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ANALYSIS OF COVARIANCE STRUCTURES AND
PROBABILISTIC BINARY CHOICE DATA

Yoshio Takane
MCcGill University, Canada

Pair comparison judgments are often obtained by multiple-judgment
sampling, which gives rise to dependencies among observations.
Analysis of covariance structures (ACOVS) provides a general
methodology for taking apart between-subject and within-subject
variations, thereby accounting for the dependencies among observa-
tions. In this expository paper we show how various concepts
underlying ACOVS can be used in constructing probabilistic choice
models that take into account systematic individual differences.

1. Introduction

Stimulus comparison presents a general paradigm in diversified fields of
scientific investigations (Bradley, 1976). In bioassay strength of life of an
organism is compared with dosage levels of a drug. In psychology,
econometrics and political science, a subjective quality of a stimulus (e.g.,
subjective length of a line, grayness of a color, preference toward a politi-
cal candidate, etc.) is compared against that of another. In statistics
loglinear analysis of a frequency table compares the strengths with which
subjects belong to certain categories. In a mental test subjects’ ability is
compared against difficulty of a test item.
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In each case, p;j, the probability that stimulus i is chosen over
stimulus j, indicates the degree to which stimulus i dominates stimulus j.
However, there are two possible interpretations of p;;, which closely paral-
lel two sampling schemes of pair comparison data (Thurstone, 1927). In
Case 1 replications (both within and across stimulus pairs) are made
strictly within a single subject, and thus inconsistency in choice is attri-
buted to momentary fluctuations in the internal state of the subject. The
pij in this case represents the proportion of times stimulus i is chosen over
stimulus j by the subject. In Case 2, on the other hand, the probability
distribution is over a population of subjects. That is, the stochastic nature
of choice is attributed to subject differences. The p;; in this case
represents the proportion of the subjects in the population who choose
stimulus i over stimulus j.

Despite the difference in the interpretation, basically the same class of
models have been used in both cases. Typically, these models assume
statistical independence among observed choice probabilities. However,
in Case 1 all pair comparison judgments are made by a single subject, so
that there should be no sequential effects. This rules out identifiable
stimuli to be used in Case 1 because of the memory effect. In Case 2,
each subject is supposed to contribute one and only one observation. This
usually ensures the statistical independence. On the other hand, it requires
a huge number of subjects. Pair comparison experiments thus rarely use
either one of these extreme sampling designs. Instead they typically
employ a mixed design, in which each of a group of subjects is asked to
respond to all possible pairs of stimuli. That is, replications over different
stimulus pairs are obtained within subjects, and replications within
stimulus pairs are obtained across subjects. This mixed mode sampling
scheme is analogous to the treatment by subject design in ANOVA and is
called multiple-judgment sampling in this paper. This sampling design is
especially popular in preference judgments, because researchers in this
area are often interested in how preferences toward various stimuli corre-
late with each other, how patterns of preference distribute in the popula-
tion of subjects, and how an individual’s pattern of preference can be
represented in relation to others.

In the multiple-judgment sampling p;; can be still interpreted as the
proportion of the subjects who choose stimulus i over stimulus j, as in
Case 2. However, due to within-subject replications across different
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stimulus pairs, observed choice probabilities are no longer statistically
independent. Systematic individual differences give rise to the dependen-
cies among the observations. For example, a person who tends to prefer
product A to B may also tend to prefer C to D. Models of pair comparis-
ons in this case should take into account the systematic individual differ-
ences in pair comparison judgments. However, with notable exceptions
(Bock & Jones, 1968, pp. 143-161; Bloxom, 1972; Takane, 1985) nearly
all previous models of pair comparisons ignored the systematic individual
differences.

What is needed is a general methodology for separating the systematic
individual differences components in the data from strictly random com-
ponents. The method particularly relevant in this context is the analysis
of covariance structures (ACOVS) originally proposed by Bock and Barg-
man (1966) and subsequently amplified by Joreskog (1970). As has been
demonstrated recently (Takane, 1985), the ACOVS framework can be suc-
cessfully used to extend conventional Thurstonian pair comparison models
to multiple-judgment sampling situations. In addition the ACOVS frame-
work may bring on considerable richness to analysis of pair comparison
data in general. The purpose of this paper is to explore and overview this
possibility.

2. Thurstonian Models of Pair Comparisons

Let us begin with a brief review of Thurstonian random utility models
(Thurstone, 1927, 1959). Over the past several years there were interest-
ing developments in this approach (Takane, 1980; Heiser & de Leeuw,
1981; Carroll, 1980; De Soete & Carroll, 1983), which directly lead to the
ACOVS formulations of these models.

In Thurstone’s original pair comparison model each stimulus is associ-
ated with a random variable (called a discriminal process) with prescribed
distributional properties. Let Y; represent the random variable for
stimulus i. It is assumed that

Y ~N(m;, 08, i=1,.,n (1)

where m; = E(Y;) and s,‘2 =V (¥;). The m; represents the mean scale
value (e.g., preference value), and s? the degree of uncertainty of stimulus
i. When stimuli i and j are presented for comparison, random variables
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corresponding to these stimuli, namely Y; and Y;, are generated, and the
comparison is supposedly made on the realized values of the random vari-
ables at the particular time. The comparison process is supposed to take
the difference between Y; and Y, and either the value of ¥; — ¥; or some
monotonic transformation of it is directly reported, or only its sign Gf
Y; - Y; is positive or negative) is reported in the form of choice (either
stimulus i is chosen or stimulus j is chosen). Under the distributional
assumption made above,

Y; = Yj ~ N(m; = mj, df), ®)
where
d} =V - Y)=s? +57 -2 (3)

with s;; = Cov(Y;, ¥;). Thus the probability that stimulus i is chosen over
stimulus j is given by

pij = Pr(Y; — Yj >0)
q;j

= | ¢@)dz = D(gy) @)
where g;; = (m; — m;)/d;j, and ¢ and O are, respectively, the density func-
tion and the cumulative distribution function of the standard normal distri-
bution. The d;; indicates the degrees of uncertainty in the comparison.
When the uncertainty is small, even a small difference between the m; and
m; makes a lot of difference in the choice probability. If, on the other
hand, there is a great deal on uncertainty in the comparison, the choice
probability is relatively insensitive to the difference between m; and m;.

The d;; is sometimes called an uncomparability index (Halff, 1976).
Despite its generality and appeal Thurstone’s general pair comparison
model (4) has one major drawback. The number of parameters in the
model exceeds the number of observed binary choice probabilities. Some
simplifying assumption is therefore necessary. In the simplest possible
case it is assumed that d;; =1 for all i and j (Case 5). However, this
implies that all stimulus pairs are equally comparable. It also implies the
context independence of the pair comparison process. That is, the choice
probability is a function of only scale values of the stimuli involved, and
these scale values remain invariant no matter with which stimuli the
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particular stimuli are compared. Krantz (1967) calls this condition ‘‘sim-
ple scalability”>. However, numerous studies (Debreu, 1960; Krantz,
1967; Restle, 1961; Tversky & Russo, 1969; Rumelhart & Greeno, 1970;
Tversky, 1972a, b; Sjoberg, 1977, 1980) reported violations of simple sca-
lability in a variety of empirical situations.

All stimuli are not equally comparable. The equal comparability holds
only when stimuli to be compared are relatively homogeneous. When the
stimuli are radically different on ‘‘irrelevant’” dimensions (i.e., dimensions
other than the one on which the comparison is supposedly made), they
tend to be less comparable, and the choice probabilities tend to be less
extreme (closer to 1/2). If, on the other hand, the stimuli are similar, they
are more comparable, and consequently more extreme choice probabilities
tend to result (Krantz, 1967; Tversky & Russo, 1969; Rumelhart &
Greeno, 1971). Thus differential degrees of similarity among stimuli give
rise to context dependencies in the stimulus comparison process, called
the similarity effect.

This means that d;; in Thurstone’s original model has its role to play.
In particular, it has been shown (Halff, 1976) that d;; has distance proper-
ties, and d;; satisfies the three metric axioms (minimality, symmetry and
triangular inequality) required of the distance. The distance properties of
d;; make Thurstone’s general model considerably richer in its descriptive
power than those models that assume simple scalability. Specifically,
Thurstone’s general pair comparison model satisfies moderate stochastic
transitivity (MST), but it can violate strong stochastic transitivity (SST),
which is known to be equivalent to the simple scalability (Tversky &
Russo, 1969).

It is interesting to point out that d;;, the distance between stimuli i and
J» can be interpreted as a type of dissimilarity between the stimuli. Thus,
dividing, m; — m; by d;; in g;; in Thurstone’s general model is consistent
with the empirical evidence (mentioned earlier) indicating that more dis-
similar stimuli are less comparable. Sjoberg (1977) observed a high
correlation between d;; estimated from pair comparison judgments and a
direct similarity rating between stimuli i and j separately obtained. The
d;j is thus not only theoretically expected to represent the stimulus dis-
similarity, but there is also some empirical evidence to support the theory.

The problem is how we may recover d;; in Thurstone’s general model
without overparametrizing it. Attempts to extend Thurstone’s pair
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comparison model beyond Case 5 are almost as old as Thurstone’s origi-
nal proposal of the model (Thurstone, 1927). For example, in Case 3 it is
assumed that 5;; =0 for all i and j, thereby reducing the number of
parameters considerably. Case 4 was derived as a convenient numerical
approximation to Case 3. However, in these cases differential comparabil-
ity (d;j) between stimuli is exclusively attributed to individual uncertain-
ties (s,~2 and s]2-). Thus, they are rather restrictive as models of contextual
effects in stimulus comparison processes.

A couple of significant proposals were made in early 1980’s in the
way of partially recovering d;; in Thurstone’s model. Takane (1980) and
Heiser and de Leeuw (1981) independently proposed the factorial model
of pair comparisons (hereafter called the THL model), in which the
covariance matrix between discriminal processes was assumed to have a
lower rank approximation. That is,

S = (i) = XX )]

where X is an n by b (< n) matrix where n is the number of stimuli and b
is the rank of matrix S. This amounts to assuming

d% = (x; — x;)'(x; — X;), (6)

where x; and x; are i th and jth row vectors of X, since s,2 = x,-’xj and
sjz = x;’x;. That is, d;; is assumed to be the Euclidean distance between
stimuli i and j represented in a b dimensional Euclidean space. The X
then represents the matrix of stimulus coordinates.

An interesting development was due to Carroll (1980) and De Soete
and Carroll (1983). The model is called the wandering vector model
(WVM). In this model it is assumed that stimuli are represented as points
in a b dimensional space where stimulus coordinates are given by X as in
the THL model, that there is a random vector that varies over time, and
that the projections of the stimuli onto this vector at a particular time
determines the pair comparison judgment at the particular time. Under an
appropriate distributional assumption on the vector we may derive the dis-
tribution of ¥; —Y;, and the choice probability, p;;. Let u" denote the
wandering vector, and let u* ~ N(v,I). Then

Y;-Y; = (x; - x;)u" ~ Nl(x; - x;)'v, 2], (7

where d;; is the same as in (6). It follows that



Analysis of Covariance Structures 145

pij = Prl(x; — x;Yu’ > 0]
Tij
= | ¢z = o), ®)
where r;; = (x; — x;)'v/d;;.
It has been shown (De Soete, 1983) that the WVM is a special case of
the THL model in which not only d;; but also m; and m; are constrained

in a special way; i.e.,
m; =x;’v and mj = xj'v. )]

Scale values of stimuli are represented in a particular direction in the
space. Thus, although the THL model and the WVM were initially
derived on the basis of entirely different rationales, they are quite similar
to each other.

Both the THL model and the WVM are designed to account for the
differential comparability among the stimuli. However, these models
strictly apply to either Case 1 or Case 2, where differences processes,
Y; — Y;, and consequently observed choice probabilities, are assumed sta-
tistically independent across all pairs of stimuli. Both Takane (1980) and
De Soete and Carroll (1983) developed parameter estimation procedures
for their models. They both assume the statistical independence among
the observations, while they use the data obtained by the multiple-
judgment sampling. As has been discussed, the independence assumption
is not tenable in the multiple judgment sampling. However, the assump-
tion is made in virtually all previous estimation procedures for the
Thurstonian pair comparisons models (e.g., Hohle, 1966; Bock & Jones,
1968; Arbuckle & Nugent, 1973; Takane, 1980; De Soete & Carroll,
1983; De Soete, Carroll, & DeSarbo, 1986). In order to account for the
statistical dependencies among observations, pair comparison models had
to await analysis of covariance structure formulations (Bloxom, 1972;
Takane, 1985), to which we now turn.

In closing of this section it might be pointed out that analogous
developments (models of simple scalability to moderate utility models)
can be traced in the Bradley-Terry-Luce (Bradley & Terry, 1952; Luce,
1959) type of constant utility model approach (Restle, 1961; Tversky,
1972a, b; Strauss, 1981). However, these developments are not readily
amenable to the ACOVS formulations. See Indow (1975) and Luce
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(1977) for insightful reviews of this line of development.

3. ACOVS Formulations

In order to reformulate the THL model and the WVM in terms of analysis
of covariance structures (ACOVS; Joreskog, 1970), let us first generalize
the variance structure of these models. It was originally assumed that
d,zj =(x; — xj)’(x,- —X;) in these models. To this we may add
g7 + g,2 + k,zj where g? and gj2 are stimulus-specific uncertainties left
unaccounted for by (x; — x;)’(x; — X;), and k,zj represents uncertainty asso-
ciated with a specific stimulus pair. These quantities represent amounts of
specification error at two different levels.

We now generalize this to covariance structures. Let t be a vector of
t;j=Y; —Y; + ¢;; arranged in a specific order, where ¢;; is the error ran-
dom variable associated with stimulus pair, ij. In a complete sampling
design each subject makes judgments for all possible pairs of stimuli. In
such a case t is a of dimensionality M = n(n—1)/2, where n is the
number of stimuli. Let A be an M by n design matrix for pair comparis-
ons, whose rows are arranged in the same order as the elements of t.
Each row of A corresponds with a specific comparison. If that com-
parison involves stimuli i and j and the direction of the comparison
requires Y; — Y; (rather than Y; — Y;), the row has 1 in the ith column, -1
in the jth column and zeroes elsewhere.

Let y be an n-component vector of Y;, and let e be an M-component
vector of e;;. We assume

e ~ N0, K?) (10)

where K? is assumed to be diagonal with its diagonal elements denoted
by k,2] It may be further assumed k,-2j =k? for all ij. Then t may be
expressed, using matrix notation, as

t=Ay+e. an

The Ay takes differences between Y; and Y; in prescribed directions for
all possible pairs of stimuli.
We make a further structural assumption on y; namely,

y=Xu" +w', (12)
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where
w =w+m with w~N(©,G?), (13)
and
u'=u+v with u~N@,1I). (14)

Here m is the vector of m; (i =1,..,n) and w is the random vector of
stimulus specificities. The G? is usually assumed to be diagonal with its
ith diagonal element, g2, and indicates the degrees of stimulus specificities
or uncertainties. The u” is the wandering vector introduced earlier.

It follows that

t= A(Xu* + w*) +e
~ N[AKXv + m), AXX’ + GHA” + K?). (15)

When it is assumed that v = 0, then E (t) = Am, and since Am is the vec-
tor of m; —m;j, this case corresponds with the THL model. If, on the
other hand, it is assumed that m =0 we obtain E(t) = AXv. This
represents the mean structure, (x; — X;)'v, required of the WVM. The
covariance structure, A(XX’ + G?)A’ + K2, remains the same for the both
models. Note that diagonals of this covariance matrix are of the form,
(x; — xj)'(xl- - Xj) + g,-2 + ng. + k,-zj, which is indeed the variance structure
required of both the THL model and the WVM. Note also that off-
diagonal elements of A(XX’+ G?)A” + K? are no longer zero, implying
non-independence among the elements of t. It is interesting to note that
the WVM is a random effect alternative to Bechtel, Tucker, and Chang’s
(1971) scalar product model. In this model subjects are treated as fixed
effects; i.e., for subject k, t; = AXv, and v; is explicitly estimated for
each k.

Analogous ACOVS formulations of classical Case 5 and Case 3 are
also possible. Although these cases are not likely to provide satisfactory
descriptions of pair comparison data, they may serve as good benchmark
models. In Case 5 dj; is assumed to be constant across all combinations
of i and j. The simplest way this could occur is when s,-2 and sjz are con-
stant, and s;; is zero. In the ACOVS formulation this can be achieved by
setting X = 0, and G* = s*1. Note that s;; = 0 is not absolutely necessary
to achieve d;; = constant. It is sufficient to have s;; = constant (Guttman,
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1954). This case corresponds with X = Al, where 1, is an n-component
vector of ones. However, this reduces to the previous case, since
Al, =0y. Bock and Jones (1968), in their primitive attempt to incor-
porate systematic individual differences in Thurstone’s pair comparison
model, present a model which is essentially equivalent to the ACOVS for-
mulation of Case 5 in which K? =0 is also assumed. In Case 3 it is
assumed that s;; =0 for all distinct pairs of i and j. This case can be
obtained by X =0 or X = Al,, and G2 being diagonal (not necessarily
constant).

Model (15) may be fitted to the data by the maximum likelihood or
the generalized least squares method (Browne, 1974, 1984), when t is
directly observed. In either case some existing programs, such as LISREL
(Joreskog & Sorbom, 1981), EQS (Bentler, 1985) and COSAN
(McDonald, 1980), may be used for actual computation. When only
choices are observed, t has to be reduced to choice patterns. Correspond-
ingly the distribution of t must be converted into the probability distribu-
tion of the choice pattern. Let h denote an observed pattern, and let f be
the density function of t. Then

Pr(h) = [ £ (bdt (16)
R

where R is the multidimensional rectangular region formed by the direct
product of intervals R;;, where R;; = (0, ) if stimulus i is chosen over
stimulus j (#;; > 0) and R;; = (—eo, 0) is stimulus j is chosen over stimulus
i (I,‘j < 0).

Equation (16) is generally extremely difficult to evaluate due to
nonzero covariances among the elements of t. However, the first and the
second order marginal probabilities are relatively easily evaluated:

py = | filtdey, (17)
0
where f;; is the univariate marginal density of #; ~ N[(m; —my),

x; — xj)’(xi - X;) + g,~2 + gjz + k,zj)]. (The m; —m; must be replaced by
(x; — x;)’v in the WVM.) Similarly,
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Dij,qr = Pr(i is chosen over j and q is chosen over r)

il
O
O3

Jij.qrijs tgp)dtj gy, (18)

where f;; o is the bivariate marginal density of t;; and 5. Muthen (1984)
developed LISCOMP, a computer program for the generalized least
squares estimation of the ACOVS model for categorical data using the
first and the second order marginal probabilities. It has been shown
(Christoffersson, 1975; Muthen, 1975) that a loss of information incurred
by ignoring higher order marginal probabilities in the estimation is rela-
tively minor. Alternatively, LISREL may be used with tetrachoric corre-
lations, but it only allows the simple least squares estimation.

The ACOVS formulation of the WVM can be readily extended to the
wandering ideal point (WIP) model recently proposed by De Soete et al.
(1986). In the WIP model a subject is represented as a point which varies
over time. The relative distances between stimulus points and the subject
point at a particular time are supposed to determine preference relations
observed at the particular time. The distribution of the subject point is
assumed due to time-sampling of observations within a single subject.
However, with the ACOVS formulation the model can be extended to the
distribution of the ideal point over a population of subjects.

Let u” be a random vector of coordinates of the subject point, and let

u’ ~ N(v, D?),

where D? is a diagonal matrix. (The D? can be always made diagonal by
rotating the space appropriately.) Let d(u”) be a vector of one half times
squared Euclidean distances between stimulus points and the ideal point,
ie.,

diu”)
duy=1/2| . (19)
a2u")

where d,z(u*) =(x; — u*)’(x,- - u*). In the WIP model the distance is
assumed inversely related to preference. Thus, we may set
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y=—d@u") +w (20)
in (11), where w is defined in (13). Then
t=A(d@’) +w) +e
=AXu" - %x? +w) +e
~ N[AKXvV - %xP, AXD?X’ + GHA’ + K?], Q1)
where
X1 X
x? = diag(XX"1, =
xn;xn

Note that this model differs from the WVM in that it has the additional
% Ax® term in the mean structure XD?X’ ( rather than XX’) in the
covariance structure. Reparametrization by X' = XD will make the
covariance structure identical in form to that of the THL model and the
WVM. However, the mean will then be AX™v" — % diag(X"'D72X")1,,),
so that we cannot get rid of D? entirely. Vector —Ax? has (x;"xj — x;'x;)
as its elements. Due to the nonlinear nature of this term, a special com-
puter program is necessary to fit the ACOVS WIP model. An extension
to choice data may be done in a manner similar to that in the WVM.

4. Possible Generalizations

A general method for analysis of covariance and mean structures (ACOVS
with structured means) was given by Joreskog (1970). The method
includes, among other things, conventional factor analysis, variance-
component models, path analysis, linear structural equations, etc. Our
approach is a special case of this general approach. Sorbom (1981) has
shown how the ACOVS with structured means could be treated in a
unified manner by analysis of moment structures (AMOMS) (see also
Bentler, 1983). In our case the mean and covariance structures in (15)
can be expressed as

M = AX(v + DX’ + mm’ + GH)A’ + K2 22)
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e
in terms of AMOMS, where it is further assumed that v=0or M = 0.

Perhaps Bloxom (1972) was the first to note the importance of the
ACOVS methodology in modeling pair comparison data. He developed
his simplex model of pair comparisons (similar to Case 5) based on the
ACOVS framework. Takane (1985), in an attempt to incorporate Sys-
tematic individual differences into the THL model and the WVM, arrived
at the ACOVS formulations of these models, which are similar in form to
Bloxom’s simplex model.

Working in the general ACOVS framework opens up an number of
possibilities. First of all, a variety of interesting hypotheses (assumptions)
can be tested explicitly. For example, G2 = a?I and/or K? = b%I may be
assumed and tested, or G2 = 0 and/or K? = 0 may be assumed in (15) and
their empirical validity tested. Bechtel et al.’s (1971) model corresponds
with m=0, G2=0 and K> =0. In the THL model we may relax
XX’ + G2 into a general positive definite matrix, S. We then have

E(t) = Am
and
V(t) = ASA’ + K2. 23)

The goodness of fit comparison between this model and the original THL
model tests the adequacy of the factorial decomposition of S into
XX’ + G2

Two particularly interesting possibilities emerge, when stimulus infor-
mation and/or subject information is available. Stimuli can be character-
ized by a set of externally supplied attribute values (Bock & Jones, 1968),
by a set of features (Rumelhart & Greeno, 1971; Tversky & Sattath,
1979), or by a set of combinations of levels of manipulated factors
(Sjoberg, 1975). Similarly, subjects performing the comparisons may be
characterized by their background variables, such as sex, age, socio-
economic status, levels of education, etc. In the ACOVS framework these
external variables can be incorporated in a relatively straightforward
manner.

Let B be an n by p (< n) matrix of stimulus information. There are at
least of couple of ways to incorporate this information. For example, we
have
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t=A®Bs +Xu" +w) +e
~ N[ABmM" + Xv), ABD?B’ + XX’ + GHA’ + K2  (24)

where s* ~ N(m®, D?). This model attempts to explain part of stimulus
variability by B and the rest by X. This is analogous to Yanai’s (1970)
approach to factor analysis with external criteria, in which whatever
effects that can be explained by the external criteria are first partialed out,
and factor analysis is applied to a residual covariance matrix. This is to
see if there is anything interesting left unaccounted for by the external cri-
teria. More simplified or complicated versions of this model may be
obtained, as desired, by specializing s* in (24); eg., s =m,
*=Pq" +r, etc. In either case it may be further assumed that v =0
andfor X = 0.

An alternative way to incorporate B is to constrain X by BQ, where Q
is analogous to regression coefficients. This amounts to assuming that all
that has been explained by X can be explained by B. We then have

t=ABQu" +w) +e
~ N[ABQv, ABQQ'B’ + GH)A’ + K?]. (25)

A slight generalization of this model would replace Qu* by Qu® +s
where s ~ N(0, D2). We then have

V(t) = ABQQ’ + DB’ + GHA’ + K2.

Subject information may also be incorporated in several ways. When
the information is provided in nominal variables (e.g., male or female),
one possibility is to partition the data into groups and to analyze them
separately (Joreskog, 1971; Muthen & Christoffersson, 1981). This allows
completely different covariance structures as well as mean structures
across the groups. Of course, it is entirely permissible to constrain some
elements in the covariance and mean structures to be equal across the
groups. In fact, the gist of the general ACOVS method is that we may
explicitly test the empirical validity of such constraints.

Alternatively, subject information may be incorporated in a manner
similar to regression analysis. Let z; be the g-component vector of the
ktk subject’s background variables, and let my and v, represent m and v
in the THL model and the WVM, respectively, for subject k. We have
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two options. We may impose a regression structure on either my or vg.
In the first case, we have my =Pz, and assume v; =0, so that
E(t,) = APz, and V(ty) = AXX + GHA’ + K? or
APD?P’ + XX’ + GH)A’ + K2.  (In either case XX’ +G? may be
replaced by a more general positive definite matrix, S.) In the second
case we assume vi = P*z, while m; =0, so that E(t,) = AXP'z, and
Vty) = AXX + GHA’+K? or AXP'D'ZP” + DX’ + GHA’ + K?).
(Again XX’ + G? may be replaced by S.)

Both stimulus and subject information can be simultaneously incor-
porated. Resulting models are combinations of those for the stimulus
information and those for the subject information.

All the generalizations discussed in this section carry over to the WIP
model in a relatively straightforward manner. Assuming that we have
both stimulus and subject information, X = BQ and v; = P*zk, we obtain,
in the simplest case,

E (t;) = A(BQP 7 — ¥ diag(BQQ'B")1,),
with V(ty) = ABQQ'B’ + G)A’ + K2.

5. Concluding Remarks

In this paper we have shown that the ACOVS methodology is useful in
probabilistic pair comparison modeling. No empirical examples: are given,
and the paper largely remained expository. An obvious follow-up is to
exemplify the methodological ideas described in this paper through the
analyses of actual data sets. Although some of the ACOVS models for
pair comparisons presented in this paper can be fitted by existing pro-
grams (e.g., LISREL, LISCOMP), there are others that cannot. For exam-
ple, no ready-made programs exist for parameter estimation for the
ACOVS wandering ideal point models.

The normality assumption on u and w, and consequently on t in (15),
may not be adequate. In that case we may either transform the data or
use a fitting criterion that does not assume normality. Asymptotically dis-
tribution free methods (Browne, 1984) may be useful in this context.

It may appear that the proposed ACOVS models of pair comparisons
have too many parameters to be estimated, particularly when the observed
data are binary choices. This is indeed true for the general ACOVS
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model. However, it is not true in our practical applications of the
ACOVS model, since matrix A is always a fixed matrix in the pair com-
parison models. The number of parameters can be further reduced, if
desired, by assuming that G? and/or K? are constant diagonal matrices.

There are other possible generalizations that have not been explicitly
discussed in this paper. For example, an extension to multiple choice
situations seem to be rather straightforward. Also, treating subject’s back-
ground variables as random effects (rather than fixed effects) is already
feasible in LISREL (Joreskog & Sorbom, 1981). This case corresponds
with the error-in-variable regression analysis in the ACOVS framework.
Our prospect of further developing the ACOVS methodology in connec-
tion with probabilistic choice models is thus bright, despite the fact that
there are numerous tasks yet to be accomplished.

Appendix

How the ACOVS THL model and the WVM (15) may be fitted by
LISREL is not so trivial. In this appendix we explain how this is done.
We also explain how (24) and (25) can be fitted by LISREL. McArdle
and McDonald (1984) provide a general framework for establishing the
necessary correspondence. We appreciate Michael Browne’s help (per-
sonal communication) in clarifying the matter.

The LISREL model consists of three submodels:

1. Structural Equation Model: 1 = B7fj + TE + ¢
2. Measurement Model for y: y = AyT + €
3. Measurement Model for X: X = A€ + 5,

where the symbols with a tilde on top denote random vectors. Aside from
its distributional assumption (i.e., multivariate normality) the model is
comp]etcly specified by the following eight matrices: Ay, Ay, B, T’
o= E(éé ), ¥ = V(C) ©: = V() and O —V(5) (We stick with the
notational convention used by Joreskog and Sorbom (1981) as much as
possible.) Throughout this appendix it is assumed that Ay =1, ® =1,
0, = K? (diagonal matrix) and ©5 = 0 (zero matrix). The moment struc-
ture of y is then expressed as
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M = Ay - By I(IT” + ¥)I - By A, + K2, (A-1)

The following results hold:

Result 1. The moment structure of y (t in our notation) for the
ACOVS THL model or the WVM is obtained by setting

=[A 0]
2= 3
r- 3]

and

_|G* 0
v [5 9

(Proof) Ay(I - B)‘1 =[A AX]. Thus, (A-1) becomes
mm’ 0 G2 0 A’
[ vv]+ {0 I} L(’A'}J’KZ

= A(mm’ + G2 + X(vw + DX)A’ + KZ,

=[A AX]

which is identical to (22).
Result 2. The moment structure of ¥ (t in our notation) corresponding
to (24) is obtained by

= [A AB" 0]

and
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G2 0 o0
¥=1|0 D? 0,
0 0 I

where in order to avoid confusion our B is denoted by B’. (Note that in
the above both A and B" are assumed known a priori, so that AB” can be
evaluated a priori.)
(Proof) Ay(I - B! =[A AB* AX]. Thus, (A-1) becomes

0 0 G2 0 of| A

0
M=[A AB* AX]|[0 m'm"™ 0|+ |0 D2 of |B"A’|+K?
0 0 v 0 0 I X'A’

= AG? + B'(m"'m"” + D)B" + X(vwv + DX)A’ + K?,

which is identical to the moment structure required by (24).
The above specification is apparently not unique. For example, setting

Ay=[A 0 0]
0 B X
B=10 0 0
0 0 0

will give the same result. This latter specification may be more general
than Result 2 in that it does not assume that both A and B* are known a
priori. However, in Result 3 both A and B* have to be assumed known a
priori.

Result 3. The moment structure of y (t in our notation) corresponding
to (25) is given by setting

Ay =[A AB® 0]

000
B=1{00Q

000

0
r=10

Y

and
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GZoo
=10 00
0 01

(Proof) Ay — B)! =[A AB" AB’Q). Thus, (A-1) becomes

., .. |00 o G* 0 off | A
M=[A AB® AB’Q]||0 0 0|+ |0 0 0}|| B*'A” | + K?
00 v 0 0 I|| |QB*A’

= A(G? + B'Q(vw' + DQ’B*)A’ + K2,

which is identical to the moment structure required of (25). A slight gen-
eralization can be made by setting

G* 0

¥=|0 D?

0 0

- O

The moment structure then becomes

M = A(G? + B*(Q(vv’ + DQ’ + D)B*)A” + K2.
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