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A new method of multiple discriminant analysis was developed that allows a mixture of
continuous and discrete predictors. The method can be justified under a wide class of distri-
butional assumptions on the predictor variables. The method can also handle three different
sampling situations, conditional, joint and separate. In this method both subjects (cases or any
other sampling units) and criterion groups are represented as points in a multidimensional euclid-
ean space. The probability of a particular subject belonging to a particular criterion group is
stated as a decreasing function of the distance between the corresponding points. A maximum
likelihood estimation procedure was developed and implemented in the form of a FORTRAN
program. Detailed analyses of two real data sets were reported to demonstrate various advantages
of the proposed method. These advantages mostly derive from model evaluation capabilities
based on the Akaike Information Criterion (AIC).

1. Introduction

Discriminant analysis (DA) concerns the classification of objects according to some
criterion (Hand, 1981; Lachenbruch, 1975). DA is of interest to psychometricians, not
only for its practical use in medical diagnosis, psychiatric classification, aptitude diag-
nosis, and so forth, but also as a model (albeit often primitive) of psychological processes
underlying such phenomena as categorization, pattern recognition and discrimination
learning.

DA consists of two stages. In the first stage a specific formula is developed for
classification according to some model. This usually involves estimation of parameters in
the model using a so-called training (or learning) sample in which memberships of objects
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are known a priori. The formula is then applied to initially unclassified objects in a test
sample to predict their group membership.

A variety of methods have been developed for DA, ranging from highly parametric
methods at one extreme (e.g., Fisher’s, 1936, linear discriminant function) to non-
parametric methods at the other (e.g., kernel discriminant analysis). These extreme meth-
ods have their own advantages and disadvantages (Lachenbruch, Sneeringer, & Revo,
1973; Krzanowski, 1977). While the parametric methods are often the most efficient
methods when the parametric assumptions are reasonably accurate, their performance
tends to deteriorate as the assumptions become less realistic. The nonparametric methods,
on the other hand, are more fiexible, but are much less efficient than the parametric
methods when the latter are indeed appropriate. In this paper we present a method of DA
which lies between these two extremes, and captures the best of both approaches. The
proposed method is not as rigid in its assumption as the most parametric methods, and
yet not as data-dependent as the most nonparametric methods.

In the proposed method, which we call “ideal point” DA, subjects (cases or any other
sampling units) are mapped into a multidimensional euclidean space as a linear function
of predictor variables. Criterion groups are assumed to have ideal points in the space that
represent the most typical (prototypes) of the groups. It is assumed that the more similar a
particular subject’s profile is to the prototype of a criterion group, the higher is the
probability that the subject belongs to the group. In the space in which both subjects and
criterion groups are represented, their similarity is represented by the distance between
the corresponding points. The probability is thus stated as a decreasing function of the
distance between them. '

Ideal point DA is widely applicable. It allows a mixture of continuous and discrete
predictors. It can handle three different sampling designs, conditional, joint and separate,
with minor modifications from one sampling design to another. In those designs in which
the predictor variables are considered as random variables, the method can be justified
under the genéral exponential family of distributions.

In spite of its wide applicability ideal point DA has nearly all the important model
evaluation features that only the highly parametric procedures traditionally enjoyed. For
example, it allows choice of best dimensionality, optimal subset selection of predictor
variables, multiple comparisons of criterion groups, and so forth, which enable us to
search for the best specification of the model. The Akaike Information Criterion (AIC;
Akaike, 1974; Sakamoto, Ishiguro & Kitagawa, 1986) plays a crucial role in this model
identification process.

In the next section (section 2) we present a detailed account of ideal point DA,
emphasizing various characteristics of its model, an estimation procedure, and a justi-
fication behind the model. We also discuss methodological aspects of model evaluations
(section 2.3). In section 3 we demonstrate usefulness of ideal point DA through analyses of
two actual data- sets. These examples illustrate how the model evaluation procedures
described in section 2.3 may be effectively used in practical DA situations. In the final
section we place ideal point DA in a broader perspective as a data analysis tool and
discuss possible extensions.

2. The Method

2.1 The Basic Model

Let us suppose that there are N subjects in a training sample classified into ng
criterion groups. Let X denote an N by n matrix of predictor variables, where 7 is the
number of predictor variables. The predictor variables can be continuous, discrete, or
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mixed together. All continuous variables are standardized and all discrete variables are
coded into dummy variables. Each discrete variable is thus counted as J; variables, where
J; is the number of observation categories in variable i. Missing data may be coded into
zero for continuous variables after the standardization, or a series of zeros in the dummy
variables for discrete variables. In this way the missing data will have no effects in
discrimination. When interactions among original predictor variables are suspected, ap-
propriate interaction terms are defined, and included in X. (How this is done will be
explained in section 2.3).

We assume that the N subjects in the training sample are represented as points in an
A dimensional euclidean space. Let Y be an N by 4 matrix of coordinates of the subject
points. We assume that these coordinates are simple linear functions of predictor vari-
ables; that is,

Y = XB, 1)

where B is an n by A matrix of weights analogous to regression coefficients. The weights
for discrete variables are sometimes called “quantifications” of observation categories. We
impose different restrictions on elements of B, depending on the types of predictor vari-
ables. Specific forms of the restrictions will be discussed toward the end of this section.
The dimensionality 4 of the representation space is between 1 and ng — 1 inclusive.
However, it cannot exceed the number of nonredundant predictor variables.

Let M denote an n; by A matrix of coordinates of ideal points of criterion groups
represented in the same A dimensional euclidean space. We may either take M as a set of
free parameters, or assume that the ideal points of the criterion groups are given by
centroids of the groups. Let Z denote an N by n; matrix of dummy variables indicating
group memberships of the subjects. Then in the latter case M is expressed as

M=(ZZ)"'Z'Y =(Z'Z)"'Z'XB. @)

This reduces the number of parameters to be estimated, since M is now a function of B,
and only B should be explicitly estimated. All the empirical results reported in this paper
were obtained under (2), since this constraint seems to be rather innocuous in most cases.
We may also test the empirical validity of the assumption using the model evaluation idea
to be presented in section 2.3. For the sake of generality, however, we retain M as
containing possible free parameters.

We now define the euclidean distance between the subject points and the ideal points
of the criterion groups. For subject k and group g, this is

A 1
iy = { % Gha - m,.,>2} : &

where y,, and m_, are elements of Y and M, respectively. The simple euclidean model (3)
tacitly assumes that the criterion groups differ only in their most representative points
(i.e., my). No differential sensitivity of the distance from the ideal points is taken into
account. A possible generalization of the distance function to incorporate the differential
sensitivity across criterion groups will be suggested in the discussion section.

We are now in a position to state a model that relates the distance to the probability
of group membership of a subject. Let p,,, denote the conditional probability that subject
k belongs to criterion group g, given the set of observations on the predictor variables.
We assume that this probability is given by

2
Dot = T:’ﬂua)_ , )

Z w,, exp(—dp,)
=1
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where w, is a bias parameter for group g. The bias parameter is like the prior probability
of a group, but it is used here to represent a broader concept. It represents whatever
makes a certain group more or less likely. Of course, it is also possible to constrain
explicitly w, to be proportional to the group size, in which case w, is simply written as p,.
We require ), w, = 1 in order to remove scale indeterminancy in w, .

Model (4) implies p,, is proportional to w, exp(—dZ,), which in turn implies it is
proportional to w, for a fixed 4,, and to exp(wd,fg) for a fixed w,. (The denominator of (4)
is just a normalization factor to make p,|, add up to unity over g.) This is in line with the
nature of the bias parameter defined above, and also with the basic postulate of the model
that the probability of subject k belonging to group g is a decreasing function of the
distance between them. A justification of the particular form of the model will be given in
section 2.2. An important feature of model (4) is that the overall scale of the subject and
ideal point configuration is uniquely determined. It indicates the degree of discriminability
among the criterion groups.

Model (4) is a special form of Coombs’ (1964) unfolding model combined with Luce’s
(1959) biased choice model. The speciality lies in that coordinates of subject points are
“constrained” as linear functions of the predictor variables. The model can be also viewed
as a generalization of Schonemann and Wang’s (1972) individual differences preference
choice model to multiple-choice situations. -

The (conditional) likelihood of the model for the entire set of observations in the
training sample is now stated as '

N ng
L=[] [1®,"™, &)
k g=1
where f,, = 1 if subject k belongs to group g, and f,, = 0 otherwise.

The log of (5) is maximized with respect to model parameters (B, M and w,) subject
to relevant constraints (to be explained below) by an iterative approximation method. We
use Fisher’s scoring method, which has proven to be extremely efficient in the present
context. The scoring method updates parameter estimates by

w4ty = y@ 4 a“"l(u“”)"g(u“") (6)

in each iteration, where u“*? and u‘? are, respectively, new and old parameter estimates
(with g being the iteration number), qu@) and I(u?) are the gradient vector and the
information matrix, respectively, both evaluated at u@, and «@ is the stepsize parameter.
The information matrix is usually singular in the present case. We use the Moore-Penrose
inverse of I in (6) (Ramsay, 1978). This ensures uniqueness of the parameter estimates. For
initial estimates of B we simply apply the usual canonical DA method.

Once parameters are estimated, they may be used to evaluate p,,, for a new sample
k*, and it may be classified according to the max, p . rule. (To be more exact, the
evaluation of p,,,. requires specification of the sampling design employed, but this will be
explained in the next section.}

The predictor variables can be discrete (nominal or ordinal scale level) or continuous
(interval or higher). As noted earlier, the different types of predictor variables are dis-
tinguished by different constraints imposed on relevant portions of the weight matrix, B.
The likelihood is maximized subject to these constraints. For an unordered categorical
(nominal) variable i with J; observation categories we require

Ji
Zl"im bipa =0, (™)
i=
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fora=1, ..., A, where n, is the marginal frequency of the j-th category of item i and
b ja is the a-th quantification of the category. The above restriction is necessary in order
to remove linear dependencies among the categorical variables. The restriction can be
incorporated into the above optimization scheme by expressing the quantifications of the
last category in terms of the other quantifications. For an ordered categorical variable, we
need something similar to (7). We also like category quantifications to satisfy a prescribed
order. Consequently we find one set of quantifications, which are multidimensionally
weighted to obtain multidimensional quantifications; that is,

bipa = Ti(jySia> ©®
where
Ty STiy S 77 S Tgy-

In order to remove scale indeterminacy between r,; and s,, we further require the
quantified categories to have unit variance (3_J%, Ny ri /N =1). When the variable is
measured on an interval or higher scale we assume that category quantifications are
already given, and obtain only dimensional weights.

2.2 Further Aspects of the Model

Model (4) states the conditional probability of a criterion group given a set of
observations on the predictor variables. No distributional assumptions are made on the
predictor variables. The conditional probability formulation is most natural in the con-
ditional sampling situation (Kalbfleisch, 1984), where we observe frequencies of criterion
groups for several fixed values of the predictor variables. Since the predictor variables are
fixed, no distributional assumptions are necessary in this case. However, the conditional
likelihood, (5), is still valid in other sampling situations, so far as the distribution of the
predictor variables leads to the conditional probability stated in (4) (Anderson, 1972,
1982). In the joint sampling design only the total number of subjects is fixed, and the joint
frequencies of criterion groups and patterns of observations on the predictor variables are
observed. In the separate sampling situation marginal frequencies of criterion groups are
fixed, and within each group frequencies of patterns of observations on the predictor
variables are observed.

Model (4) can be justified in the joint or separate sampling situation, whenever the
conditional distribution of the predictor variables given a criterion group is one of ex-
ponential family of distributions (Efron, 1975). This includes, as special cases, multivariate
normal distributions with equal covariance matrices across criterion groups, independent
binomial and multinomial distributions, the loglinear model with the second and higher
order interactions assumed equal across criterion groups, etc. (Anderson, 1972). A mixture
of the above distributions is also permissible. The requirement of independence and
identical interactions can be easily eliminated by including appropriate interaction terms
in the set of predictor variables.

The exponential family of distributions can be generally expressed as

STXe) =¢, h(x,‘)exp(b; X g=1,...,ng ©

(e.g., Andersen, 1980), where x, is the set of values on the predictor variables for subject k,
and b, and c, are parameters of the distribution. This leads to the conditional probability
of the form,

c, exp(b; x,)
_9.___0’__ (10)
Z ¢, exp(bj, x,)

h

Dgix =
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To see model (4) is a special case of (10), we rewrite (4) into

w¥ exp(a) x,)

where h
a,=2Bm,, (12)
and
wy = w, exp(—m;m,). (13)

In (12) and (13), m, is the vector of coordinates of ideal point of group g. Now it is
obvious that (11) is a special case of (10). With centroid restriction (2) on m, in ideal point
DA, the above relationship is no longer strictly true, but an approximate relationship still
holds to the extent that the restriction is plausible.

When both continuous and discrete variables that follow the exponential family of
distributions are included in the set of predictor variables, (10) and consequently model (4)
are still valid, assuming that the same exponential family of distributions hold for the
continuous predictor variables at each subsample defined by the discrete predictor vari-
ables. That is, the continuous and the discrete variables should not interact. However, this
requirement can be eliminated by including appropriate interaction terms between the
continuous and the discrete variables. How the interactions can be defined will be dis-
cussed in the next section.

With minor modifications, (11) can be further rewritten into a form that directly
suggests its relationship to logistic discrimination (Anderson, 1972; Cox, 1966; Day &
Kerridge, 1967; Walker & Duncan, 1967); namely,

-1
Prgik = |:1 + Y explayx, + ﬂ,,):l s (14)
h#ng
and
Pyl = exp(“;xk + Bg).pn(;lk’ 15)

for g=1, ..., ng— 1, where &, =a, —a,. and f, =In(w}/wy) for g=1, ..., ng — L.
Parametrization, (14) and (15), also makes it obvious that the model is a special case of a
class of models called “generalized linear models” (McCullagh & Nelder, 1983).

One may well wonder why we use model (4) rather than its alternative parametriza-
tion, (14) and (15). There are three important reasons for this. First of all it makes obvious
its relationship to multidimensional scaling (MDS). We obtain a spatial representation of
individual subjects and criterion groups, thereby visually understand their mutual re-
lationship. Secondly, the parametrization is more natural in ideal point DA. In (14) and
(15) the last group is taken as the reference group; all other groups are characterized in
reference to the last group. This makes the parametrization “asymmetric,” which in turn
makes it difficult to understand the relation between two groups, neither of which is the
reference group. Thirdly, the form of decomposition of a, in (12) tacitly implied by ideal
point DA allows possible dimension reduction. Matrix B has A columns, where 4 is at
most ng; — 1, but in general we may need much smaller dimensionality than ng — 1.
Estimating too many dimensions may even be harmful for obtaining reliable parameter
estimates. However, in logistic discrimination no mechanisms are built in for possible
dimension reduction. It always takes 4 = ng; — 1. Thus, although the difference looks only
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subtle, there is an important difference between ideal point DA and logistic discrimi-
nation. ‘

Insofar as the distributional assumption (if required) is satisfied, the same estimation
procedure can be used without regard to the sampling designs. This is because in model
(4), w, and exp(—dZ) are completely separate (they do not affect each other), and the
different sampling designs only affect the bias parameters. In some designs, however, the
training sample may not reflect population group sizes. Then some adjustment is neces-
sary on estimated w, before it is used for prediction purposes. Let p, be an estimate of the
prior probability of group g in the training sample. This is typically taken as N /N, where
N is the observed marginal frequency of group g. Let p, be some other, presumably more
realistic, estimate of p,. Then the proper adjustment on W, would be W (5,/p,). In the joint
sampling situation no adjustment is usually required. When no realistic estimate of p, is
available, we may use the minimax type of classification rule. While this rule is hard to
incorporate when the number of criterion groups is greater than 2, an approximate
solution can be obtained by setting p, = 1/ng for all g.

We may also draw boundary hyperplanes in the representation space. The boundary
hyperplanes are the traces of points that satisfy p,, = py. (g # ). On one side of a
hyperplane observations are classified into one group, while on the other side they are
classified into the other. The boundary hyperplanes are piecewise linear in the present
case, and the hyperplane that devides two groups is perpendicular to the line segments
connecting the ideal points of the two groups. (See Figure 1). These properties derive from
the fact that we have squared euclidean distances in the exponent.

Finite maximum likelihood estimates can be obtained in most cases. However, there
are situations in which no finite maximum likelihood estimates exist (Anderson, 1974). In
such cases ideal point DA should not be applied. One obvious case is in which criterion
groups are linearly separable. Although this case may sometimes be difficult to detect by
merely inspecting the data, it can be easily identified by noting the log likelihood ap-
proaching zero, as the iteration proceeds. Similar degeneracy occurs when a category of a
discrete variable has no responses (a zero frequency) in one or more groups. This latter
case can be screened out prior to the analysis, and the category might be dropped from
the analysis.

2.3 Model Evaluation

Ideal point DA allows a variety of model evaluations. A general strategy is to fit each
candidate model by ideal point DA, calculate the value of the AIC statistic (Akaike, 1974),
and choose the model associated with the minimum AIC value. The AIC is defined as

AIC = —2In I* + 2n,,

where In I* is the value of the log likelihood maximized over the parameter space (B, M
and w,) and n, is the effective number of parameters in the fitted model. The effective
number of parameters is sometimes rather complicated to figure out. When the centroid
constraint, (2), is imposed on M, it is

n,=ng— ——A(Az_ D +(ng — 1), (16)

where ny is the sum of (J; — 1)A if variable i is nominal, (J; — 2) + A if i is ordinal, and 4
if i is interval or higher. The A(A — 1)/2 is subtracted because of the rotational indetermi-
nacy in the euclidean space. The last term, ng — 1, is the effective number of bias parame-
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ters. When (2) is not imposed, (16) becomes
n,=ng+ngA—AA+ 1+ (s — 1), 17

where ng A is the number of parameters in M. This time A(A + 1) is subtracted because
the model allows an affine transformation of the 4 dimensional space. When there are no
ordinal variables, ng is n* times A where n* is the effective number of predictor variables
(we count only J; — 1 for a nominal variable). When the maximum possible dimensions
are taken (i, 4 = ng — 1) assuming n* > ng — 1, (17) becomes

n,=n*+ (ng — 1), (18)

which is identical to the effective number of parameters in logistic discrimination (Ander-
son, 1972).

The general model evaluation strategy described above can be applied to a wide
range of specific model selection problems, including choice of dimensionality, subset
selection of predictor variables, multiple comparisons and assessing the effects of various
data transformations, and so forth. The first two of these are relatively straightforward.
For the choice of dimensionality we simply obtain solutions with dimensionality system-
atically varied, and choose the minimum AIC solution. The selection of the optimal set of
predictors is similarly done. The last two are a bit more involving, and will be described
in some detail.

The multiple comparisons concern whether criterion groups in DA are significantly
distinct, and in particular which groups are distinct and which groups are not distinct
from each other. Multisample cluster analysis (CA) developed by Bozdogan (1986) pro-
vides a general framework for such a procedure. To illustrate let us assume there are three
criterion groups. Some of these groups may not be distinct from each other, and conse-
quently better clustered together. There are five possible cases:

(1) m, =m2=m37
(2) m; =m, #m;,
(3) m, =m; #+ m,,
(4) m;, =m; # m,, and
5) m; #m, #m, #m,.

These possible cases are often called clustering alternatives. Ideal point DA is applied
under each hypothesis, and the goodness of fit is compared through AIC.
Case (1) is particularly easy to fit. In this case di, = dj for all g, so that

wyexp(—d)® _ w,

Pyix = Z Wy, cxp(—dk)z - Z W, =W,
h h

The maximum likelihood estimate of p,, is thus N /N in this case, and the maximum log
likelihood is given by

InL=) N,InN,—NInN.
g
This case is equivalent to no predictor variables case (d,, = O for all g). It is also equiva-

lent to the independence hypothesis between criterion groups and observations on the
predictor variables, namely,

pky = pg : pk ’
where p,, is the joint probability of group g and the set of observations for subject k. In
this case p, |, = pi,/Px = D,-
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Fitting Cases (2), (3) and (4) is slightly more complicated. Let m; = m,. (The other
cases are similar.) In this case we combine group 1 and group 2 into one group. Ideal
point DA is applied as if there were only two groups. After the maximum log likelihood is
obtained, we add to it N, In N; + N, In N, — (N, + N,) In (N, + N,). This adjustment
of the maximum log likelihood is necessary, because the likelihood for the original three-
group case is :

1:[ (P1|k)f“(Pz|k)fk2(P3|k)f"3,

but if the first two groups are combined, the likelihood would be

1‘[ (Puk + P2|k)f“ +fk2(p3|k)fk3,
k

so that to make up for the difference,

H( Pijk )fu( Pk >fk2
¥ \Pijx + P2k Pije T Pajx

has to be multiplied to the latter. But

D1k — Wy
Pik + Paje W1+ W,

D2k — Wy
Pik + Pajx Wy + W,

and the maximum likelihood estimates of w,/(w, + w,) and w,/(w, + w,) are, respectively,
N,/(N, + N,)and N,/(N, + N,). Therefore,

Nl Nl
P () e (7 w)

=N,InN,+N,InN, —(N, + N)In (N, + N,)

and

is added to the maximum log likelihood obtained from the two-group analysis (where
N, = Zk Juand N, = Zk S

Case (5) is what we usually obtain. Once the maximum log likelihoods are obtained,
the best fitting model is chosen according to the minimum AIC criterion. The number of
possible cases grows quite rapidly as ng increases. The exact formula for this number is
given in Bozdogan (1986). The multisample CA used in combination with ideal point DA
generalizes his original proposal based on the multivariate normality to the general
exponential family of distributions.

Exploring and assessing the effect of data transformations is not technically difficult.
It is the variety of transformations that requires some discussion. The transformations of
the predictor variables should be broadly construed in this paper, and include such
transformations as discretizations (categorizations) of continuous variables, interactions
between discrete variables, interactions between continuous and discrete variables, and so
on, as well as more standard types of transformations such as power, polynomial and
spline transformations.

When a continuous variable is nonlinearly or nonmonotonically contributing to
discrimination, we may discretize it into a few observation categories, which are then
“requantified” by ideal point DA. A potential danger is that the effect of the continuous
variable may indeed be linear. Then we may not only lose some information in the
original variable in the process of discretization, but also lose degrees of freedom by
estimating extra parameters. However, whether or not a particular discretization scheme
on a continuous variable is worth incorporating can be explicitly tested using the general
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model evaluation strategy given at the beginning of this section. (We have a concrete
example of this in the next section.) Our current procedure assumes that we already have
specific discretization strategies to try out.

Interactions among the predictor variables are potentially quite important in im-
proving predictability of ideal point DA. The interaction is formally defined as the effect
of one variable depending on values of other variables, and is captured in cross product
terms among the variables. For two discrete (nominal) variables, i and s (i # s), they are
defined as xy;, X, for all k and for all combinations of j and ¢ (categories of variables i
and s, respectively). For a continuous variable i and a discrete variable s, they are defined
as X; X4 for all t. An important thing is that x,; corresponding to x,,,, = 1 should be
separately centered for each t. An interaction between two continuous variables is simply
defined as x,;x,,. Interactions among discrete variables are important in relation to the
loglinear model. Interactions between continuous and discrete variables are important,
since they allow a different distribution of the continuous variables for each subsample of
observations defined by the discrete variables. An implication of this in relation to Krza-
nowski’s (1975) location model will be discussed in the discussion section.

In some cases we might want to compare the performance of ideal point DA with
that of other DA methods. What criterion should we use, if an equivalent conditional
likelihood is not specified for these methods? The AIC can no longer be used for model
comparisons. Rate of misclassification is a useful measure in such situations. Apparent
error rate (rate of misclassification in training samples) has been widely used for this
purpose. However, it is well known that it tends to underestimate true error rate (Efron,
1986), since the same training sample is used to estimate both model parameters and the
error rate. The degree of bias in the apparent error rate depends on particular methods of
DA.

A number of methods have been proposed for estimating the true error rate; that is,
the rate of misclassification expected to occur when classifying a test sample based on
parameter estimates derived from a training sample independent of the test sample. There
are two widely used resampling plans used to estimate the true error rate. One is the
leaving-one-out method of Lachenbruch (1975), and the other the bootstrap method by
Efron (1983). In this paper we use the leaving-one-out method. Krzanowski (1975) used
this method to compare the performance of his location model with half a dozen other
methods of DA, and we had to use the same method for a direct comparison with his
results. In the leaving-one-out method one of the cases (subjects) is eliminated from the
training sample in turn to be used as a test sample. Model parameters are estimated from
the reduced sample and are used to predict membership of the case eliminated from the
training sample, and the frequency of misclassification is counted.

The leaving-one-out method as well as other resampling methods is quite useful in
investigating stochastic behavior of a model nonparametrically. It may also be useful in
evaluating AIC on the basis of weaker statistical assumptions.

3. Applications

In this section we demonstrate use of ideal point DA in two practical situations,
emphasizing various model evaluation features of the method. In each case an extensive
search is made for the best specification of the model. Different aspects of a model
(dimensionality, predictor variables, clustering alternatives, etc.) all “interact”; the best
subset of predictor variables for a specific dimensionality may not be the best for other
dimensionalities, etcetra. Consequently a candidate model should be specified for each
combination of the different aspects of the model. An exhaustive search for the best fitting
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Table 1

Summary statistics from multi-sample cluster analysis and subset
selection in the Komazawa data

Clustering All Logical Optimal Set Indices
Alternatives K dim Predictors Minimm of Predictors of Predictors
1 1,2,3,4 4 1 133.0(10) 119.0(3) 128.8 (7) 2,4,6,7
2 135.8(16) 109.8(3) 128.8*(10) 3,4,6,7
3 140,7(21) 104.7(3) 130.4 (9) 3,5,6
2 (1,2),3,4 3 1 135.2(10) 121.1(3) 130.7 (7)) 2,4,6,7
2 141.6(16) 115.6(3) 133.9 (8) 4,6,7
3 (1,3),2,4 3 1 134.9(10) 120.9(3) 130.5 (8) 2,3,4,6,7
2 141.9(16) 115.9(3) 133.8 (8) 5,6,7
4 (1,4€,2,3 3 1 144.2(10) 130.2(3)*
2 149.9(16) 123.9(3) 142.6 (10) 3,4,5,6
5 1,(2,3),4 3 1 142.7(10) 128.7(3) 137.9 (7) 3,5,6,7
2 150.0(16) 124.0(3) 134.8 (8) 3,5,6
6 1,(2,4),3 3 1 154.1(10) 140.1(3)*
2 159.2(16) 133.2(3)+
7 1,2,(3,4) 3 1 137.7(10) 123.7(3) 133.5 (6) 4,6,7
2 141.5(16) 125,.5(3) 132.4 (6) 4,6

154.1(10) 140.1(3)*
140.9(10) 126.9(3) 137.8 (7) '4,5,6,7
156.4(10) 142.4(3)%
143.4(10) 129.4(3)*
137.3(10) 123.3(3) 134.1 (6) 4,6,7
157.2(10) 143.2(3)*
151.2(10) 137.2(3)*

8 1,(2,3,4) 2
9 (1.,3,4),2 2
10 (1,2,4€),3 2
11 (1,2,3),4 2
12 (1,2),(3,4) 2
13 (1,3),(2,4) 2
14 (1,4),(2,3) 2

e b e

149.4 (3) 149.4(3

o

15 (1,2,3,4) 1

*The cases in which the logically minirum attainable AIC is larger than the
minimum AIC for Case 1 , dim=2.

* Minimum AIC

model is often impossible due to a “combinatorial explosion.” In the next two subsections
readers are encouraged to pay special attention to what heuristic search strategies we use
for cutting down the number of candidate models.

3.1 The Komazawa Data

Komazawa (1982) reported profile data of 52 patients falling into the following four
disease categories: 1. cerebral haemorrhage (N, = 14), 2. cerebral infarction (N, = 15), 3.
myocardial infarction (N, = 12), and 4. angina (pectoris; N, = 11). The first two are
brain-related and the last two heart-related diseases in the human circulatory system. The
profile data were obtained on the following seven measures: 1. opthalmology (normal or
abnormal), 2. electrocardiogram (ECG; normal or abnormal), 3. age (49 to 59 years old),
4, systolic (high) blood pressure (98 to 216 mmHg), 5. diastolic (low) blood pressure (62 to
120 mmHg), 6. aortic wave speed (6.3 to 10.2 m/sec), and 7. serum cholestrol (146 to 279
mg/dl). The first two are binary, while the remaining five are continuous.

There are fifteen clustering alternatives in the multisample CA of four criterion
groups as defined in Table 1. Case (15) is the null model in which all the four criterion
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groups are assumed identical. In this case predictions can be made only on the basis of
group sizes (which is sometimes called a zero dimensional solution). For each of the
remaining 14 nonnull cases, solutions could be obtained from one dimension up to the
assumed number of distinct groups minus one. In the table the number of distinct groups
hypothesized in each clustering alternative is denoted by K, and the dimensionality of a
solution by “dim.” Altogether we have 22 possible cases (excluding the null case).

For each of the 22 possible cases an optimal subset selection of the predictor vari-
ables was conducted. Due to a relatively small sample size no interactions among the
original predictor variables were considered. With seven predictor variables, however, the
number of possible subsets is quite sizeable. Therefore, it was decided to employ the
backward elimination technique. While this heuristic search technique does not ensure
global optimality, it is known to work very well in most situations. In the backward
elimination technique all predictor variables are initially included in the prediction model.
A variable whose elimination decreases the value of AIC most is eliminated at each stage,
until no further reduction can be achieved. (Note that the variable whose elimination
decreases the AIC value most is the one whose elimination decreases the likelihood least.)
In the present case after an “optimal” solution was obtained by the backward elimination
all neighboring models were tried to make sure that it was indeed the best solution. In no
cases the backward elimination failed to identify the optimal solution. The average
number of solutions obtained for each case was approximately 10, a significant reduction
from 128 = 27,

A further reduction in the number of possible solutions was achieved by means of a
branch and bound process. For each of the 22 cases the full model with all seven predictor
variables was first fitted. The resulting AIC values are reported in the column labeled “All
Predictors” in Table 1. Then for each case the logical minimum of the AIC value attain-
able by subset selection was calculated. (See the column labeled “Logical Minimum” in
the table.) This value is obtained by subtracting 2n, from the AIC value attained by the
full model. Whenever this logically minimum AIC value exceeds the minimum AIC
among the full models, the case can be eliminated from further considerations. There is no
use to conduct subset selection for this case. Several cases were eliminated this way. We
then start the subset selection for the remaining cases. We start with the most promising
case, since as soon as we find a solution with the corresponding AIC value smaller than
the logically minimum AIC values in the remaining cases, those cases can be eliminated.
In the table those cases for which no subset selection was conducted are marked by a plus
sign. For all other cases the AIC values and indices of predictor variables corresponding
to the optimal subset solution are reported in the last two columns of Table 1.

The minimum AIC solution (marked by an asterisk in the table) was found to be the
two dimensional, four-group solution with predictor Variables 3, 4, 6, and 7. The four
groups are significantly distinct in the two dimensional space. Apparently, dim = 2 does
not imply the number of distinct groups is at most 3, although it implies the number of
distinct groups is at least 3. The minimum AIC value of 128.8 is very close to that of
K =2, dim = 1 with Variables 2, 4, 6, and 7. The two AIC values are almost identical. In
such a case either solution can be chosen on the basis of nonstatistical considerations
such as parsimony. We have chosen the solution with a larger number of parameters in
the model, since in this particular case the sample size is fairly small, and as we get a
larger sample size, the one richer in structure would be more clearly favored by AIC. Also,
Variable 3 (age) selected in the two dimensional solution is more readily observed than
Variable 2 (ECG). The two solutions are, however, quite similar to each other despite the
difference in dimensionality.

The subject and ideal point (group centroid) configuration corresponding to the
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Table 2

Effects of discretization in the Komazawa data

dim 1 dim 2

Original Measures
Optimal Predictor Set 128.8(7) 128.8%(10)
(Indices of Predictors) (2,4,6,7) (3,4,6,7)
Variable 3

discretized 130.4 (10)
Variable 4

discretized 133.2 (8) 135.1 (12)
Variable 6 .

discretized 136.4 (8) 139.6 (12)
Variable 7

discretized 132.3 (8) 135.0 (12)

* Minimum AIC

minimum AIC solution is presented in Figure 1. The ideal points of the four criterion
groups are indicated by circled numbers, while the subject points are identified by group
indices to which they belong. Dotted line segments indicate boundary hyperplanes ac-
cording to the max p,, rule.

Perhaps the most illuminating way of looking at the configuration is in terms of two
dichotomies: (a) heart-related (Groups 3 & 4) versus (b) brain-related (Groups 1 and 2),
and (a) noninfarction (Groups 1 and 4) versus (b) infarction (Groups 2 and 3) diseases.
These two dichotomies combined nicely distinguish the four disease categories. They were
also neatly borne out in the derived configuration, and indicated by two solid lines
crossing with each other at about the center of the configuration. The two heart-related
diseases are correlated with a high cholesterol level, while the two brain-related diseases
are correlated with high systolic blood pressure and high aortic wave speed. The two
noninfarction diseases are correlated positively with age, and the two infarction diseases
with high aortic wave speed. _

The apparent error rate in this example may look very large (44.2%). However, as
argued in the previous section it is not the apparent error rate that is important. In fact
the apparent error rate could be made much smaller (36.5%) by selecting a larger model
(e.g., the full model with dimensionality 3), but this is not a wise choice.

Komazawa (1982) originally analyzed his data set by the second kind of quantifica-
tion method (Q2) developed by Hayashi (1952) for DA of discrete predictors. This method
is similar to the canonical DA applied to dummy coded discrete predictors. A similar
method is used as the initialization method in ideal point DA. In order to apply Q2,
Komazawa had to discretize all the continuous variables. We may test whether the
discretization scheme suggested by him improves predictability of ideal point DA. We
only consider discretizations of the continuous variables retained in the optimal solution.
(For comparison purposes we have done the same for the runner-up solution which was
so close to the best solution.) The following discretizations were suggested by Komazawa:
(3) age (49 ~ 54, 55 ~ 59), (4) systolic blood pressure (~ 139, 140 ~ 170, 170~), (6) aortic
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Table 3

Summary statistics from multi-sample cluster analysis and subset
selection in the Armitage data (3 groups)

Clustering All Logical Optimal Set Indices
Alternatives K dim Predictors Minimm of Predictors of Predictors

11,2 3 3 1 382.0(11)  364.0(2) 373.8 (5) 2,3,5
2 387.7(19)  353.7(2) 372.2*%(7) 5,7,9
2 (1,2),3 2 1 388.8(11)  370.8(2) 380.3 (5) 2,3,5

3 1,(2,3) 2 1 405.9(11)  387.9(2)*
4 (1,3,2 2 1 386.0(11)  368.0(2) 374.6 (5) 5,7,9

5 (1,2,3) 1 0 398.2 () 398.2(2)"

*The cases in which the logically minimum attainable AIC is larger than the
minimm AIC for Case 1 , dim=2.

* Minimm AIC )
wave speed (~7.4, 7.5 ~ 8.5, 8.5~), and (7) serum cholesterol (~ 169, 170 ~ 210, 211 ~).
Each of these discretized variables was used as a predictor variable in turn instead of its
continuous counterpart. Results are reported in Table 2. None of the AIC values found

are as small as that of the original solution. This suggests that we should not discretize
the data the way Komazawa did.

3.2 The Armitage Data

The second example also concerns medical data. The data were originally collected
by Armitage, McPherson and Copas (1969). (For simplicity we call them the Armitage
data.) The data concern prognosis after ablative surgery of breast cancer, and consist of
six continuous predictors, 1. age at mastectomy or when first seen, 2. log time to ablation,
3. 17-hydroxicorticosteroids (mg per 24 hours), 4. androsterone (mg per 24 hours), 5.
dehydroepiandrosterone (mg per 24 hours), 6. aetiocholanolone (mg per 24 hours), and
three binary variables, 7. presence (1) or absence (2) of mastectomy, 8. type of ablation
(andrenalectomy (1) or hypophysectomy (2)) and 9. presence (1) or absence (2) of lesion on
breast. There were intially three criterion groups: 1. success (remission of all signs for at
least six months after surgery), 2. intermediate (partial or short lived remission) and 3.
failure (no remission).

Armitage et al. (1969) applied logistic discrimination to the data. Perhaps due to the
limitation in logistic discrimination at the time of their study, they had to reduce the
number of criterion groups into two by combining the success and the intermediate
groups. (Logistic discrimination was extended to multiple groups by Anderson in 1972)
Using the multiple comparison feature of ideal point DA we may now question its
adequacy. A search for the best fitting model was done in a manner similar to that for the
Komazawa data, and results are reported in Table 3. The two dimensional solution in the
three-cluster case was found to be the best model with Variables 5, 7, and 9 in the optimal
predictor set. This suggests that the success and the intermediate groups are sufficiently
distinct. Surprisingly the success and the failure groups (1 and 3) are the ones that could
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.1 Success_
Non-failure

o
® 3 Failure
2 Intermediate

be least harmfully combined. This can be seen by the least increase in the AIC value when
these two groups are combined. Figure 2 displays the ideal point configuration corre-
sponding to the best solution. It is the success group, not the intermediate group, that lies
somewhat intermediate between the other two groups. The success and the failure groups
are closest in distance, confirming our previous observation. It is likely that the major
difference that Armitage et al. found between the nonfailure and the failure groups is
primarily due to the difference between the intermediate and the failure groups, and not
to the difference between the success and the failure groups.

Krzanowski (1975) applied his location model to the Armitage data after the data
were reduced to two groups. (In all subsequent analyses we use the two group data for the
sake of direct comparisons.) The location model was specifically designed for DA with a
mixture of continuous and discrete predictors. It assumes a separate multivariate normal
distribution on the continuous variables for each subsample of observations defined by
the discrete predictor variables. Krzanowski estimated true error rate by the leaving-one-
out method (Lachenbruch, 1975) described earlier. Frequencies of misclassification he
obtained are given in the first column of Table 4.

We applied ideal point DA to the same set of data, and estimated the true error rate
by the leaving-one-out method. The result is reported in the second column of Table 4. It
seems that the location model does considerably better than ideal point DA. However, the
latter result was obtained without subset selection of predictor variables; all nine vari-
ables were used. When the subset selection was conducted, the AIC improved from 249.6
to 241.2 (see Table 6) with Variables 2, 7, and 9 in the optimal predictor set. The
estimated true error rate is reported in the third column of Table 4. Now the advantage of
the location model disappears. These results suggest importance of subset selection in
general. Inclusion of noninformative predictor variables in DA is indeed harmful for
future predictions.

The location model implies interactions between continuous and discrete predictors
(as well as those among the discrete variables). Thus, the performance of ideal point DA
may be further improved by including those interactions in the predictor set. In the
present case there are 6 continuous variables, and 8 levels altogether formed from three
binary variables. Consequently there are 48 interaction terms defined between the con-
tinuous and discrete variables, and the number of possible models is just enormous.
Including meaningful equality restrictions on parameters (this corresponds with a nonin-
teraction hypothesis) this number is something like 21,147°. An exhaustive search for the
optimal model is simply out of the question.
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Table 4

Estimates of true error rate by the leaving-one-out
method for the Armitage data (2 groups)

Location Ideal Point DA
Model
Criterion All Predictors Optimal Set of Predictors Optimal
Groups (Main Effects (Main Effects Only) Interactions
Only)
1 34 39+ 30 30
2 27 ut 27 25

+ Obtained by Krzanowski, 1975

Note: Figures in the table indicate frequencies of misclassification (out of
N;=99 for group 1, and N,=87 for group 2)

The number of possible models to be considered can be cut down to manageable size
by the following rather elaborate search strategy. First, the entire sample was divided into
eight subsamples defined by the three binary variables. This was done because interac-
tions between continuous and discrete variables imply the effects of the continuous vari-
ables varying across the eight subsamples. Ideal point DA was applied to each subsample
with the six continuous variables, and a pattern of contributions of the six variables is
identified: significantly positive (+), significantly negative (—), and not significantly differ-
ent from zero. Variables in the third category can be easily identified by subset selection.
These patterns are reported in Table 5. Note that in the present case the positive side is
associated with the failure group. Note also that coefficients not significantly different
from zero are left blank in the table. Considerable variations in the contribution of the
continuous variables across the eight subsamples can be observed in Table 5. Interactions
were then defined by grouping subsamples for which the effect of a particular continuous
variable is in a same direction {either “+” or “—"). In this way eight interaction terms
were defined: 1. Variable 1 for Subsample 2 (-), 2. Variable 2 for Subsample 8 (—), 3.
Variable 3 for Subsamples 3, 4, 6, and 8 (+), 4. Variable 3 for Subsample 7 (—), S
Variable 4 for Subsamples 5 and 7 (+), 6. Variable 4 for Subsample 6 (—), 7. Variable 5
for Subsamples 2, 6, and 8 (—), and 8. Variable 6 for Subsample 3 (—). In addition a
separate loglinear DA (Andersen, 1980) was performed on the entire sample with the three
binary variables. The last two variables (type of ablation and legion on breast) were found
to interact significantly. Consequently interactions between the last two binary variables
were included in the set of predictor variables.

Ideal point DA was applied to the Armitage data with the nine interaction terms
defined above. The AIC value was remarkably improved. (See Table 6). In order to make
sure the eight interaction terms between the continuous and the discrete variables were
indeed significant, the model was fitted with each of them deleted from the model in turn.
The AIC values obtained from the reduced models are also reported in Table 6. None of
the AIC values were as small as that of the original model, indicating a significance of
every interaction term considered. The true error rate was estimated with the interaction
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Table 5

Patterns of contribution of the continuous variables at
different levels of the discrete variables for the Armitage data (2 groups)

Sub-sample Patterns on Continuous variables
the Three Binary
Variables 1 2 3 4 5 6
1. 111
2, 211 - -
3. 121 + -
4. 222 +
5. 112 +
6. 212 + - -
7. 122 - +
8. 222 - + -

model using the leaving-one-out method. The results are reported in the last column of
Table 4. The rate of misclassification is even lower than that of the best main-effect-only
model of ideal point DA. Note that the AIC result agrees very well with that of the
leaving-one-out method.

One may argue that the above comparison between the location model and ideal
point DA is unfair to the former, since no search was made for the best location model.
This argument is well taken. At this point we are not sure whether the superiority of ideal
point DA for the Armitage data is due to an extensive search for the optimal model, or to
the flexibility in its assumption. Note that the location model assumes a separate multi-
variate normal distribution for each subsample, while ideal point DA only one of ex-
ponential family of distributions. We are not quite sure if the location model allows as
extensive model evaluations as are possible with ideal point DA. We then argue that an
advantage of ideal point DA lies precisely in its ability to allow an extensive search for the
best specification of the model. (But see a recent article of Daudin, 1986, on this topic.)

4. Discussion and Further Prospects

In this paper we proposed a method of DA which enjoys wide applicability. It allows
a mixture of continuous and discrete predictor variables in three different sampling de-
signs, conditional, joint and separate. In the latter two cases the method can be justified
under the general exponential family of distributions. As has been demonstrated, the
method allows various model evaluations such as choice of dimensionality, optimal subset
selection of predictor variables, multiple comparisons (significance tests of the difference
among criterion groups), and so forth. These are all essential ingredients of DA.

Although the proposed method is versatile, we do not claim it is the best method in
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Table 6

Optimal interaction set for the Armitage data (2 groups)

AIC (parameters)

All Predictors 249.6 (10)
(Main Effect Only)

Optimal Set of 241.2 (4)
Predictors (Main Effect

oOnly) 2,3,5

Optimal Interactions 209.4* (12)
Interaction 1 deleted 210.7 (11)
Interaction 2 deleted 222.3 (11)
Interaction 3 deleted 216.8 (11)
Interaction 4 deleted 217.7 (11)
Interaction 5 deleted 213.1 (11)
Interaction 6 deleted 2i1.7 (11)
Interaction 7 deleted 226.6 (11)
Interaction 8 deleted 222.6 (11)

* Mlnmum AIC

all conceivable situations. Needless to say fully parametric methods are more efficient,
when the assumptions underlying the methods are satisfied (Efron, 1975). Also, there are
situations the exponential family of distributions cannot cover, and consequently more
flexible nonparametric methods are called for (Hand, 1982). Rather, we claim that there is
a wide range of situations for which ideal point DA is most appropriate, and that because
of its intermediate nature, the method will not lose much even when it is not the best
method available in particular situations.

Table 7 shows some representative methods of DA in terms of their “parametricity”
and data types they cover. Parametric methods are based on the full likelihood. Their
rigidty is indicated by the fact that separate procedures should be provided for different
data types. Semiparametric methods (Anderson, 1982), on the other hand, are based on
the conditional likelihood. These methods do not explicitly specify the marginal distri-
bution of the predictor variables. The relationship between ideal point DA and logistic
discrimination has already been discussed. They provide semiparametric alternatives to
all the three parametric procedures listed in Table 7. From the form of Model (4) it is
obvious that ideal point DA provides the conditional maximum likelihood estimation for
Fisher’s linear discriminant function method. From the analysis made for the Armitage
data it is obvious that ideal point DA, by including the interaction terms between con-
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Table 7

Classification of some representative methods
of discriminant analysis

Data Types
Continuous Mixture Discrete
linear
Parametric discriminant location model log-linear
function (LDF) model
ideal point discriminant analysis
Semi~paranetric logistic discrimination

histogram methods
Nonparanmetric kernel discriminant analysis
nearest neighbor discriminant analysis

tinuous and discrete variables, can handle situations covered by the location model. In
fact it can be rigorously proven that the conditional likelihood for the location model (if it
were derived) reduces to the likelihood for ideal point DA. Similarly, DA by the loglinear
model (Andersen, 1980; Kalbfleisch, 1984) reduces to ideal point DA, if appropriate
interaction terms among discrete predictor variables are included. In loglinear DA only
those terms related to criterion groups are effective in discrimination; all other terms
(related to marginal probabilities of the predictor variables) fall out, being common to all
criterion groups. In the loglinear model the conditional estimation is effected by including
all the interaction terms among the predictor variables, thereby perfectly fitting the mar-
ginal frequencies of the predictor variables. When this is done, the loglinear model is
completely equivalent to ideal point DA. (Again this can be rigorously proven.)

Ideal point DA is flexible enough to accommodate various modifications that will
make the method even more general and versatile. It is relatively straightforward to
incorporate ordered criterion groups (Cox, 1966). The distance function in Model (4) may
be modified in various ways. For example, the squared euclidean distance in the exponent
may be replaced by the straight (unsquared) euclidean distance, or the negative ex-
ponential function may be replaced by a negative power function of the distance. These
may potentially make the model more robust against outlying observations. Perhaps the
most interesting generalization of the distance function is to incorporate groupwise
metrics, which allow differential sensitivity to the distance from the ideal points across
criterion groups. The distance function in this case is written as

dz, = (y, — m))V(y, — m,), (19)

where V(g = 1, ..., ng) is a symmetric positive definite matrix, called a metric matrix. (The
¥, is the vector of coordinates of subject k). The situation that calls for (19) is analogous to
that for the quadratic discriminant function due to nonhomogeneous covariance matrices
in the multivariate normal distribution. The model is also similar to individual differences
models in multidimensional scaling (Carroll & Chang, 1970; Schonemann, 1972).

There are other desirable features to be incorporated in ideal point DA. The model
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evaluation process should be automated. At the moment specifications needed for a
search for the best fitting model are done manually. Ideally some sort of branch and
bound algorithm should be implemented in order to overcome “combinatorial ex-
plosions” in the search process. More flexible data transformation methods should be
incorporated, for example, spline transformations (Villalobos, 1983) and more elaborate
discretizations of continuous variables. Both of these require optimization in the data
transformation process. Various diagnostic features (e.g., Pregibon, 1981) such as outlier
detection, sensitivity analysis, and residual analysis are also quite important in practical
use of the method.
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