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This paper shows essential equivalences among several methods of linearly constrained
correspondence analysis. They include Fisher’s method of additive scoring, Hayashi’s second
type of quantification method, ter Braak’s canonical correspondence analysis, Nishisato’s
ANOVA of categorical data, correspondence analysis of manipulated contingency tables,
B6ckenholt and B6ckenholt’s least squares canonical analysis with linear constraints, and van
der Heijden and Meijerink’s zero average restrictions. These methods fall into one of two
classes of methods corresponding to two alternative ways of imposing linear constraints, the
reparametrization method and the null space method. A connection between the two is estab-
lished through Khatri’s lemma.

Key words: canonical correlation analysis, generalized singular value decomposition (GSVD),
the method of additive scoring, the second type of quantification method (Q2), canonical cor-
respondence analysis (CCA), ANOVA of categorical data, canonical analysis with linear con-
straints (CALC), zero average restrictions, Khatri’s lemma.

1. Introduction

Fisher’s (1948) method of additive scoring has been discovered, and rediscovered
in many different guises over the past forty years. Hayashi’s (1950, 1952) second type
of quantification method (Q2), Carroll’s (1973) categorical conjoint measurement, 
cial cases of ter Braak’s (1986) canonical correspondence analysis (CCA), and B6ck-
enholt and Brckenholt’s (1990) canonical analysis with linear constraints (CALC) 
but a few examples. For some of these methods, the relation to Fisher’s original work
is rather obvious. For others, particularly the ones more recently proposed, it is less
obvious. This paper systematically investigates formal relationships among these meth-
ods. The methods to be discussed in this paper include, in addition to those cited above,
Nishisato’s (1971, 1980) ANOVA of categorical data, joint, conditional and marginal
correspondence analysis (D’Ambra & Lauro, 1989; Israrls, 1987; Leclerc, 1975) and
van der Heijden and Meijerink’s (1989) zero average restrictions. While some of these
methods may differ in their original formulations, intended data types, generalities, and
so on, there is a common thread running through them. That is, they are all closely
related to canonical discriminant analysis, or more generally to canonical correlation
analysis.

These methods are roughly classified into two groups, corresponding to two alter-
native ways of restricting the parameter space. One is called the parameter reduction or
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reparametrization method, and specifies the space in which the original parameter
vector should lie. That is, the original parameter vector, u, is reparametrized as u =
Xu*, where X is a matrix of basis vectors, and u* a reduced parameter vector. The other
group, called the null space method, specifies the ortho-complement space of X. Let R
denote a matrix of basis vectors of this space. Then, R’u = 0. The space of all vectors,
u, such that R’u = 0, is called the kernel (null space) of R’, and denoted by Ker (R’),
The space spanned by column vectors of X on the other hand, is denoted by Sp (X). 
appropriately choosing an R for a given X, or vice versa, the two spaces, Sp (X) and Ker
(R’), could be made identical, providing two equivalent ways of specifying linear con-
straints. The method of additive scoring, Q2, and canonical correspondence analysis
(CCA), among others, belong to the first group of methods (the reparametrization
method), while canonical analysis with linear constraints (CALC) and the zero average
restrictions belong to the second group (the null space method). A specific relationship
between the two approaches will be established through a simple lemma by Khatri
(1966).

2. The Reparametrization Method

In this section, we discuss methods of linearly constrained correspondence anal-
ysis that use the reparametrization (parameter reduction) method for incorporating
linear constraints.

2.1. The Method of Additive Scoring
Let G be an N by p superindicator matrix,

G = [61, ..., t~p,],

where N is the number of subjects (cases), each Gi iS N by Pi (the number of obser-
vation categories), and p = ~--’1 Pi. Suppose that nonnumerical (categorical) obser-
vations are made on the N subjects (cases), which are dummy-coded into an N by 
indicator matrix, I-I, where q is the number of observation categories. Fisher (1948, pp.
289-298) posed the problem of assigning scores to the q categories of observation which
can be represented as an additive function of G~s as much as possible. This amounts to
finding a q-component vector, v, that maximizes

v’H’G(G’G)-G’Hv
0=

v’H’Hv ’

where (G’G)- is a g-inverse of G’G. This quantity, 0, indicates the proportion of the
total variation among the N subjects’ assigned scores that can be accounted for by an
additive function of Gi’S. It turns out that the maximized value of 0 is equal to the
square of the largest (nontrivial) canonical correlation between G and H. The problem
thus reduces to one of canonical correlation analysis.

The canonical correlation analysis, in turn, is known to be equivalent to the gen-
eralized singular value decomposition (GSVD; e.g., Greenacre, 1984) 

M1 = (G’G) +G’H(H’H)-I, (1)

with column and row metrics, G’G and H’H, respectively, where (G’G) + is the Moore-
Penrose inverse of G’G. The G’G is called the column metric because it applies to
columns of M1, and L = H’H the row metric because it applies to rows of MI . The
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Moore-Penrose inverse of G’G ensures uniqueness of Mi and uniqueness of the GSVD.
The diagonal matrix, H’H, will be denoted as L hereafter.

Briefly, the GSVD of Ml with metrics G’G and L = H’H is the decomposition of
M1 into

MI = U*D*V*’, (2)

such that U*’G’GU* = I, V*’LV* -- I and D* is diagonal and positive definite. Takane
and Shibayama (1991) describe an efficient way of obtaining the GSVD of a matrix 
the above form. The largest singular value ofMl is unity, reflecting an overlap between
Sp(G) and Sp(H). It represents a trivial solution, and corresponding singular vectors
(both left and righ0, which are constant vectors, should be discarded from the solution.
A way to eliminate the trivial solution from M1 will be discussed in section 3.1 (also, see
B6ckenholt and B6ckenholt, 1990).

The method of additive scoring presented above is a somewhat generalized version
of Fisher’s original method, which was restricted to the unidimensional case. This
generalized version is variously called Hayashi’s (1950, 1952) second type of quantifi-
cation method (Q2) in Japan, canonical analysis of categorical data (Johnson, 1950;
Maxwell, 1961), categorical conjoint measurement (Carroll, 1973, pp. 339-348), and 
on. The method can also be viewed as a special form of canonical discriminant analysis
(Fisher, 1936), where not only the criterion but also the predictor variables are discrete.

When there is only a single predictor variable with p ~ observation categories (/7 
p,, and G = G,), the method reduces to ordinary correspondence analysis (OCA;
Greenacre, 1984), which is also known as dual scaling (Nishisato, 1980), Hayashi’s
(1952) third type of quantification method (Q3), and so on. In this case, G’G = 
diagonal, and of full rank, so that (1) reduces 

M0 = K-~G’HL-1 ¯ (3)

In OCA, the GSVD of M0 is obtained with metrics K and L.
The above discussion suggests the method of additive scoring is an extension of

OCA to more than one simple two-way contingency table. The next section shows it
can also be viewed as a restricted form of OCA with linear constraints on the repre-
sentation of row categories.

2.2 Canonical Correspondence Analysis

The method of additive scoring can be reformulated as special cases of canonical
correspondence analysis (CCA; ter Braak, 1986). Let F be a data matrix that can take
a variety of forms (ter Braak, 1988); for example, an indicator matrix, a superindicator
matrix, a two-way contingency table, and so on. Let X be a matrix of predictor vari-
ables pertaining to the row structure of F. It may include continuous as well as discrete
variables. In CCA, representations of rows and columns of F are sought under the
restriction that the row representation is a linear combination of X. The method
amounts to obtaining the GSVD of

ME = (X’KX) +X’FL-1, (4)

with metrics X’KX and L, where K and L are diagonal matrices of row totals and
column totals of F, respectively.

Two special cases of (4) are of interest to us, obtained by specializing F and G. One
is where F is a single indicator matrix. By setting F = H and X = G, (4) reduces to (I).
(That K = I follows immediately.) The second case is in which F is a simple two-way
contingency table, such that
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F = G*’H, (5)

where G* is an indicator matrix obtained by interactive coding of p* discrete variables,
Gi (van der Burg, de Leeuw, & Verdegaal, 1988). The G* is an N by ff matrix, where
ff = IltP=*l Pi. Let X be a/~ by p matrix which turns G* into G. That is,

G = G*X (6)

An example of X is given in Section 2.3. Since G’G = X’KX, where K = G*’G*, and
G’I-I = X’G*H = X’F, (4) reduces to (1). Note that the first case is actually a special 
of the second. The former is obtained from the latter by setting G* = I.

When X = I in (4), 2 r educes t o M0, a nd consequently CCA reduces t o OCA.
Here, X = I implies that rows of F are all regarded as distinct, and no special relation-
ships are assumed among them.

For later reference, we note that the GSVD of M2 with metrics X’KX and L is
simply related to the GSVD of

M~ = XM2 = X(X’KX)-X’FL-1 , (7)

with metrics K and L. Note that in (7), the Moore-Penrose inverse of X’KX is replaced

by a y-inverse, (X’KX) - 1. The M~ is unique no matter which y-inverse of X’KX is used,
~ , 1/2 1/2 t t 1/2 1/2 *sinceX(XKX)-X = K- K X(XKX)-XK K- .LettheGSVDofM 2 bede-

noted by M~ = UDV’. These U, V, and D are related to U*, V*, and D* in the GSVD
ofM2 (and of MI) with metrics X’KX and L by U = XU* (or U* = (X’KX)+X’KU), 
= V*, and D = D* (Takane & Shibayama, 1991). The M~ in (7) rather than M2 in (4) 
be directly related to M’~ in section 3.1.

CCA was initially derived (ter Braak, 1986) as an approximation to the unfolding
type of single-peaked response surface model called Gaussian ordination. Appendix A
shows how CCA can be derived on a purely nonstochastic basis. Appendix A also
describes an alternative generating mechanism for F due to Lebreton, Chessel, Prodon,
and Yoccoz (1988).

2.3. A Simple Illustrative Example

An example will be given that illustrates the connection between the method of
additive scoring and CCA. This example will also be used later to illustrate other
methods of linearly constrained correspondence analysis (see section 2.5, and section
3.2).

Suppose there are two binary predictor variables, A and B. Suppose further that
two observations each are sampled from each of the four cells obtained by factorial
combinations of levels in variable A and those in variable B. The four cells are desig-
nated as albl, a2bl, alb2, and a2b2, where aj (j = 1, 2) indicates thej-th level 
variable A, and bk (k = 1, 2) the k-th level of variable B. Then, G* may 

albi a2bl alb2 a2b2
1 0 0 0 "
1 0 0 0
0 1 0 0

G* = 0 1 0 0 , 8 observations.
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
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If only the main effects of variables A and B are included in the predictor set, X may
be

Then,

al a2 bl b~

X = 1 1 a~bl . (8)
0 0 alb2
1 0 aEb2

1 0 1 0-
1 0 1 0
0 1 1 0

G = [G! GEl = G*X = 0
1 I 0

’ 1 0 0 1
1 0 0 1

0 1 0 1

0 1 0 1

Suppose that the observations are made in the form of classification into one of three
criterion groups. Then, 14 may be

1
1
0
1

H= 0
0
1
0

0 0-
0 0
0 1
0 0
1 0
0 1
0 0
0 l

Then,

F = G*’H =

It is possible to redefine X using contrast vectors, so that it has a full column rank.
For example,

X = I -1 " (9)

This X spans the same column space as the one defined in (8), but has full column rank.
Consequently, X’KX in (4) and (7) will be nonsingular, and the regular inverse can 
calculated. Note that the first column of X in (9) pertains to the effect of row marginals,
and the second and the third columns represent the contrast vectors for the overall main
effects of variable A and variable B, respectively.
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2.4 ANOVA of Categorical Data
Nishisato (1971, 1980, pp. 184-187) proposed ANOVA of multiple-choice categor-

ical data, which can be put in a form similar to (4). A major difference is that 
Nishisato’s case, not only the predictor but also the criterion variables consist of more
than a single categorical variable. This, however, should not cause any special problem.
Multiple criterion variables can be treated in a manner similar to the multiple predictor
variables. First, a single composite criterion variable, H*, is constructed by interactive
coding of the criterion variables. This H* is analogous to G* introduced in section 2.2.
Let

F = G*’H*,

and let Y be such that

H = H*Y.

This Y is analogous to X for the predictor variables, and pertains to the column struc-
ture of F which is a simple two-way contingency table.

Canonical correlation analysis between G and H amounts to the GSVD of

(G’G) +G’H(H’H) + = (X’KX) +X’FY(Y’LY) (10)

with column metric, G’G = X’KX, and row metric, H’H = Y’LY, where K = G*’G*
as before, and L = H*’H*. Equation (I0) is similar to (4), except that in (10), additional
constraints, Y, are imposed on columns of F as well as constraints, X, on rows. This is
a special case of the general model presented by Takane and Shibayama (1991), who
extensively discuss principal component analysis of data matrices with linear con-
straints on both rows and columns (also, see Takane, 1990). This is also a special case
of multiple-set homogeneity analysis of van der Burg et al. (1988), where the number 
variable sets is restricted to two.

Nishisato (1972) proposed the replacement of Y’LY in (10) by diag (H’H) 
diag (Y’LY) for computational convenience. This makes the method more like redun-
dancy analysis (van den Wollenberg, 1977) than canonical correlation analysis. Ter
Braak (1988) also proposed essentially the same approach.

Leclerc’s (1975) "correspondence analysis of juxtaposed contingency tables" fur-
ther replaces X’KX in (10) by diag (G’G) = diag (X’KX). The same technique is 
"composite" correspondence analysis by Isra~ls (1987).

2.5 Joint, Conditional, and Marginal Correspondence Analysis
Multi-way contingency tables may be subjected to OCA by rearranging them into

two-way tables in various ways. Depending on how the rearrangement is done, a
different type of correspondence analysis is possible.

For illustration, suppose there are only two predictor variables, A and B, with p 1
and P2 categories, respectively, and there is only one criterion variable, C, with q
categories. The Pl by P2 by q table may be rearranged into a PIP2 by q two-way
contingency table by stacking p 2 slices of p i by q tables. This table is equivalent to F
defined in (5), and is called a full or joint two-way table. This table may be subjected 
OCA. OCA may also be applied to each of p2 subtables of order Pl by q separately
(D’Ambra & Lauro, 1989; Isra~ls, 1987). These subtables are called conditional tables.
(D’Ambra and Lauro call separate analyses of conditional tables partial correspon-
dence analysis, but others--IsraOls, 1987; Yanai, 1986, 1988---call a different technique
by the same name. Also, see section 4.) The full joint table may be collapsed across p 



YOSH10 TAKANE, HARUO YANAI, AND SHINICHI MAYEKAWA 673

categories of variable A to obtain the P2 by q marginal table, or across P2 categories of
variable B to obtain the p~ by q marginal table. OCA may also be applied to these
marginal tables.

The OCA of the full joint table is equivalent to CCA of the same table with X = I.
The basis vectors spanning the p ~p2-dimensional vector space of I may be changed
without affecting the final solution. For example, assume, for simplicity, that P l =

P2 = 2. Instead of X = I, X may be taken to be

X=[xo, x~ x2, x~2]=
1 -1 -1

’ -I 1 -1 ’
-I -1 1

(II)

which spans the same space as 14. This X may, in a sense, be more informative, since
each column of X has a specific meaning of its own. Equation (1 l) is similar to (9),
except that X in (l l) has an extra column, x12, pertaining to the interaction effect
between variables A and B.

Separate analyses of conditional tables can also be expressed as a special form of
CCA. Using the same 2 by 2 example as above, OCA of the 2 by q subtable for b 1 is
equivalent to CCA of the 4 by q full table with

1 1

0 ’
0

(12)

and the row metric, L I, which is a diagonal matrix of column totals of the subtable. The
second column of X(b~), that is, xtbl), represents the simple main effect of variable A
within the first level of variable B. Similarly, for b2

(13)

The xt b2) represents the simple main effect of A within b2. Note that X(bl) and X(b2)

taken together span the same space as X defined in (ll). Note also that b~) = (1/2)
(x) + x~2) and b2) = (1/2) (x~ - ~2), sothat the simple maineffects of A withi
xtbl) and xtb2) taken together, pertain to the overall main effect of A (xI) and the
interaction between A and B (Xlx). Similarly, ~bl) = (1/2) (x0 + x2) and x0~2) = (1/2)
(x0 - x2), so that x0(bl) and x0(b2), taken together, pertain to the row marginal effect (x0)
and the overall main effect of B (x2).

OCA of the p 2 by q marginal table is equivalent to CCA of the full table with

X(B) = [x0, x2] = _ , (14)

where, as in (I 1), 0 represents the row marginal effect, and x2, t he overall main effect
of B. OCA of the p I by q marginal table can also be expressed analogously.

If the effect of x0 in (11) is eliminated, the remaining effects are A (the overall main
effect of A), B (the overall main effect of B) and AB (the interaction between A and B).
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(How particular effects can be eliminated will be discussed in section 3.1.) If the effects
of x0tbl) and x0~’2~ in (12) and (13) are eliminated, B as well as the row marginal effect
will be eliminated. What remains are A(bl), the simple main effect of A within b~, and
A(b2), the simple main effect of A within 2, which taken together, are equivalent to
A plus AB. If the effect of x0 in (14) is eliminated, B is the only effect remaining. Thus,
after eliminating the effects of the respective first columns in (11), (12), (13), and 
what can be accounted for by (12), (13), and (14) add up to what can be accounted 
by (11). It can also be readily verified that bJ), xtb2~, and x2span thesamespaceas
do Xl, x2, and x12.

The above discussion suggests an important property of correspondence analysis
with linear constraints. As has been noted already, OCA presupposes Sp (X) = Sp (I).
Specifying an X such that Sp (X) C Sp (I) is equivalent to partialing out certain effects
from I. For example, using (14) for X implies including the overall main effect of 
which is equivalent to excluding the overall main effect of A and the interaction effect
between A and B from Sp (I). This observation will be made more rigorous in the next
section.

3. The Null Space Method

In this section, we discuss methods that use the null space method for specifying
linear constraints. We also discuss a specific relationship between these methods and
those discussed in the previous sections.

3.1 Canonical Analysis with Linear Constraints

Brckenholt and Bfckenholt (1990; also, see Cazes, Chessel, & Doledec, 1988)
proposed least squares canonical analysis with linear constraints (CALC) on both rows
and columns of contingency tables. The constraints are of the form, R’U = 0 and C’V
= 0, where R and C are given matrices (called row and column constraint matrices),
and U and V are matrices of row and column representations, respectively. The least
squares CALC obtains the GSVD of

M~ = K-~Q,~/K-,F(Qc/£-,)’L-1,

with metrics K and L, where

QR/K-, = I - R(R’K-JR)-R’K-~,

and

(15)

(16)

Qc/L-, = I - C(C’L-~C)-C’L-~, (17)

are projection operators onto Ker (R’K-1) along Sp (R) and onto Ker (C’L-~) along
Sp (C), respectively. (Note that Qnm-’ is not the inverse of QmK, but the projection
operator onto the ortho-complement space of R in metric K-~. The QC/L-’ is similar.)
The method partials out the effects of R and C from their respective Sp (I) before
correspondence analysis is applied. The method may be considered a special case of
canonical correlation analysis between G and H, where the canonical weights, U and V,
are constrained by R’U = 0 and C’V = 0 (see Yanai & Takane, 1990).

For illustration, let us temporarily assume that only the row constraints exist.
Then, (15) becomes

M~ = K-J(I - R(R’K-~R)-R’K-~)FL-1. (15’)
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The following lemma by Khatri (1966) establishes a direct relationship between M~ 
(15’) and M~ in (7).

Lemma (Khatri, 1966; also, see Rao, 1973, p. 77 and Seber, 1984, p. 536). Let 
(p* × rA ; ra <- p*) and B (p* x rt~ ; rB -< p*) be such that A’B = 0 and rank (A) 
rank (B) = p*. Let S be a p* by p* symmetric positive-definite (metric) matrix. Then,

-1 -1S QA/S = S-l(I - A(A’S-lA)-A’S-~),

= B(B’SB)-B’ = S-IPsB/s-t. (18)

The definition of QA/s-~ is analogous to QR/K-’ in (16), and PsB/s-~ is the projection
operator defined by column vectors of SB in the metric of s-l.

Note that the above lemma is stated in slightly more general terms than Khatri’s
original lemma in that neither A nor B is assumed to have full column ranks. This
generalization, however, is rather trivial, since A and B can always be made to have full
column ranks, in which case rA + rn = p*. Proofs of the lemma in a slightly more
restrictive form (where the g-inverses are replaced by the regular inverses) can be found
in the articles cited above. It is fairly obvious that the g-inverses can be used where they
are in (18), because of the invariance property of orthogonal projectors with respect 
the type of inverse. In (18), however, S is assumed nonsingular. Equation (18) can 
further generalized to allow a singular S. See Appendix B.

Now showing the relationship between (15’) and (7) is straightforward. Let A 
S = K and B = X and apply the lemma to (15’). Then,

M~ = X(X’KX)-X’FL -~ = M~,

where X is chosen such that R’X = 0 and p* = rank (R) + rank (X). Given an R, 
X satisfying these conditions will suffice. An easy way to obtain such an X is by a square
root decomposition of QR = I - R(R’R)-R’ into XX’, such that X’X = I. Alterna-
tively, a square root decomposition of QK-,~2R (the orthogonal projection operator onto
Ker (R’K-1/2)) into X’X*’ such that X*’X* = I may be obtained, and X is set to 
K-I/2X*. This X has the property that X’KX = I. Similarly, for a given X, an R
satisfying these conditions can be obtained by a square root decomposition of Qx = I
- X(X’X) -X’ into RR’, such that R’R = I, or by R = KVZR*, where R* is obtained by
a square root decomposition of QK,,2x (the orthogonal projection operator onto Ker
(X’K v2)) into R’R*’ such that R*’R* = I. The latter R has the property that R’K-~R
= I. A similar relationship also holds between Y and C for column restrictions. In
general,

K-IQR/K-,F(Qc/L-~)’L -l = K-~PKx/K-~F(PLY/L-~)’L-l (19)

Equation (19) shows the equivalence between CALC and Nishisato’s ANOVA of cat-
egorical data discussed in section 2.4. It also suggests that whether R and C are spec-
ified in the form of R’U = 0 and C’V = 0 (the null space specification) or X and Y are
specified in the form of U = XU* and V = YV*, identical results can be obtained by
correspondence analysis of either the first term or the fourth term in the decomposition
of a data matrix according to external information proposed by Takane and Shibayama
(1991). Also, see Takane (1990).

If X and R are obtained by a square root decomposition of QR and Qx or by an
alternative method, they allow arbitrary (but nonsingular) linear transformations of the
form XW and RW, which do not change the column spaces of X and R. Consequently,
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each column of X and R thus obtained is not likely to have any specific meaning. In
certain special cases, X and R with more interpretable columns may be obtained.
Suppose T = [Ti, T2] is known, such that T~ T2 = 0, T’I = 0 and Sp (T) = Ker (1’).
Such a T may be obtained by a set of mutually orthogonal contrasts specified on row
categories of F. Suppose, as an example, that R = K1. Then, one choice of X is X =
K -l T. It can also be X = (I - I(I’KI)-11’K)T. (This eliminates the unit singular 
and constant singular vectors.) Suppose, as another example, that R = [KI, T1 ]. Then,
one choice of X is X = (I - I(I’K1) -! I’K)T2. Suppose R = T~, as a third example.
Then, X = [1, T2]. Essentially the same holds between ¥ and C. It is interesting to note
that in CALC, it is not necessary to explicitly impose C’V = I’LV = O’ to eliminate
column marginal effects, so far as R contains Sp (KI). The I’LV = 0’ and M~L1 = 0 still
hold, since FI = K1.

B6ckenholt and BOckenholt (1990) has the example of R = [K1, T~ ], where

Ti =
0 0 1 -2 1 0 0
0 0 0 0 0 1 -2 "

-1 0 -I 1 0 0 0

(Also, see Gilula & Haberman, 1988.) The first three columns of T~ stipulate that there
are no quadratic trends over three levels of variable A at any of three levels of variable
B. The fourth column, on the other hand, stipulates that a~ - a2 at bl is the same as
a 1 - a2 at b2, implying no interaction between A and B for the first two levels of both
variables. The T2 in this case might be

0 0 0 0 0 1 0
1 1 -1 -1 -1 0 0 ¯

1 1 1 1 1 -2 -2

The first column specifies the same linear trend over the three levels of variable A at
both b~ and b2. The second column specifies a different linear trend over the levels of
A at b3. The last two columns pertain to the overall main effect of variable B. Note that
T~T2 = 0, T’I = 0 and Sp (T) = Ker (1’). An X, therefore, could be X = -
1(1 KI)- 1 K)T2, which is orthogonal to both KI and T2.

There are thus two alternative ways of specifying linear constraints, one via X and
the other via R (Schmoyer, 1984). They closely parallel two ways of obtaining con-
strained least squares estimates in linear models, the projection method, and the La-
grangian multiplier method. This will be shown in Appendix C.

3.2 The Zero Average Restrictions
Van der Heijden and his collaborators (van der Heijden, de Falguerolles, & de

Leeuw, 1989; van der Heijden & de Leeuw, 1985; van der Heijden & Meijerink, 1989)
proposed correspondence analysis to analyze residuals from certain loglinear models
for contingency tables. This procedure was initially motivated by the fact that OCA
analyzes residuals from the loglinear independence model; that is, interactions between
rows and columns after row and column marginal effects are eliminated. The loglinear
model and the maximum likelihood estimation thereof are not always compatible with
our least squares framework. However, certain loglinear models are equivalent to
CCA. This is the case when the estimates of the fitted loglinear model can be obtained
noniteratively, as in the cases of independence and conditional independence models.



YOSHIO TAKANE, HARUO YANAI, AND SHINICHI MAYEKAWA 677

Van der Heijden et al.’s analysis and CALC are completely equivalent in this case.
When the fitted loglinear model requires an iterative solution, however, the two meth-
ods are similar, but not identical. However, even in this case, it is possible to develop
the CALC version of "zero average" restrictions analogous to those derived from the
loglinear model (van der Heijden & Meijerink, 1989).

Let us illustrate using the simple example considered in section 2.5, and the log-
linear models fitted by van der Heijden and Meijerink (1989). Let

R* = [Xo, Xl, x2, x12] = -11 -11
- .

(20)

-1 1

(This R* is the same as X defined in (I1), and the column vectors of R* are mutually
orthogonal.) Recall that x0 pertains to the marginal effect of rows, x~, the overall main
effect of variable A, x2, that of variable B, and x~2, the interaction between A and B.
The criterion variable is denoted by C.

Fitting the (loglinear) independence model, often denoted as (AB) (C), is equiva-
lent to CCA with X = 1 and ¥ = 1. Analyzing the residuals is equivalent to applying
correspondence analysis subject to the restrictions that x~KU = I’KU = 0 and
I’LV = 0, where U and V are row and column representations, respectively, and this
is equivalent to CALC with R = KI and C = L1. This, in turn, is equivalent to CCA
with an X, say, X = K-~[xt, x2, XI2 ] in (7). Note that I’KM~ = R’M~ = 0 and M~L1
= M~C = 0, where M~ is defined in (15). These are called "zero average restrictions"
by van der Heijden and Meijerink (1989).

Residuals from other loglinear models may be analyzed by correspondence anal-
ysis. For simplicity, only R is varied, while C is fixed at C = L1. Fitting the loglinear
model, (AB) (BC), implies the overall main effect of B is fitted in addition to the row
marginal effect (AB). This model is a conditional independence model (A and C inde-
pendent, given B) for which a noniterative solution e’xists. This noniterative solution is
obtained by taking appropriate conditional marginals of F. In CCA, this amounts to
choosing

Note that the above X spans the same column space as X -- Ix0, x2], and CCA with this
latter X is known to be equivalent to OCA of the B by C marginal table, suggesting that
this loglinear model corresponds with the saturated model for the B by C marginal
table. The row representation, U, obtained by OCA of residuals from this model would
satisfy [x0, x2]’KU = 0, and consequently, this analysis is equivalent to CALC with R
= K[xo, x2] and to CCA with an X, say, X = K-~ [x~, xt2]. The zero average restrictions
will take the form of

[Xo, x2]’KM~ = R’M~ = 0.

Fitting the loglinear model, (AB) (AC) (BC), means the overall main effect of A 
added to the previous model. This model cannot be fitted noniteratively, and the re-
sidual matrix from this model is not equal to M~. Still, the U obtained by OCA of the
residual table satisfies Ix0, x~, x2]’KU = 0, but this analysis is not equivalent (only
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analogous) to CALC with R = K[x0, x~, x2] or CCA with an X = K-~xl2. The CALC
version of the zero average restrictions is given by

IX0, Xl, x2]’KM~ = R’M~ = 0.

Van der Heijden et al.’s approach can thus be reformulated in the least squares frame-
work, which turns out to be a special case of CALC (Brckenholt & Brckenholt, 1990),
and also of CCA (ter Braak, 1986).

Van der Heijden and Worsley (1988) not only analyze residuals but also attempt 
model them. Their modelling approach to the residuals is analogous to the GSVD of

M ~ = X(X’KX) -X’KM ~LY(Y’LY) 

with metrics K and L and for some X and ¥. A similar analysis can also be done by ideal
point discriminant analysis (Takane, 1987).

4. Concluding Remarks

This paper discussed two alternative ways of imposing linear constraints, the re-
parametrization method and the null space method, and demonstrated essential equiv-
alences among the methods of linearly constrained correspondence analysis that fall
into either one of these two classes of methods. Outside the linearly constrained cor-
respondence analysis, the following methods, for example, use the reparametrization
method: CANDELINC or canonical decomposition with linear constraints (Carroll,
Pruzansky, & Kruskal, 1980), dual scaling with external criteria (Nishisato, 1980),
multiattribute conjoint analysis (DeSarbo, Carroll, Lehmann, & O’Shaughnessy, 1982),
GENFOLD2 or a restricted and unrestricted multidimensional unfolding procedure
(DeSarbo & Rao, 1984; also, see Heiser, 1981, 1987), and ideal point discriminant
analysis (Takane, 1987). On the other hand, the restricted eigenvalue problem (Rao,
1973, p.50), MULTISCALE, a maximum likelihood multidimensional scaling proce-
dure (Ramsay, 1982), restricted maximum likelihood canonical analysis and association
models (Gilula & Haberman, 1988), and so on, use the null space specification method.
The results in this paper indicate there are alternative formulations to these methods,
incorporating alternative ways of specifying linear constraints. Many other multivariate
methods, such as multiple regression (e.g., Searle, 1971; Seber, 1977, 1984; also, see
Appendix C), growth curve models (GMANOVA; e.g., Seber, 1984, pp. 474-492),
multivariate linear hypotheses (e.g., Timm, 1975), and constrained principal component
analysis (CPCA; Takane & Shibayama, 1991), use both the reparametrization and the
null space specification methods.

It is difficult to make general remarks on the relative merits of the two approaches.
Most often, natural forms of constraints follow from specific empirical questions posed
by the investigator. Aside from empirical concerns, and in the context of linearly
constrained correspondence analysis, however, the reparametrization method seems to
have some computational advantage over the null space method. The former can solve
for the GSVD of M2 (rather than M~), which is usually much smaller in size than 
whose GSVD is to be obtained in the null space method.

Ter Braak (1988) proposed partial canonical correspondence analysis (PCCA).
This method eliminates the effect of extraneous variables Z from the predictor variables
X. Let Qz/K = I - Z(Z’KZ)-Z’K, and define X* = Qz/KX. This X* is used in CCA 
obtain PCCA. PCCA is interesting in two respects from our viewpoint. First, the
original PCCA is based on the reparametrization method for incorporating the linear
constraints. It obtains the GSVD of X*(X*’KX*)-X*’FL-I with metrics K and L. 
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equivalent formulation is possible based on the null space method, which obtains the
GSVD of K-I(I - R(R’K-IR)-R’K-1)FL-l under the same metrics, but with an R
such that I -X*(X*’X*)-X*’ = RR’ and R’R = I, or an R such that R = KI/2R*, where
R* is such that QK,,2x. = R’R*’ and R*’R* = I. (The QK,,~x. is the orthogonal pro-
jection operator onto Ker (X*’K~/2)). Secondly, PCCA has to reduce to CALC 
Bfckenholt and BOckenholt, when X = I and Z = K-IR. This is indeed the case, since
X* = (QR/K-’)’, and X*(X*’KX*)-X*’ = (Q/~/K-’)’ (QR/K-’K(QR/~c-’)’)-QR/~-’ =
K-~ QR/K-~. Note that K(Qn/K-0’ = Qn/K-~K, (Q,~/K-02 = Q~/K-~, QR/K-~ is a 9-in-
verse of itself, (Q~/K-,K)- K-~QmK-, and (Q~/K-,)’K -~ = K-~Q~/K-, (The last
equation requires (AB)- = B-A- if (A-ABB-)2 = AABB-; see Yanai & Takeuchi,
1983, p. 76).

Partial correspondence analysis (Yanai, 1986, 1988; also, see Isra~ls, 1987) is dis-
tinct from any of the methods discussed in this paper. It obtains the GSVD of
(G’QjG)-IG’QjH(H’QjH) -1 with metrics G’QjG and H’QjH where Qj = I -

J(J’J)-J’ with J being the subject design matrix, whose effect is to be eliminated. 
would be interesting to combine Yanai’s approach with Nishisato’s described in section
2.4, or B6ckenholt and BOckenholt’s approach described in section 3.1.

Appendix

In this appendix we present: (A) an alternative derivation of canonical correspon-
dence analysis (CCA), (B) a generalization of Khatri’s lemma, and (C) constrained 
squares solutions in linear models.

A. Alternative Derivation of Canonical Correspondence Analysis
CCA was originally derived (ter Braak, 1986) as an approximation to the unfolding

type of single-peaked response surface model called Gaussian ordination. In view of its
relationship to OCA, CCA can be derived from a somewhat different perspective, but
on the same unfolding rationale (Heiser, 1981; Takane, 1980).

In this appendix, CCA is first derived in its general form and then specialized. Let
F be a given data matrix whose entries represent some sort of similarities between rows
and columns. The similarities are assumed to be all nonnegative. In the unfolding
model, the rows and the columns of F are represented as points in a multidimensional
Euclidean space. Let U and V* be row and column representations of F, respectively.
It is assumed that

U = XU*, (21)

where X is the matrix of predictor variables, and U* a matrix of weights. The predictor
variables can include both continuous and discrete variables.

Consider finding U* and V* such that

~b = tr(F’D (2)), (22)

is minimized, subject to

U’KU = U*’X’KXU* = I, (23)

where D<2) is the matrix of squared Euclidean distances between the row and column
points, and K the diagonal matrix of row totals of F. (Matrix K may be singular,
provided that rank (KX) = rank (X). Nonsingularity of K is ensured, however, if 
rows of F are entirely zeroes.) The above criterion requires that the squared Euclidean
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distances be inversely related to the corresponding entries of F as much as possible.
Matrix D(2) can be more explicitly written as

D(2) = diag (XU*U*’X’)Iml~ - 2XU*V*’ + lml~ diag (V’V*’), (24)

where 1m and I n are m- and n-component vectors of ones, respectively. (The m and 
are the numbers of rows and columns of F, respectively.) Equation (23) is a normal-
ization restriction. While the specific form of the normalization restriction is somewhat
arbitrary, it is convenient to use (23).

Using (24), (22) can be rewritten 

~b = tr (U*’X’KXU*) - 2 tr (U*’X’FV*) + tr (V*’LV.*), (22’)

where L is the diagonal matrix of column totals of F. Since

min ~b = min ~b

where

$* = min $

(i.e., the minimum of th with respect to V* for U* fixed), we first obtain ~b*. Differen-
tiating $ in (22’) with respect to V* and setting the result equal to zero gives

- ~ = LV* - F’XU* = O.
20V*

Hence,

V* = L-1F’XU*, (25)

where L-1 may be replaced by the Moore-Penrose inverse of L, if L is not of full rank.
Nonsingularity of L is ensured, if no columns of F are entirely zeroes. A general
treatment of singular metric matrices has been given by de Leeuw (1984) (also, 
Takane & Shibayama, 1991).

Using V* in (25), th* can be expressed 

4~* = tr (U*’X’KXU*) - tr (U*’X’FL-~F’XU*). (26)

Since under (23), the first term in ~b* is a constant, minimizing ~b* with respect to U* 
equivalent to maximizing the second term of (26) under the same normalization restric-
tion. The problem is solved by the generalized eigenvalue problem of

X’FL-~F’XU* = X’KXU*A, (27)

where A is a diagonal matrix of eigenvalues. Once U* is obtained by solving (27), U 
obtained by (21), and V*, in turn, by (25). This is essentially equivalent to the GSVD 
(X’KX) + X’FL-1 with metrics X’KX and L except that the normalization restriction on
V*, that is, V*’LV* = I is not explicitly imposed in the above derivation.

The data matrix, F, is now specialized. Let F be a two-way contingency table, such
that F = G*’H, where G* (N by m) and H (N by n) are both single indicator matrices.
Such an F may arise, for example, as follows (Lebreton, et al., 1990). Suppose a sample
of N children are drawn from m schools. Which schools children belong to are indicated
by G*. The children are also classified into n groups according to some criterion (e.g.,
father’s occupation). This is indicated by H. Suppose that predictor variables, X, are
provided for schools rather than for children. For relating these predictor variables to
father’s occupation, we may count the numbers of children attending specific schools
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and having fathers of specific occupational categories, which yield F, and perform CCA
of F with X as the predictor variables. Alternatively, we may define G = G*X. Then,
(22’) can be rewritten 

~b = tr (GU* - HV*)’(GU* - HV*),

since H1n =lm, L = H’H (diagonal) and K = G*’G*. Thus, the same problem can also
be solved by canonical correlation analysis between G and H. CCA at the school level
is thus equivalent to canonical correlation analysis at the children’s level (Chessel,
Lebreton, & Yoccoz, 1987; Lebreton, et al., 1988).

If further G* = I the above special case reduces to the one in which F = H (a single
indicator matrix), X = G and K = I. The two special cases of CCA which are equivalent
to the method of additive scoring follow by specializing X in the way described in
Section 2.2.

B. A Generalization of Khatri’s Lemma
The following theorem generalizes Khatri’s lemma.

Theorem. Let A and B be as stated in Khatri’s lemma. Further, let M and N be
nonnegative definite matrices of order p* satisfying the following conditions: (a) rank
(A) = rank (A’M), (b) rank (B) = rank (B’N), and (c) A’MNB 

Ip, = A(A’MA)-A’M + NB(B’NB)-B’, (28)

where It,, is an identity matrix of order p*.

The following lemma is useful to prove the theorem.

Lemma (Yanai, 1990). Let A and M be as defined in the above theorem. Then, the
following three statements are equivalent: (1) rank (A) = rank (A’M), 
A(A’MA)-A’MA = A, and (3) Sp (A) Ker(A’M) = Sp(Ip .), and Sp ( A) fq K er (A’M
is null.

Similar relations also hold for B and N.

Proof of the Theorem. Let J = A(A’MA)-A’M + NB(B’NB)-B’ - Ip,, and prove
J = 0. Observe that the condition rank (A) = rank (A’M) ensures the decomposition 
Sp (It,.) as the direct sum of Sp (A) and Ker (A’M). Then, for any x ~ Sp (A), 
(i.e., JA = 0) because of (2) in the above lemma. Furthermore, A’MNB = 0 and 
(NB) = rank (B) imply Ker (A’M) = Sp (NB). Thus, for any y ~ Ker (A’M), 
for some z, and NB(B’NB)-B’y = NB(B’NB)-B’NBz = NBz = y, so that Jy = 0 (i.e.,
JNB = 0). This implies J = 0 and (28). 

Corollary (Khatri, 1988, Theorem 1).

(1) If Sp (N) D Sp (A), and choose M = N-, 

N = A(A’N-A)-A’ + NB(B’NB)-B’N. (29)

(2) If Sp (M) D Sp (B), and choose N = M-, 

M = MA(A’MA)-A’M + B(B’M-B)-B’. (29’)

Proof. (1). Postmultiply (28) by N. Sp (N) 3 Sp (A) ensures A’N- N = A’. 
tion (2) can be proved similarly.

M = S-j in (29’), where S is positive definite, leads to Khatri’s lemma as stated 
(18). 
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C.

where E(e) = 0, and V(e) 
incorporated by
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Constrained Least Squares Problem in Linear Models

Consider the following regression model

y = Wm + e (30)

o’21. Linear constraints on parameter vector m may be

m = Xm*, (31)

where X is a known matrix, and m* a reduced parameter vector. The ordinary least
squares estimate of m* is obtained by

so that

and

fit* = (X’W’WX)-X’W’y,

fit = X(X’W’WX)-X’W’y, (32)

and

which leads to

fit = Q(QW’WQ)-QW’y = T(T’W’WT)-T’W’y, (34)

Writ = PwrY,

where T is such that Q = TT’ and T’T = I. The second equation in (34) follows from
the fact that T(T’W’WT)- T’ is a 9-inverse of QW’WQ. A proof of the latter is straight-
forward by showing QW’WQT(T’W’WT)-T’QW’WQ = QW’WQ. Equation (34) 
identical to (32) by setting X = T. The projection method thus corresponds to the
reparametrization method.

In the Lagrangian multiplier method, we obtain

fit = [(W’W) -1 - (W’W)-1R[R’(W’W)-IR]-R’(W’W)-I]W’y, (35)

assuming W’W is nonsingular, and

Writ = (Pw - Pw*)Y,

where P w = W(W’W) - 1 W’ and Pw. is defined similarly with W* = W(W’W) - 1R. 
a detailed derivation, see Searle (1971, pp. 110-123) or Seber (1977, pp. 84-87). Khatri’s
lemma can be used to establish the equivalence between (32) and (35) with A = R, 
X, and S = W’W. The Lagrangian multiplier method thus corresponds to the null space

Writ = Px* Y,

with X* = WX and Px* = X*(X*’X*)-X*’.
Linear constraints may also be specified by

R’m = 0. (33)

There are two conventional ways of solving a linear least squares problem subject to the
constraint of the above form (e.g., Seber, 1984, pp. 403-405). One is the projection
method, and the other the Lagrangian multiplier method. In the former we define Q =
I - R(R’R)-R’. Then m = Qa for some a. A least squares estimate of a is obtained 

h = (QW’WQ)-Q’W’y,
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specification method. The equivalence between (32) and (35) suggests a general decom-
position of Pw. That is,

Pw = Pwr + Pw*, (36)

where PwTPw̄ = 0, since T’W’W* = T’W’W(W’W)-IR = 
When W’W is singular, but rank (W) + rank (R’) = rank (W), where W’ = [W’, 

then Pw* = 0, or Pw = PWT. This follows from W* = W(W’W + RR’)-1R = 0 (Rao,
1973, p. 34; Seber, 1977, p. 79). In this case, R is called an identification restriction
(Scheffr, 1959, p. 17; Seber, 1977, p. 74).
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