. Suppose two stimuli corresponding to 4™ and u{™ are tied. The
first approach defines p{™ excluding exp{ — s, (™ — ™))}, and p{™ excluding exp{ — s, (u{™
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— u{™)} in (13). Then p{™ and p{™ will not constrain each other. If, on the other hand, we
include those terms in defining p{™ and p{™’, u{™ and p{™ will be forced to be as close as
possible to each other. The first approach is analogous to Kruskal’s primary approach to
ties and the latter to his secondary approach to ties [Kruskal, 1964].

It should be emphasized that we are not proposing the above model as a general
ranking model. There are many different ways a ranking is obtained, and different processes
of ranking may require different process models. The above model should be applied only
when the directionality of ranking processes is strictly observed.

Note that despite all sorts of precautions the postulated models (for the data collection
methods) may fail in certain situations. Ideally, alternative models should be constructed,
and based on the same (model comparison) principle, the best fitting model should be
selected for the response model. However, this seems to be a challenging process and will
not be pursued in this paper.

Brief Algorithmic Considerations

Two MAXADD programs, one for categorical rating data and the other for pair
comparison and directional ranking data, have been written which maximize the log of the
likelihood defined in the previous section. Both programs use Fisher’s scoring algorithm to
solve maximum likelihood equations. The scoring algorithm is an iterative procedure
which, starting from some initial estimates 0/”), updates the current parameter estimates 8¢
by solving

8(4)1(9(41))(9(41+ 1) _ 0(")) — u(O(")) (1 4)

for 09+ 1) where u(0) = (0 In L/00) is the score vector, (@) = E[( In L/30)0 In L/00)] is
Fisher’s information matrix, and ¢ is the step-size parameter. This algorithm has been found
to work very well under the present circumstance; the convergence is generally very quick
and smooth.

There is one qualification necessary to the above statement. The total number of
parameters to be estimated may sometimes be quite large. For example, in one of the
examples to be discussed in the next section nearly 300 parameters have to be estimated.
With so many parameters the scoring algorithm will not be very efficient, if used in an
unmodified form. Fortunately this problem is largely circumvented by partitioning the
parameters into several groups and updating each group successively within each iteration
(see below). As a consequence the total number of iterations to convergence tends to
increase (the convergence is at most linear as opposed to the quadratic convergence of the
original scoring method), but the speed at which each iteration can be performed with
reduced numbers of parameters usually more than offsets the larger number of iterations.

There are four distinct sets of parameters in the model; additive effects, individual
differences weights, category boundaries and dispersion parameters. Of these the individual
differences weights appear only in the WAM. The category boundaries are relevant only
when the data are categorical rating data. Moreover, the dispersion parameters do not have
to be explicitly estimated. We may arbitrarily set s, = 1 for all k, and let model predictions
compensate for their size. After the convergence is reached, we normalize the model predic-
tions and adjust the values of the dispersion parameters accordingly. Thus, there are up to
three sets of parameters to be estimated. We update these three sets of parameters con-
ditionally and once in each iteration. We first update the additive effects with the other
set(s) of parameters being fixed, then the individual differences weights (if WAM is fitted),
and finally the category boundaries (if the data are obtained by the categorical rating
method). The order in which the three sets of parameters are updated is rather arbitrary,
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however, since it does not seem to make very much difference in terms of the speed of
convergence and the number of iterations required.

Individual-specific parameters such as w, 4, and b,,, (when they are to be estimated) are
independent across individuals, provided that other parameter estimates are given. For
example, w,, and w,; (for individual k) do not affect w,,, and w,p for other individuals
(k' # k). Consequently they can be updated separately for each individual. The derivatives
of p;; in (6), ¥ in (9) and p{™ in (13) with respect to w,,, and w,p are always zero for
k # k', so that the information matrix is block-diagonal, each block consisting of a matrix
of order equal to the number of additive factors. This means that (14) can be solved for each
block separately, and thus there is great economy of both storage space and computation
time. Basically the same thing holds for the individual-specific category boundaries (by,,),
except that in this case each block consists of an M — 1 by M — 1 matrix.

Examples of Application

In this section we report some empirical results obtained by the method described in
the previous sections. We analyze two sets of data. One is the data collected by Kempler
[1971] in his study of developmental change in children’s perceptual structure of rectangles.
The second data set pertains to dissimilarity data obtained by the method of triadic
combinations. A set of stimuli employed are the well-known colors originally used by
Torgerson [1958] in his study of classical multidimensional scaling. The data are analyzed
from the viewpoint that the Minkowski power distance model is a kind of additive conjoint
measurement [ Beals, Krantz & Tversky, 1968].

Analysis of Kempler’s Data

Kempler [1971] studied a systematic developmental change in the structure of weights
children attach to height and width of rectangles when they make perceived largeness
judgments. He constructed a set of 100 rectangles by factorially combining 10 height levels
and 10 width levels each ranging from 10 inches to 14.5 inches in half inch intervals. He had
four groups of children (1st, 3rd, 5th and 7th graders) judge each of the 100 rectangles as to
whether it looked “large” or “small”, From “conservation” literature he contended that
younger children tended to put more emphasis on the height of rectangles than older
children.

Takane et al [1980] fitted the weighted additive model to Kempler’s data by alter-
nating least squares (WADDALS), and found that the weights attached to height decrease
and those attached to width increase rather consistently as a function of age, confirming
Kempler’s contention. However, the group differences were the primary focus of their
analysis, and possible individual differences within the groups were completely disregarded.
The purpose of reanalysis of Kempler’s data here is to highlight the possible individual
differences within the groups.

We first analyzed individual (nonaggregated) data for each age-group separately. Note
that the individual data in this case consists of a set of two-category judgments (“large” or
“small”). The main results are reported in the upper portions of Table 1. The first column of
the table shows the results of fitting the weighted additive model (WAM), the second
column those of the simple additive model (SAM) with individual differences in dispersion
{0,), and the third column those of SAM without individual differences in dispersion (o). (In
WAM the dispersion parameters are necessarily allowed to vary over individuals.) In all
cases category boundaries (there is only one category boundary for each individual) were
allowed to vary over individuals. Three figures are reported in each cell of the table; the top
one (designated as —2(LL)) is minus twice the log likelihood, the middle one (designated as
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Table 1

Summary of MAXADD Analyses of Kempler's Data

Separate WAM SAM SAM
Analysis Op O o
-2(LL) 1933.5 2140.8 2191.6
Grade 1 daf 64 50 34
(N=16) AIC 2061.5 2240.8 2259.6
-2(LL) 3005.5 3166.2 3284.9
Grade 3 af 88 66 42
(N=24) AIC 3181.5 3298.2 3368.9
-2(LL) 3178.5 3283.3 3350.7
Grade 5 daf 88 66 42
(N=24) AIC 3354.5 3415.3 3434.7
-2(LL) 2302.1 2354.0 2439.6
Grade 7 af 76 58 38
(N=20) AIC 2454.1 2470.0 2515.6

-2(LL) 10419.6 10944.3 11266.8
Total af 316 240 156
AIC 11051.6 11424.3 11578.8

Joint -2(LL) 10513.2 11118.8 11477.5
Analysis df 268 186 102
AIC 11049.2 11490.8 11681.5

df) is the effective number of parameters in the fitted model, and the bottom figure is the
value of the AIC statistic [ Akaike, 1974], defined by

AIC = —2(LL) + 2 df. (15)

The AIC defined above is a badness of fit measure. It has been devised as a descriptive index
for compa?ing models having different numbers of parameters. Models with a larger
number of parameters naturally tend to fit the data better (i.e., a larger value of likelihood is
obtained). The AIC statistic avoids this superfluous improvement in fit by adding twice the
degrees of freedom of the model to —2(LL).

The effective number of parameters in the model is calculated as follows under the
present circumstance. Let N be the number of individuals. Let there ben, levels in Factor
A and ng levels in Factor B. Then the df of the simple additive model with constant
dispersion is given by n, + ng — 2 + N(M — 1), where, as before, M is the number of
observation categories on a rating scale. In the present case we haven, =nz =10, M =2,
and N, = 16, 24, 24 and 20 for the 1st, 3rd, Sth and 7th graders, respectively. Additional N,
parameters are necessary to allow individual differences in dispersion in SAM. Additional
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2(N, — 1) parameters are necessary to specify the weighted additive model, where 2 is the
number of factors.

According to the AIC criterion (the smaller it is, the better is the fit) the weighted
additive model fits to the data best in all age-groups, implying that there are substantial
individual differences in the weight structure within each group. The nature of the group
differences previously found with the WADDALS procedure should be reinterpreted in the
light of this new evidence.

An interesting observation to be made is that the differences in the AIC values between
WAM and SAM tend to diminish as the age levels go up. This implies that WAM is more
essential to the younger age-groups than to the older age-groups. That is, the individual
differences weights are more heterogeneous in the younger groups than in the older groups.
Figure 1 shows the estimated individual differences weights in the four age-groups. One
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tendency is clear; the plots of the weight estimates tend to converge toward the 45° lines
(dotted lines) between horizontal and vertical axes, as the age levels go up. For example, in
grade 1 there are quite a few children who put disproportionately large weights on height
including those two who totally ignore the width dimension, while those extreme subjects
decrease in number and in its degree until a majority of children put approximately equal
weights on both height and width of rectangles. Thus, the group differences we previously
found in the WADDALS analysis of Kempler’s data seem to be largely due to the difference
in the group composition; the groups consist of heterogeneous individuals within them-
selves but the degree of this heterogeneity within the groups tends to decrease with age.

The above observation may be subjected to a more rigorous hypothesis testing. If each
individual’s weights are considered as indicating a direction on a plane, the test developed
by Stephens [1969] can be applied to determine whether the degree of heterogeneity in the
weight structure is homogeneous over the age-groups [Jones, Note 2]. Let w,; be the vector
of estimated weights for the k'™ individual in the i group. Letw, = Y ¥i; w, (where N; is
the number of individuals in the i'* group) and R; = || w; || indicate the euclidean norm of w;
(ie., R; = (w;w;)"2) Then the test statistic is given by Z = Z*/C, where

Z*=D ln{i d{N, — R,.)} —DInD- Z In (N, - R),

i=1 i=1
S 1 1
{Z z—B}

3s—1)

(We are restating Stephens’ [1969] result here, since there is an important typographical
error in his paper.) In the above formula s is the number of groups,d; = N;— 1 and
D =3%%_, d;. Under the null hypothesis that there are no differences in the spread of
directions among the groups the statistic Z is known to be approximated by a chi square
with s — 1 degrees of freedom. In the present case Z turned out to be 21.8 with 3 df. It
indicates a significant departure from the equal spread hypothesis (well beyond the .001
significance level). The observed differences in the degree of heterogeneity in the spread of
individual weights across different age-groups are thus substantiated.

There seem to be group differences in the weight structure as well as individual
differences within the groups. But how about additive effects? Are there any significant
group differences in the additive effects? In the above analysis the data for each group were
analyzed separately, but this would not have been necessary, if it could be assumed that
there were no group differences in the additive effects. In order to find out whether this
assumption is tenable the data from all age-groups were analyzed simultaneously. The
results are reported at the bottom of Table 1. As expected, WAM has been found to be the
best fitting model among the three fitted models (WAM, SAM with ¢ and SAM with g,).
Note that WAM applied to all age-groups simultaneously assumes that the additive effects
are common to all age-groups. Separate analyses by groups, on the other hand, allow
additive effects to vary over the different groups. The comparison of the goodness of fit
between the two, then, should indicate whether the additive effects may be assumed
common across groups. The AIC from the joint analysis of all age-groups by WAM has
turned out to be 11049.2, which is slightly smaller than the joint AIC of 11051.6 from the
separate analyses of the age-groups. This latter AIC is obtained by adding the group AIC’s
over all age-groups. The difference is small (2.4). Nonetheless it clearly indicates that the
additive effects may be assumed common to all age-groups.

and

C=1+
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Additivity Analysis of Dissimilarity Data

Dissimilarity data are typically analyzed by multidimensional scaling (MDS). MDS
finds a stimulus configuration in a multidimensional space in such a way that distances
between stimuli best agree with the observed dissimilarities. The Minkowski power metric
model, most frequently used in MDS, can also be viewed as a special type of additive model
[Tversky & Krantz, 1979], in which dimension-wise differences in stimulus coordinates are
taken as the additive effects. Therefore, if a set of stimuli have a factorial structure (not
necessarily complete) according to some prescribed dimensions, we may test, whether the
observed dissimilarities may be represented as an additive function of those dimensions.

Figure 2 displays the Munsell configuration of the nine colors (all red) originaily
employed by Torgerson [ 1958]. The stimuli are factorially arranged in terms of the Munsell
Value (brightness) and Chroma (saturation) dimensions. If those Munsell dimensions rep-
resent the real psychological dimensions by which people judge dissimilarities (as advoca-
ted by the Munsell system), then dissimilarities between the colors have to be expressed as a
monotonic function of the sum of the effects of intervals on the two dimensions.

Let the interval bounded by ¥, and V, (see Figure 2) be denoted by V,, on the Value
dimension. Let a(V,,) represent the contribution of interval V,,. Similarly the contribution
of interval C,, on the Chroma dimension is denoted by f(C,,). Under the additivity as-
sumption the dissimilarity d,, ,, defined on V,;, and C,, should be monotonically related to

Value

V1-4 ol

V3'- o4 o5 6
V- o/ o8

V5"‘ .9

Chroma
L | 1 | 1

¢ G &G G G

FIGURE 2
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(V) + B(C,,). Let us assume, as in the Minkowski power metric model, that this function
is a power transformation. Then we may write

Oab, xy = {0Vap) + BCH}'?, (P2 1) (16)

For example, the dissimilarity between stimuli 1 and 3 are defined on V;, and C,,. Hence,
812, 14 = {a(Vy,) + B(C14)}'"”. For a given value of p we may perform an additivity analysis
of the dissimilarity data by estimating «(V,,) and B(C,,), and taking 1/p™ power of a(V,;)
+ B(C,,). We require that « and f are both nonnegative, and are zero for (and only for) null
intervals (e.g., a(V,,) = B(C,,) = 0).

Note that (16) is slightly more general than the Minkowski power metric model. To
make it equivalent to the latter we need some constraints on « and f; the 1/p** power of « or
B should be equal to the width of that interval in the Minkowski power metric model.
Consequently we need to consider only those intervals having no intervening boundaries
(e.g., V12, Va3, Va4, €tc.: the same for Chroma). The remaining intervals can be expressed as
a sum of those basic intervals. For example,

a(Vy3)P = oV, )P + al(Vy3)'P. a7

The above equation serves as a constraint imposed on «(V;;)!/?. Analogous constraints
should also be imposed on 8. By incorporating constraints we can evaluate the goodness of
fit of the Minkowski power metric model in reference to that of the unconstrained additive
model.

The degrees of freedom associated with the unconstrained additive model is 20 under
the present circumstance. There are 15 intervals on each dimension, five of which are nuli
intervals whose effects are set to zero, and there are two dimensions. They are reduced to
eight in the Minkowski power metric model. Only four basic intervals need be estimated on
each dimension. The current MAXADD programs use the penalty function method (see
Zangwill, 1969; see also Ramsay, 1978; Lee & Bentler, 1980) to impose the constraints.

Dissimilarity data to be analyzed were collected by the method of triadic combi-
nations. In this method stimuli are presented in triads, and the subject is asked to choose
the most similar stimulus pair, and then the most dissimilar pair. Since choosing the most
dissimilar pair among two remaining stimulus pairs (after the most similar stimulus pair is
eliminated) is equivalent to choosing the most similar pair among the two remaining pairs,
the task involved is essentially rank-ordering the three dissimilarities defined on a triad of
stimuli from the smallest to the largest. Hence it is considered a special case of the direc-
tional rank order method [Takane & Carroll, 1981]. Six replicated observations were
obtained from a single subject (male adult, normal vision) on a complete set of 84 triads.
The results of MAXADD analyses of the data are summarized in Table 2. Both the
unconstrained additive model and the Minkowski power metric model with prescribed
dimensions were fitted with the value of p varied systematically. The basic structure of the
table is the same as in Table 1. Three values are reported in each cell, which are, from the
top to the bottom, minus twice the log likelihood, the df of the model and the value of the
AIC statistic. The minimum AIC criterion indicates that the optimum value of p is some-
where between 2.0 and 2.5 in the Minkowski power metric model. (The values of AIC are
695.1 and 695.6 for p = 2.0 and 2.5, respectively.) This basically agrees with Kruskal’s
previous finding [Kruskal, 1964] in a similar situation. Our result, however, is contingent
upon the veracity of the Munsell dimensions as a model of judged dissimilarities between
the colors. For the two values of p (p = 1.0 and 2.0) with which the unconstrained additive
model was fitted, the smaller values of AIC were consistently found in the unconstrained
model than in their constrained counterparts. The difference, however, is relatively small for
a near optimal value of p (i.e., p = 2.0). This may indicate that the constraint set implied by
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Table 2

Summary of MAXADD analyses of the color data

Minkowski Unconstrained
power metric additive model
Power model
-2 (LL) 813.0 678.6
p=1.0 aft 8 20
AIC 829.9 718.6
-2(LL) 704.3
p=1.5 af 8
AIC 720.3
-2 (LL) 679.1 654.2
p=2.0 af 8 20
AIC 695.1 694.2
-2 (LL) 679.6
p=2.5 df 8
AIC 695.6
-2(LL) 685.1
p=3.0 af 8
AIC 701.1

the Minkowski power metric model (like the one shown in (17)) is at least not too radically
violated, given p &~ 2.0 and under the additivity hypothesis.

The next question is the additivity of the two Munsell dimensions without unidimen-
sional constraints. In order to answer this question MAXSCAL-4 [Takane & Carroll,
1981] was applied to the same set of data. MAXSCAL-4 is a maximum likelihood MDS
procedure specifically designed for dissimilarity data obtained by the directional ranking
method. The MDS analyses do not assume that the Munsell dimensions are correct though,
due to a limitation in the MAXSCAL-4 procedure, we had to assume p = 2.0, which was
partly justified by the fact that the optimum value of p was near 2.0 in the previous
additivity analysis. In the MDS analysis the best fitting model was found to be the three
dimensional solution with the AIC value of 540.8. This value is distinctly smaller than that
of the best solution obtained from the additivity analysis. Not only was the additivity
assumption (i.e., additivity of the Munsell dimensions) drastically violated, but also was the
derived stimulus configuration found to be curved in an interesting way in the three
dimensional euclidean space. It is like a two dimensional surface embedded in the three
dimensional space. More precisely, the configuration looks like a valley (or a ridge) between
two mountains.

The third dimension did not emerge so distinctly in the previous studies [Torgerson,
1958; Nakatani, 1972; Saito, 1977; Takane, 1978] in which the same set of stimuli were
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employed. The apparent disagreement may be related to the fact that the present study
obtained replications within a single subject rather than over different subjects. If the nature
of individual differences is such that the individual’s cognitive maps of colors differ in the
way the configuration is curved along the third dimension, the data aggregated over differ-
ent individuals will not yield a clear third dimension. On the other hand, the three dimen-
sional configuration within the subject may have been caused by the noneuclidean (at least
locally) nature of the cognitive map of colors [Takane, 1982]. The important point here is
that, whatever the discrepancy is, the additivity of the two Munsell dimensions is clearly
rejected with the current data set.

Conclusion

We have seen two examples of analyses with the MAXADD procedure. These are, of
course, just two examples, and a host of other interesting applications could be found
without much difficulty in scientific literature; in psychophysics [Anderson, 1970; Fal-
magne, 1976], in decision making [Wallsten, 1976], in human judgments [CIiff, 1959;
Anderson, 1974] and in other social sciences [Green & Rao, 1971; Johnson, 1974]. Indeed
such examples abound in scientific literature.

With so many potential applications the MAXADD procedure discussed in this paper
adds a new phase to the analysis of additivity. It can fit both the simple and the weighted
additive models, allowing interesting model comparisons which have not been possible
previously. The asymptotic chi square and the AIC statistics make these model compari-
sons much easier to perform than with any previous least squares procedures in which they
are not available. It can also deal with three major types of data, categorical rating, pair
comparison and directional ranking data. Although there still are other types of ordinal
data (e.g., nondirectional ranking data and categorical ratings of pair comparisons
[Takane, Note 1]) that cannot be properly handled within the current MAXADD pro-
cedure, the above three types of data should cover most of the representative types of
ordinal data which may arise in psychology. Furthermore, the constrained optimization
feature of the MAXADD procedure enables one to perform interesting model comparisons
which were not possible previously, including the comparison between the additive model
and the additive-difference model.
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