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IDEAL POINT DISCRIMINANT ANALYSIS AND-
ORDERED RESPONSE CATEGORIES**

Yoshio Takane* e

Many contingency tables have ordered response categories. This paper comppr&s two
major approaches to ordinal response categories, namely the point representation and the block
(interval) representation. Specifically, two methods are compared, each representirig each of
the two approaches. One is ideal point discriminant analysis (IPDA) and the other the succes-
sive categories method (SCM). Similarities and distinctions between the two methods are
explicated. The goodness-of-fit (GOF) is compared through AIC using several example data
sets. IPDA and SCM were found to provide similar GOF, but IPDA was found t6' provnde a
slightly better fit in all the data sets examined. i

1. Introduction

Many contingency tables obtained in social sciences, psychology, medicine, etc. have
ordered response categories. For example, degrees of job satisfaction may; be measured
on a rating scale with response categories labelled as (1) very much satisfied; (2) moder-
ately satisfied, (3) neutral, (4) not very much satisfied and (5) dissatisfied. .These ratings
are then related to subjects’ demographic information. In a signal detection-experiment in
psychology subjects respond to two stimulus conditions, signal in the noise background and
noise alone. The subjects may be asked to indicate confidence levels in their judgments by
ordered response categories. The rating method is known to provide a more sfficient way
of collecting signal detection data than the conventional method which stipplates binary
responses.

A variety of models have been proposed to capture the ordinal nature of response
categories (Agresti, 1984 ; Goodman, 198 ; McCullagh, 1980). These methods ;‘oughly fall
into one of two major approaches. The two approaches are distinguished by, the mode of
representing columns of a contingency table corresponding to the ordered response cate-
gories. They are called point representation and block (or interval) repregentation (de
Leeuw, 1983), which closely parallel Bock’s (1975) distinction between extremal and thresh-
old concepts. .

In the point representation approach both rows and columns of a contmggncy table are
represented as points in a Euclidean space. Strengths of connections between rows and
columns are defined in terms of relative locations of the points. The probability of a
response (a column) given a row is assumed proportional to the strength of thsir connection
relative to other connections. Association models (Agresti, 1984 ; Andersen,;:1980 ; Good-

Key Words and Phrases ; point representation, block (or interval) representation, the Successive
Categories Method (SCM), order restrictions, maximum likelihood estimation, AIC ,
* Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal 'Quebec H3A
1B1, Canada 3
**+ The work reported in this paper was supported by grant 410-88-1346 from the Social Sciences and
Humanities Research Council of Canada. Request for reprints should be sent to Yoshio Takane,
Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec H3A
1B1, Canada.




32 Y. Takane

man, 1979, 1981) and ideal point discriminant analysis (Takane, 1987, 1989; Takane,
Bozdogan & Shibayama, 1987) are two representative methods that belong to this class of
methods.

In the block representation approach columns are represented as successive intervals
on a unidimensional continuum. Those intervals are characterized by their end points
called upper and lower thresholds. Rows are represented as random variables with certain
distributional properties along the same continuum. The probability of a response (a
column) in a particular row is assumed equal to that of the row random variable falling into
the interval corresponding to the column. The implementation of this approa(;ﬁ is rela-
tively new in statistics (Anderson & Philips, 1981 ; Cox, 1970 ; McCullagh, 1980); but it has
a long tradition in psychometrics (Torgerson, 1958). It is called the successive categories
scaling method. '

It is of interest to compare these two approaches systematically. However, due to
space limitation the comparison must be restricted between two specific models in this
paper, each representing each of the two approaches described above. The mithods are
ideal point discriminant analysis (IPDA) and the logistic version (McCullagh, 1980) of the
successive categories method (SCM). Models and parameter estimation procedure as-
sociated with the two methods are briefly described in the next section. The two models
are fitted to several data sets and the goodness~of-fit is compared through Akakke’s (1974)
information criterion (AIC). The data sets used will be described in Section'3 and the
results presented in Section 4. The paper concludes with a discussion in Sectien 5.

2. Methods to be Compared

2.1 Basic Models ’5

Let F=(f;;) denote an R by C contingency table where f;; is the frequency 6f column
j given row ;. We assume that the table is arranged so that its columns correspond with
ordered response categories. Rows, on the other hand, represent categories of an‘explana-
tory variable or variables. Let X denote an R by p design matrix for the réws. This
matrix may contain a set of continuous variables, dummy-coded discrete variables or a
mixture of both. When there is no obvious design for the rows, X may be !set to an
identity matrix of order R. S

In IPDA the rows of F are mapped into an A dimensional Euclidean space by a linear
combination of X ; i.e., '

Y =XB Y

where Y is the R by A matrix of coordinates of the row points and the B the:p by A
matrix of unknown weights. A=min (R—1, C—1). A is also restricted to be smaller
than or equal to the number of nonredundant explanatory variables. In order to remove
translational indeterminacy in the Euclidean space, continuous variables in X are centered
apriori and the weights for discrete variables are constrained so that they siatisfy the
centering restriction, o

gfk(q) buga=0

where k(g) indicate the g-th category in variable k.. The fi denotes the observed
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frequency of the category, and x;uq and buqe and appropriate elements-of X and B,
respectively. Let M denote the C by A matrix of coordinates of column-points. It is
assumed that M is given by weighted centroids of Y ; i.e v

M=D.FY=D."F'XB (@)

where D. is the diagonal matrix with column totals of F on the diagonal. - The strength
of connection between row i and column j is measured by the negative exponential
function of the squared Euclidean distance between the corresponding points; i.e., exp
(’— d i jZ) with

d.-,={aZ:ll (y.-a—m,-a)‘}m 3)

where y;; and m;, are appropriate elements of ¥ and M, respectively. “The 4,; is a
function of B. The conditional probability of column j given row i is propbrtional to w;
exp (—d.?), where w;(>0 and 3w,=1) is the bias parameter for column 5 (snmlar to the
prior probability of column ;). That is,

bu=gwsexp (—di?) 4)

where p,; is the conditional probability of column j given row i and g, =[2w. exp
(—du?)]?, which is the scaling factor that makes p,; add up to unity across columns.
Some justifications behind the exact form of model (4) are given in Takane, ef-al. (1987).
Relations of this model to other methods, such as the log-linear model, association models
and correspondence analysis (dual scaling, quantification methods 2 & 3), are ‘also given in
Takane, et al. (1987) and Takane (1987). i

In the logistic version of SCM the random variable corresponding to row { is assumed
to follow the logistic distribution with mean x,’5*, where x,’ is the ;-th row: vector of X
and b* is the vector of unknown weights, analogous to B but restricted to be unidimen-
sional. Let ¢; denote the upper threshold value for the interval corresponding to column
7. Successive intervals are assumed contiguous, so that c;,.,, the upper threshold value for
the j-1st interval, coincides with the lower bound for the j-th interval. The probability of
the random variable for row ; not exceeding c; is given by

h.-j=[1+exp (—(cr-x.-'b‘))]_l (5)
The probability of the random variable falling into the interval, (c;-., c;], is ;hen given by
bPu=hij— Rig-n (6)

This p,; is assumed equal to the conditional probability of column j given row ;.

The normal distribution was originally used (Torgerson, 1958) for the distribution of
the row random variables. This follows the Thurstonian tradition (Thurstone, 1927) in
psychometrics. The logistic distribution, adopted here, is getting more popular recently
because of its closed form expression for the cumulative distribution function, which is
rather crucial in SCM.

In both IPDA and SCM a number of interesting model specifications are poesible within
the basic framework of the models presented above. For example, some elements in B
(and 5*) may be fixed at a certain prescribed value, or may be equated to-each:other. The
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design matrix, X may be manipulated in various ways to reflect presumed structures
among row categories. For example, the rows may represent some products which are
characterized by combinations of features or attributes. This information may be incor-
porated in the representation of the row categories. The best representation can be
identified by a subset selection procedure applied to X. Similar structures may also be
imposed on columns. For example, ¢; may be equally spaced, or w; may ‘be equated
across the columns. Takane (1989) presents an interesting case in which the values of w;’s
vary systematically across different subsets of rows. '
Whether p;; is defined by (4) or (6) the conditional likelihood of F is stated as

L=1‘ZIJZ (pus Y™ (7)

which is maximized with respect to model parameters, B and w; in IPDA and 4* and c;
in SCM. Fisher’s scoring algorithm is used for maximization, which is found to work
efficiently. Once the maximum likelihood, L*, is obtained, the AIC statistic (Akaike, 1974)
is readily calculated; ;.e.,

AIC=-21In L*+2nn (8)

where nj is the effective number of estimated parameters in model .

2.2 Special Case of C=2 and Order Constraints

When the number of response categories is two (C =2), IPDA and SCM yleld ldentlcal
predictions (Takane, 1987). This is intuitively clear, since two categories can. always be
arbitrarily ordered. Note that the dimensionality of the representation space in IPDA is
always one (A=1) in this case. The correspondence between parameters in IPDA and
those in SCM in this case are as follows: Let

oi=(fir/fi)x: ’ “(9)
vz=(f.~z/f.')x.- o (10)
e=2(vz—v1) (11)
and s=(n+uv:)/ 2. ©(12)
Then
b*=(e’d) b

(where b is the unidimensional B) or
b=0b*/(e'b*)'?,
and
ci=s"b*—In (w1 /w:)
or
wr=1+exp (c1—s'b*))!

(and w,=1—w»). A proof is given in the Appendix. When C>2, however, there is no
straightforward relationship between the two models.
Note that even if the dimensionality of the representation space is restricted to one
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(i.e., A=1) in IPDA, there is no guarantee that the column points corresponding to the
ordered response categories are arranged in a specific order. There is no built-in mecha-
nism in IPDA that enforces a particular order in the arrangement of the column points.
However, simply combining the columns which violate the order has the effect of equating
the points corresponding to the columns. Let G be a partition of all columns whose
elements are indexed by g. Then in general

L=({’7313; (p:is)2r) (gg (puslbig) fis) ‘ (13)

Combining columns amounts to fitting IPDA using only the first portion of the likelihood
function stated above. The second factor in (13) may be calculated separately and
subsequently multiplied to the first to obtain the total likelihood. All possible partitions of
columns may be tried out. We examine which partitions of columns provide arrangements
of the column points consistent with prescribed orders and choose the one which gives the
best fit among them. This procedure is a special case of multi-sample cluster analysis
(Takane, et al., 1987) proposed to test the equality of column points which are not
necessarily ordered. The total number of possible partitions of columns in 2¢!. In
creating a partition of contiguous columns boundaries for subsets of the columns may be
placed at C—1 possible locations, where actual boundaries may be or may ti6t be placed.
We thus obtain 2°-'. This number is substantially smaller than that of possible partitions
of unordered columns, which is given by .

£ S(Ch where S(C, D=3 @ (1) (k—g)°/K | (Duran & Odell, 1974).
This is because a subset of ordered columns in a partition should include only adjacent
columns. Note that combining columns has the effect of removing the built-in order
restriction in SCM. Thus, this operation generally worsens the GOF (goodness of fit) of
IPDA, while it improves the GOF in SCM.

3. Data

Extensive model comparison was conducted by analyzing several sets of actual data by
the two methods, IPDA and SCM. The data sets used are presented in Tables 3.1-3.5.
Brief descriptions of the data sets will follow.

(1) Ogilvie & Creelman’s (1968) data. This data set comes from a signal detection
experiment for two-point touch sensitivity using 0.5 inch separation on the forearm.
“Signal” refers to presentation of two points and “noise” to presentation of only one point.
In each trial either the signal or the noise is presented, and the subject is to indicate his
confidence level for either signal or noise by a six-category rating method.

(2) Guilford’s (1936, p. 187) dala (see also Bock, 1975, p. 549-550). The data pertain
to judgments of apparent differences in lifted weights. The subject, who is. blindfolded,
lifts two weights successively and states whether the second is “greater” than.or “less” than
the first. If the subject is in doubt, he reports “doubtful”. One of the weights (B) is
standard at 200 grams, and the other (A) varies from 185 grams through 215 grams in steps
of 5 grams. This method of data collection is called the constant method.. ..

(3) Bradley, Katti & Coon’s (1962) data. This is from Example 3 in their papers.
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Table 3.1
Ogilvie & Creelman’s (1968) Data from a Signal Detection
Experiment by the Rating Method

Response Category

Presentation Signal Noise = . Total

Sure Medium Unsure Unsure Medium Sure i
Noise : 15 17 40 83 29 66 250
Signal : 68 37 68 46 10 21 250
Total 83 54 108 129 39 87 ‘500
Table 3.2

Guilford’s (1936) Data on Judgment of Lifted
Weights by the Constant Method

Weight, g Judgment : A is
Total
A B Greater Doubtful Less .
185 200 5 4 91 . 100
190 200 12 18 70 100
195 200 15 25 60 100
200 200 30 42 28 100
205 200 55 35 10 100
210 200 70 18 12 100
215 200 85 9 6 100
Total 272 151 . 277 700" .
Table 3.3
Bradley, Katti & Coons (1962) Data (Example 3) : Five Treatments
Rated on a Five Point Rating Scale
Treatment Terrible Poor Fair Good Excellent ....Total
I 9 5 9 13 4 40
11 7 3 10 20 4 v 44
11 14 13 6 7 0 40
v 11 15 3 5 8 42
v 0 2 10 30 2 44
Total 41 38 38 75 18 . 210

There are five treatment conditions rated on five-point rating scales. Descriptive labels of
the five response categories are : Terrible, poor, fair, good, and excellent. Unfortunately,
no detailed explanations of the five treatment conditions are provided in Bradley, et al.’s
paper. ) )

(4) Merit distribution data. Members of 14 faculties at McGill University are
classified according to their merit salary increase per annum in 1987. There are four
categories of increase, $2,400, $ 1,650, $ 750 and $ 0. In one of the faculties, Stience, the
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Table 3.4 i o
Merit Distribution Data Across Faculties of McGill University in 1987
Faculty (Abr) 8210 A iy o
1. Agriculture (Ag) 13 27 19 .15
2. Arts (Ar) 56 81 68 13
3. Dentistry (De) 7 9 3 1
4. Education (Ed) 30 32 27 11
5. Engineering (En) 36 42 32 15
6. Graduate Studies (Gr) 13 11 11 5
7. Law (La) 13 10 6 2
8. Management - (Ma) 20 13 13 8
9. Medicine (Me) 24 46 44 52
10. Music (Mu) 9 9 11 9
11. Religious Studies (Re) 7 4 3 3
Departments in Science
A 1 13 7 3
B 12 7 6 1
C 3 7 3 3
D 2 8 4 2
E 13 13 7 7
F 2 2 2 .. 0
G 1 1 1 1
H 12 12 4 3
1 8 11 9 1
12. Science (total) (Sc) 64 74 43 21
13. Libraries (Li) 18 27 19 4
14, Others (Ot) 9 13 13 15
Table 3.5 ,
Williams’ Data on Periodontal Condition and Average
Daily Calcium Intake of Women
ngﬁjdig;t:l Calcium per day (in g.) Total
<0.40 0.40-0.55 0.55-0.70 >0.70

A 5 3 10 11 29

B 4 5 8 6 23

C 26 11 6 46

D 23 11 2 37

Total 58 30 22 25 135
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data are available for each of its nine departments. It will be interesting to see if the merit
distribution does not differ significantly across the different departments in the Faculty of
Science.

(5) Williams’ (1952) data. This data set was analyzed previously by Williams (1952),
Goodman (1981), and Tsujitani (1988). The data concern the relationship be_tween four
periodontal conditions and the amount of daily calcium intake. The amount of intake is
categorized into four categories, less than .40 grams a day, between .40 and .55 grams a day,
between .55 and .70 grams a day and more than .70 grams a day. There is no detailed
description of the four periodontal conditions in any of the papers cited above.

4. Results

Major results are reported in Tables 4.1-4.5. Entries in these are the values of AIC’s
for fitted models along with the effective numbers of parameters given in parentheses.
The saturated model means p,,= f;;/f: (wWhere f; is the marginal total of row i in the
original data). This model gives an upper bound of the likelihood function. The null
model, on the other hand, postulates p.;=w,= f;/f for all ; (where f; is the marginal total
of column 5 and £ is the grand total). These two models are used as bench-mark models.

The results will be reported data set by data set :

(1) Ogilvie & Creelman’s data. Table 4.1 indicates that IPDA provides the minimum
AIC solution. The difference, however, between IPDA and SCM is relatively minor ; the
latter still provides a better solution than the saturated model.

Figure 4.1a displays the optimal representation of rows and columns of Ogilvie &
Creelman’s data under IPDA. Notice that the column points corresponding to the six
response categories are arranged in prescribed order despite the fact that no order restric-
tion was explicitly imposed in deriving the point locations. The dimensionality of the
representation space is restricted to unity in this case, since the number of rows in the data
set is two. The interval representation of the same data set derived by SCM is depicted
in Figure 4.1b for comparison. This, however, is not an opimal solution.

(2) Guilford’s data. Comparisons are made among a variety of possible structures
* for rows of the table as well as between IPDA and SCM. Also, min (R—1, C—1)>2, so
that the comparison between unidimensional and two-dimensional solutions is interesting
in certain cases. Results are summarized in Table 4.2. In the table “Row=nominal”
means that the rows are unconstrained (;.e., X=1I). “Row=linear”, on the other hand,
means that the linear trend was assumed over the successive rows. This specification was
motivated by the fact that the rows correspond with the comparison stimulus whose weight

Table 4.1
Summary Results for Ogilvie & Creelman’s Data
Saturated Model 1645.8 (10)
Null Model 1732.3 ( 5)
IPDA, dim=1 1638.1 ( 6)

SCM, dim=1 1640.5 ( 6)
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N 65 4 3 2 1 S
-5 0 .5

Fig.4.1a The Best Point Representation (IPDA) of Ogilvie & Creelman’s Data

(TP PR p—

Fig. 4.1b The Corresponding Interval Representation (SCM)

L1
was increased in equal physical unit. In “Row=linear & quadratic” the quadratic trend
was added. Finally, “Row=linear in log” means that the log of physical weight of the
comparison stimulus was used as the explanatory variable X. This last hypothesis was
motivated by the Fechner's law (e.g., Torgerson, 1958) in psychophysics, stating that the
subjective weight changes as a logarithmic function of the physical weight.:

Table 4.2 indicates that the two-dimensional IPDA solution with linear .and quadratic
trends on the rows provides the minimum AIC solution. Note that for unidimensional
representations SCM generally provides better fitting solutions than IPDA. :.However, the
representation seems to require more than one dimension ; two-dimensional IPDA solu-

Table 4.2 L

Summary Results for Guilford’s (1936) Data -
Saturated Model 1119.9 (14)
Null Model 1495.0 ( 2)
IPDA SCM -
Row=nominal, dim=2 1118.2 (13)
dim=1 1134.8 ( 8) 1121.4 (8)
Row=linear, dim=1 1130.2 ( 3) 1116.9 (3):
Row=linear & quadratic, dim=2 11139 ( 5) :
dim=1 11319 ( 4) 1117.9 4)...

Row=linear in log, dim=1 11299 ( 3) 1116.3 (3)
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Fig. 4.2 The Derived Two-Dimensional IPDA Configurations (both unconstrained and con-
strained solutions superposed) Derived from Guilford’s Data.

tions are generally better than the corresponding SCA solutions which are restricted to be
unidimensional. .

The unrestricted (Row =nominal) IPDA solutions were obtained in both one dimension
and two dimensions. The two-dimensional solution turned out to be a much better
solution. The row points from the unrestricted model are depicted in Figure 4.2 by
encircled numerals, which show a clear quadratic configuration. This motivated the fitting
of the constrained two-dimensional model by IPDA with the linear and quadratic trends
imposed on the rows. This turned out to be the best fittting solution. The row points and
the column points from this solution are also depicted in Figure 4.2. The tow points,
indicated by numerals of smaller size, are lying exactly on a quadratic curve. The column
points, indicated by numerals of larger size, are lying in expected order along the curved
unidimensional configuration. This type of guadratic configuration, or the curved
unidimensional configuration, is quite common in multidimensional scaling and is known as
the horseshoe phenomenon (e.g., van Rijckevorsel, 1987). Whether this phenomenon has
any substantive meaning or is just an artifact of the fitted model is yet to be investigated.

(3) Bradley, Katti & Coon’s data (Example 3). The unidimensional IPDA. solution
indicated violations of order among the column points. They are arranged in the order of
2,1,5,3, and 4. There are two possible venues to explore in such situations. One is to
ignore the ordinal nature of the columns and the other is to find a constrained solution that
satisfies the prescribed order of the columns. We did both. Two- and three-dimensional
IPDA solutions were obtained, ignoring the order of the columns. The two-dimensional
solution turned out to be optimal (AIC=582.3), and is presented in Figure 4.3b. This two-
dimensional configuration may suggest that the violations of order among the column
points, which looked totally unintelligible in the unidimensional configuration, may be
another instance of the horseshoe phenomenon. The column points are roughly in the
prescribed order on a curved unidimensional manifold within the two-dimensional space.

Multi-sample cluster analysis was also performed with both IPDA and SCM and for
all possible partitions of the ordered columns. Results are presented in Table 4.3. In the
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Table 4.3
Summary Results for Bradley, Katti & Coon’s Data (Example 3)
Saturated Model 591.5 (20)
Null Model 644.7 4)
Clustering Alternatives IPDA SCM
1,23 4,5 dim=1 586.1 ( 8) 616.5 (8)
=2 582.3 (11)
=3 584.4 (13)
1,2),3,45 613.4 (8)
1,2, 3), 45 624.5 (8)
1,2@3,4,5 618.9 (8)
1,23 (4,5) 607.0 (8)
1,2,3),45 627.5 (8):
1,(2,3,4,5 . 639.7 (8);
1,2 (34,5 600.2 (8)
1,2),3,4,5 6154 (8).,
1, 2),3 45 595.6 (8) 603.5 (8)
1,23, 45 614.8 (8) 6162 (8) -
(1 2), 3, 4,5 596.1 (8) 596.1 (8)
1,2,3), 4,5 620.1 (9) 620.1 (8)»
1,2,3,4,5 639.8 (8) . 639.8 (8)

1, (2 3,4, 5) 626.6 (8) 626.6 (8)

2 1 4 3 o
Fig.43a The Order-Restricted Unidimensional IPDA Solution for Bradley, Katti, *&‘ Coons’

Data g

Pyve,

PR -

4
Fig. 4.3b The two-dimensional IPDA solution for Bradley, Katti, & Coons’ Data
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Table 4.4
Summary Results for the Merit Distribution Data
14 Rows
(Depts. in Fac. of 22 Rows
Science Equated)
Saturated Model 3225.6 (32) 3255.0 (66)
Null Model 32483 ( 3) 32483 ( 3)
IPDA dim=2 : 3204.3 (28) 3221.5 (44)
dim=1 3196.4 (16) 3203.8 (24)
SCM dim=1 3207.7 (16) 3217.3 (24)

table column numbers enclosed in parentheses indicate those which were combined for the
purpose of analysis. The AIC values from IPDA are not reported for some partitions of
the columns (called “clustering alternatives”). These partitions did not yield the column
points consistent with the prescribed order. The constrained IPDA solution, in which
columns 1 and 2, and columns 4 and 5 were equated, is found to be the best solution (AIC=
595.6) among those which satisfied the order restriction. This solution is presented in
Figure 4.3a. Which of Figure 4.3a and Figure 4.3b is more informative is difficult to judge,
because of our lack of knowledge is the subject matter of research in which this data set
was collected. Note the all the AIC values are identical for IPDA and SCM in the
constrained solutions in which the assumed number of distinct columns in two. This is in
line with our discussion in Section 2.2 that two methods are equivalent for C=2.

(4) The merit distribution data. Both IPDA and SCM solutions were obtained for the
nine departments in the Faculty of Science treated separately (22 Rows) or unitarily (14
Rows). The latter assume that there are no significant differences in merit distributions
across the nine departments, so that they may be treated as one. Table 4.4 indicates that
in all comparable cases this assumption is adequate since solutions from the “14 Rows” are
associated with the smaller values of AIC. Both one- and two-dimensional solutions were
obtained by IPDA, and the one-dimensional solution was found to be better. The compari-
son between the unidimensional IPDA and the SCM solutions indicates that the former is
a better solution, making it the best solution obtained.

The unidimensional IPDA solution is presented in Figure 4.4. The column points
representing the four merit categories are arranged in the expected order. Interestingly,
on average School of Dentistry received the most favorable ratings and Medical School the

More favorable

S
$ 3 gramslz 28 o3
111 |

(1X2X3) (4)
Fig. 44 The Unidimensional Representation of Merit Distribution Data by IPDA
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D C B A
-1 tt o t 1 1
1 2 4 3
D C B A :
-1 I l 0 1
3.4

Fig. 4.5 Unconstrained and Order-Constrained Unidimensional Representations of Wilham (]
Data by IPDA. .

Table 4.5 S
Summary Results for Williams’ Data qo
Saturated Model 329.5 (12) i
Null Model 3584 (3)
Clustering All Distinct 3 & 4 Combined
Alternatives 1,234 1,264
IPDA
Row-nominal, dim=2 321.8 (8) e
dim=1 319.3 (6) 320.2 (6)1;1
SCM
Row=nominal, dim=1 327.4 (6) 3234 (6) ‘
Association Model e
Row=nominal, dim=1 322.3 (8)* 3242 @)%
*Obtained by Goodman, 1981 -
**Obtained by Tsujitani, 1988 RES

least favorable ratings. McGill’'s Medical School is ranked fifth best amwong medical
schools in North America (tenth in the world) according to some source, while School of
Dentistry has no comparable reputation. '

(5) Williams’ data. IPDA solutions were obtained in one and two dimterisions. The
unidimensional solution turned out to be a better solution. This solution is alé6 better than
the corresponding SCM solution. However, in the unidimensional IPDA solution columns
3 and 4 violated the expected order. (See the top configuration in Figure 4.5). The two
columns were combined and analyses were repeated. The difference in GOF between
IPDA and SCM diminished considerably. However, IPDA still yields a slightly better fit.
The last row in Table 4.5 gives the GOF of the association model. The solution in which
columns are not order-constrained was obtained by Goodman (1981). The order-con-
strained solution, on the other hand, was recently obtained by Tsujitani (1988 ; see also
Agresti, Chuang, & Kezouh, 1987). In both unconstrained and constrained cases, IPDA is
found to fit to the data better.

Lot

5. Concluding Remarks

In this paper performance of IPDA and SCM was systematically cpmpared in
representing ordered response categories. This was done by actually ﬁttmg them to
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several real data sets. IPDA was generally found to fit better. Although in this paper
results were reported only for five data sets, this tendency also held for numerous other
data sets we tried.

When the ordered response categories violate their prescribed order, IPDA tended to
give a considerably better fit than SCM. This is because points are not intrinsically order-
restricted in IPDA, whereas in SCM intervals representing the ordered response categories
on a unidimensional continuum always assume a certain order. It was shown that combin-
ing the response categories which violate prescribed orders had the effect of imposing the
order restrictions in IPDA (by equating the point locations), while the same operation had
the effect of removing the intrinsic order restrictions in SCM (by treating those categories
as nominal). Fair comparisons should be either between order-constrained IPDA and
order-constrained SCM, or between order-unconstrained IPDA and order-unconstrained
SCM. This having been taken into account IPDA was still found to fit better, though only
slightly in most cases. ,

Model comparisons made in this paper were all besed on the AIC statistic; which in
turn was based on asymptotic properties of the maximum likelihood estimation. This
criterion may not be optimal for small samples (¢.g., Williams’ data). Methods based on
randomization or permutation with possible approximations by Monte-Carlo methods may
be used in such situations. The methods, however, depend on the size of contingency
tables, which prevents systematic investigations. Perhaps the best strategy is to obtain an
approximate randomization (permutation) distribution in each specific situation as the
necessity arises.

One advantage of IPDA lies in the possibility of multidimensional representations.
When the data requires a multidimensional representation (as in Guilford’s data and
Bradley, Katti, & Coon’s data), the two-dimensional IPDA solution was substantially
better than the SCM solution which is restricted to be unidimensional. One way to extend
the SCM model is to incorporate the row-specific dispersion parameters, g,. . That is,

hi=M1+exp(—ai(c;—x/b))]

The comparison between IPDA and this version of SCM for the data for yvhich IPDA
required two-dimensional representations would undoubtely be of interest.

Appendix

Takane (1987) shows that p,; in IPDA can be written as p;, =(1+exp (—¢,))"?, since
di?=(yi—m;), 7=1, 2. Here
qi= —Z(Mz_ m«1)JCi,b+(M2_ M1)(M1‘+’ Mz)'— ln(wx/wz).
The first term on the right hand side has to be equal to —x.’5* and the remajging terms

to ¢, in SCM. Note first m,=v,'b and m.=0,'b where , and v, were defined in (9) and
(10). We thus obtain T
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—Z(Mz— m, )xi’b= —2(1.12" U1 )'bx.-'b
=—e'bx/b= —x,-'(e’b)b

which is equal to —x,/5* when b*=(e’b)b with ¢ defined in (11). If we solvé the last
equation for 5 by premultiplying both sides by ¢’, we obtain p=5*/(e’5*)"?. ‘Also with s
defined in (12),

(m1—m2) (mi+m2)— In(w/w.)= e’ bs’b— In(w./w:)
=5"(e’'b)b— In(wi/w:),

which should be equal to ¢,. From this we obtain

or

or

w2/wi=exp(c,—s'b*)=r
w2= 7w, but since w,+w.=1,
1=wi+run=01+7) w,

wi=(1+7)"
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