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ABSTRACT

We develop canonical correlation analysis by imposing linear constraints upon
parameters corresponding to two sets of variables. The results of our method, which
we call CANOLC, are shown in terms of projection operators both orthogonal and
oblique. Further, caLc (correspondence analysis with linear constraints) turns out to
be a special case of canoLc.

I. INTRODUCTION

Over the past twenty years, Hotelling’s canonical correlation analysis has
received much attention. This may be due to the fact that canonical correla-
tion analysis subsumes a number of multivariate techniques, including multi-
ple regression analysis, canonical discriminant analysis, correspondence analy-
sis, etc. Using the theory of generalized inverse (g-inverse) matrices, Khatri
[5] has shown that canonical correlation analysis can be extended to the case
in which the covariance matrix of two sets of variables may be singular.

Further, in the case of a linear regression problem (ie., y = XB + &),
estimation of B may be done subject to a linear constraint AB = c. (For
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example, see [8, pp. 84-88]) In view of this, the problem may duly be
applied so as to estimate the unknown parameters involved in canonical
correlation analysis, taking some constraints into consideration. More often,
natural forms of constraints may follow from specific empirical questions
posed by the investigators concerned.

With such a formulation, one specifies the space in which the original
parameter vector should lie, and then proceeds to test the constructed
hypothesis by finding an appropriate test statistic. However, little work has
been done on canonical correlation analysis following this kind of approach,
except for the work by Bockenholt and Bockenholt [2], who derived a
correspondence analysis by incorporating linear constraints (CALC) on row and
column scores of contingency tables.

In this paper, we extend the earlier results and derive general solutions
for canonical correlation analysis with linear constraints by employing projec-
tion operators (called projectors for simplicity), and show that the method of
Lagrange multipliers and the method of orthogonal projectors for finding
constrained least squares estimates of unknown paramters in linear regression
and CALC turn out to be special cases of our solution. Further, we develop
some obtained results so as to express canonical correlation coefficients with
linear constraints in terms of oblique projectors.

First, we shall briefly review the algebra of projection operators, and
establish some necessary lemmas and theorems.

2. SOME RESULTS ON PROJECTION OPERATORS

Let X and Y be n X p and n X g matrices, respectively, where X’'X
and Y'Y may be singular. The symbols S(X) and S(Y) stand for the
subspaces spanned by the column vectors of X and Y, respectively. Further,
let Py and P, be orthogonal projectors onto S(X) and S(Y). They are more
explicitly written as

Py =X(X'X) X’ and P,=Y(Y'Y) Y’ (2.1)

which are unique for any choices of g-inverse matrices of X’X and Y'Y.
Further, it can be shown that

Qx=1I,— P and Qy =1, —Py (22)
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are orthogonal projectors onto S(X)* and S(Y)*, i.e., orthocomplement
subspaces of S(X) and S(Y ). Let Ker X’ be the kernel of X', or equivalently
the null space of X'. Then Ker X’ = S(Qy).

With regard to the orthogonal projectors, the following relationships hold.

LEMMA 2.1.  Let Pix .y be the orthogonal projector onto S(X :Y ). Then
Px.yy=Px+ Py ifandonlyif X'Y =0; (2.3a)
Pix.yy=Px + Py — PxPy ifandonlyif PyPy=PyPy. (2.3b)

Equation (2.3a) is easy to prove. For a proof of (2.3b), see [7].
Next, we consider projectors which are not symmetric.

LEMMA 2.2 [13].  For a p X r matrix A and an n.n.d. matrix M of order
p, the following three statements are equivalent.

rank (A'M) = rank A, (2.4a)
A(A'MA) A'MA = A, (2.4b)
S(A) ® Ker A’'M = E", (2.4c)

where E" is the n-dimensional Euclidean space.

Let Py, = ACA’MA)”A’M. Then if rank A’M = rank A, P, is the
projector onto S(A) along Ker A'M.
We give a lemma which generalizes (2.3a and 2.3b).

LEMMA 2.3. Let K be a positive definite matrix of order n. Further, let
Px.yyxy = (X:Y)[(X:Y)YK(X:Y)] (X:Y)K.
Then
Pix.vxx) = Pxxy T Pyxy ifandonlyif X'KY =0, (2.5a)

P(X:Y)(K) = PX(K) + PY(K) - PX(K)PY(K) if and only if

PX(K)PY(K) = PY(K)PX(K)' (2-5b)
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Proof. Equations (2.5a) and (2.5b) follow immediately from (2.3a) and
(2.3b) on noting that

K'Y2Py iy K™% = Prusag (2.6)

and Pyy/zy is an orthogonal projector. Similarly for Pyxyand Pix.yyg)y B
We now give one more lemma, which generalizes Lemma 2.2.

LEMMA 2.4. Let A and B be p X r, and p X r, matrices such that
A’'B = 0 and rank A + rank B = p. Further, let M and N be n.n.d. matri-
ces of order p satisfying the following conditions:

(a) rank A = rank A’'M,
(b) rank B = rank B'N, and
(c) A’MNB = 0.

Then:
(i) One has

I, = Py + (Pony)- 2.7)

where Py, = ACA'MA)”A'M, Py, = B(B'NB)™B'N are projectors onto
S(A) along Ker A’M and onto S(B) along Ker B'N, respectively.
(ii) If S(M) D S(B), and we choose N = M~, then

M = MA(A'MA) A'M + B(B'M™B) B’. (2.8)

Part (i) was given by Takane, Yanai, and Mayekawa [11, pp. 681-682], and
part (ii) was given by Khatri [6].

Note 1. Suppose that N is nonsingular and put M = N™! in (2.7).
Then

N-Y[1, - A(A'N"'A) A'N"'| = B(B'NB) B’, (2.9)

which is sometimes called Khatri’s lemma [4]. This also follows from (2.3a) on
setting X = NVY2B Y = N~1/24,

Using Lemma 2.4, the following theorem is established.
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THEOREM 2.1. Let A and B be matrices as defined in Lemma 2.4, and
let X be an n X p matrix. Then

Py = Py 4 + Pyxp, (2.10)

where Py, X, Py 4, and Pyy depend on whether (i) X'X is nonsingular or
not, and /or (ii) A = X'W or not.

Case 1. X'X is nonsingular:
P,=X(X'X)'X', Xo = X(X'X)7",
Py = X(X'X)7'Ala(xx)7'A] a(x'x)T'x, (211)
Py; = XB(B'X'XB) B'X'.
Case 2. X'X is singular and A = X'W for some W:
Py =X(X'X) X', X«=X(X'X),
Poa=X(X'X) A[A(X'X)"A] A(X'X) X', (212)
Py; = XB(B'X'XB) B'X'.
Case 3. X'Xis singular, and A # X'W forany W: Let N = X' X + AA’.

Put M = N[, where N[ is the symmetric reflexive g-inverse of N. Further,
put

Py = X'MX, X+=XM, .

Py, =X+A(A’MA) A'(X,), Py =XB(B'X'XB) B'X'.

The results (2.10), (2.11) and (2.12) are new in that they are written in the
form of projectors, although they can easily be obtained from Lemma 2.4.

It is to be noted, here, that P, = XMX', Py ,, and Pyp as given in (2.13)
are not projectors themselves except for the case in which S(X’) and S(A)
are disjoint. In that case, XMX' = X(X'X) X’ and X4 A = XMA = X(X'X
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+ AA')”A = 0, thus establishing
X(X'X)” X =XB(B'X'XB) B'X = P,,.
Then A is called an identification restriction [8, p-741.

NoOTE 2. Let Py, = X(X'KX)™'X'K, where K is a positive definite
matrix. Further, let A and B be matrices as defined in Theorem 2.1. Then

Pyxy = Px, .y T Pxax) (2.14)

where
X =X(X'Kx)™',
Py, ) = X(X'KX) 'A(A'(X'KX) ' A) A'(X'KX)'X'K,
Pyax, = XB(B'X'KXB) B'X'K.
A proof of (2.14) follows from (2.5a), (2.6), and the relationship

(X+«A)'K(XB) =A’B = 0.

3. CANONICAL CORRELATION ANALYSIS WITH
LINEAR CONSTRAINTS

Let z be an n X 1 random vector with covariance matrix proportional to
the identity matrix, and let X and Y be centered n X p and n X q matrices,
respectively. Then the joint covariance matrix of X’z and Y’z is proportional
to the matrix

_(X'X X'Y
V—(Y,X Y,Y). (3.1)

We first consider representing the canonical correlation coefficient be-
tween X'z and Y’z without any constraints. We may maximize the correla-
tion coefficient between the composite variables 'z = (Xa)'z and g’z =
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(Yb) z, ie.,

Cov(f'z, g'z)

plf.8) = VVar(f'z) Var(g'z)

B a'X'Yb 39
(@ X Xa)(b'Y'Yb) (32)

It is well known that the maximum value of (3.2), which is called the
canonical correlation coefficient between X’z and Y'z, can be obtained as
the square root of the eigenvalue as shown in the following lemma.

LEmMMA 3.1 [13].  The solutions a and b maximizing (3.2) can be obtained
by any of the following three statements:

P,Yb = uXa and PyXa = pYb, (3.3a)
(PyPy)Xa = p*Xa and PyXa = pYb, (3.3b)
(PyPy)Yb = u*Yb and PyYb = pXa. (3.3¢)

First, observe that the ith largest, canonical correlation coefficient be-
tween two random vectors X'z and Y’z is denoted as cc;( X'z, Y'z), and the
set of all corresponding positive canonical correlations as cc(X'z,Y'z).
Further, the set of all nonzero eigenvalues of a square matrix A is denoted as
nzch( A). Then we have

cc®*(X'z,Y’z) = nzch( Py Py) = nzch( P, Py), (3.4)

which imply that canonical correlation coefficients between X’z and Y'z are
unique for any choice of g-inverses of X'X and Y'Y.

Now, let’s generalize Lemma 3.1 by assuming that V(z) is proportional to
a positive definite matrix K of order n. Then the covariance matrix between
X'z and Y’z turns out to be

X'KX  X'KY
V<K>=(Y'1<X Y’KY)' (35)
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LEMMA 3.2. Under the conditions stated above, solutions a and b
maximizing

Cov(f'z, g'z)

" 8) = R o) Vg )

a'X'KYb
= (3.6)
V(a'X'KXa)(b'Y'KYb)
can be obtained from any of the following three statements:
PyxyYb = pXa and Py Xa = pYb, (3.7a)
(Pxcx)Py(x)) Xa = p*Xa and Py(xyXa = pYb, (3.7b)
(PyixyPxexy)Yb = u?Yb and Py, Yb = pXa, (3.7¢)

where Pyxy = X(X'KX)"X'K and Py, = Y(Y'KY) Y'K are projectors
onto S(X) along Ker X'K and onto S(Y ) along Ker Y'K, respectively.

Proof of Lemma 3.2. A straightforward proof follows from Lemma 3.1
on replacing X and Y in Lemma 3.1 with K/2X and K'2Y, and using the
relationship (2.5). a

Let ce(X'z,Y’'z)x be the set of all positive canonical correlations be-
tween X'z and Y’z which are obtained from the covariance matrix Vg, in
(3.5). Then we have

cc?(X'z,Y'2) g = nzch( Py ) Py(x,) = nzch( Py, Px(x))-

Next, we consider canonical correlation analysis with some constraints on
a and/or b.

For given matrices A (p X r,, r, <p) and C (g X Ty, Ty < q), we
consider linear constraints of the following forms:

A'a=0 and C'b =0, (3.8)
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which imply @ € Ker A’ and b € Ker C’. Further, let B and D be p X (p
—r.) and ¢ X (g — r,) matrices such that

AB=0 and C'D=0. (3.9)
with
p = rank( A: B) = rank A + rank B,

g = rank(C : D) = rank C + rank D. (3.10)

The result is summarized in the following theorem.

THEOREM 3.1. The solutions a and b maximizing (3.2) subject to the
linear constraints (3.8) are given by either of the following two statements:

PygYb = pXa and PypXa = uYb, (3.11a)

(Px — Px,1)Yb = uXa and (P, — Py )Xa = pYb. (3.11b)

where if X'X is nonsingular, Py and Py , are given by (2.11); if X'X is
singular and A = X'W for some X, then Py and Py , are given by (2.12);
and if X' X is singular and A # XW for any W, then Py and Py , are given
by (2.13).

COROLLARY 3.1.  Consider the following four statements:
(PygPyp) Xa = p*Xa and PypXa = pYb, (3.12a)
(Px — Px,u)(Py = Py,c)Xa = p*Xa and (Py— Py c)Xa = pYb,
(3.12b)
(PypPyp)Yb = u®Yb and PyyYb = pXa, (3.12¢)
(Py = Py,c)(Px — Px.a)Yb = u*Yb and (Py — Py ,)Yb = pXa.

(3.12d)

The six statements given in (3.11) and (3.12) are dll equivalent.
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Proof of Theorem 3.1. We differentiate
a'X'Yb — py(a'X'Xa — 1) — py(b'Y'Yb — 1) — a’AX, — b'CA, (3.13)

(where A, and A, are vectors of Lagrangian multipliers of orders p and g,
respectively) with respect to @ and b, and set the result equal to zero. We
obtain

X'Yb — uX'Xa = AA,, (3.14)

Y'Xa — wY'Yb = CA,. (3.15)

By multiplying the first and second equation by @’ and b/, respectively, we
get u = u, = u,. Premultiply (3.14) by XB(B'X'XB)™ B’. We obtain

XB(B'X'XB) B'X'Yb = uXB(B'X'XB) B'X'Xa = pXa, (3.16)

using (3.9). Observe that A’a = 0 and A’B = 0 implya € S(B). This shows
that the right side of the above equation (3.16) is equal to uXa. Thus (3.15)
reduces to PypYb = uXa. Similarly, Py, Xa = pYb follows immediately
from (3.15) on noting that C'b = 0 and C’'D = 0 implies b € S(D). The
proof of (3.11b) follows immediately, using Theorem 2.1. [ |

We call this analyses canonical correlation analysis with linear constraints
(CANOLC).

NOTE 3. The equations (3.12a) can be written in terms of the matrices
A and C as

(PXQA,PYQC,)Xa = pXa and Py Xa = pYb, (3.17)

where Q4. and Q. are defined similarly to (2.2). Equation (3.17) implies
that canonical correlation analysis between X and Y subject to constraints of
the form (3.8) or (3.9) is equivalent to canonical correlation analysis between
XQ, and YQ... With regard to XQ4s observe that minimization of tr(X —
WA')' (X — WA') yields X — WA’ = XQ,,, where W is a least squares
estimate of W. In the context of Takane and Shibayama [10], XQ,. can be
interpreted as the residual data matrix eliminating the effects of A’, i.e
external information on column variables from X.

Let us denote by cc;(X'z,Y’'z) the ith largest canonical correlation
between two sets of random variables X'z and Y’z obtained from (3.5).
Then the results stated above are summarized in the following corollary.
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COROLLARY 3.2. Let A, B, C, and D be matrices as defined in Theorem
3.1. Then the following four sets are identical:

(@) cc®((XB)'z,(YD)' 2),

(i) cc®((XQ,) 'z, (YQ()'2),

(iit) nzch(Pyg Pyp)),

(iv) nzch((Py — Py 4 XPy — Py o).

With regard to the magnitude of the canonical correlation coefficients
obtained above, the following properties hold.

COROLLARY 3.3.

() cc(X,Y) = cc,(XB,YD) for i =1,...,r, where r = rank(XB, YD),
with equality if rank(XB) = rank X and rank YD = rank Y hold simultane-
ously.

(i) If Py Pyp = PypPyg, then cc,(XB,YD) = 1 or 0.

Proof. Property (i) is established by noting Lemma 4 of [1], which leads
to

cc,(X,Y) = cc;(XB,Y) z cc,( XB,YB).

Property (ii) follows directly from (2.4). [ |

NOTE 4. rank XB = rank X is equivalent to rank(A: X') = rank A +
rank X, which implies that S(A) and S(X') are disjoint.

Finally, we generalize Theorem 3.1, although only in the case when both
X'KX and Y'KY are nonsingular.

NoTE 5. The solutions a and b maximizing (3.2) subject to the linear
constraints (3.8) or (3.9) are given by either of the following two statements,
provided that both X’KX and Y'KY are nonsingular, where K is a p.d.

matrix:
Pypx)Yb = pXa and Pyp gy Xa = pYb. (3.18a)
(PX(K) - PX"A(K))Yb = pXa and (PY(K) - PY"C(K))Xa = uYb,

(3.18b)

where Xxx = X(X'KX) ! and Y 4 = Y(Y'KY) L.
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Further, it follows that the following four sets are identical:

(@) cc*(((XB)'z,(YD) z)y,

(i) cc®(XQ ) 2, (YO, ) 2).

(i) nzch(Pypx, Py pex)):

(iv) nzeh((Py k) — Py, . accyXPyxy = Py, e

4. RELATION TO SOME OTHER METHODS

In the previous section, we presented a general solution for canonical
correlation analysis with some linear constraints. In this section, we consider
some relationships that hold between our theorem (Theorem 3.1) and the
previously established results.

We first derive a corollary from Theorem 3.1.

CoROLLARY 4.1. When X'X and Y'Y are nonsingular, (3.11a) and
(3.11b) can be written as

(I, = Pyay) X'Yb = pX'Xa, (4.1a)
(I, = Powy)' (Y'Y) "Y' Xa = pb, (4.1b)
respectively, where
Pauy = Al A(X'X) 71 A] A(x'x)7, (4.2a)
Py =C[C'(Y'Y) '] cr(yy)! (4.2b)

are oblique projectors.

The proof follows immediately from Theorem 3.1, by observing that
(X’X)_IPA(M) = PA’(M)(XlX)_l’

(Y,Y)—IPC(N) = PC:(N)(Y’Y)_I'
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Thus, it follows that the generalized singular value decomposition [3] of the
matrix

H=(X'X) (I = Pyu)) X'Y(I = Pony) (YY) (4.3)

with the row metric X’X and the column metric Y'Y is identical to solving
(3.11a) and (3.11b).

4.1. Correspondence Analysis with Linear Constraints (CALC)
Let X and Y be n X p and n X ¢ dummy coded matrices. Then

K=X'X, L=Y'Y, and F=X'Y

are diagonal matrices of orders p and g. Further, it can be seen that
F = X'Y is a contingency table. Thus, (4.3) can be rewritten as

H= K_IQA(K—I)FQé(L—l)L_l

where Q,x 1, = I, — A(A'K’A)"A’K™" and Q¢poyy =1, —
cic'L'c)y c’'L .

This was derived by Bockenholt and Bockenholt [2] in the context of
correspondence analysis with linear constraints (caLc) on both rows and
columns of a contingency table. Further, note that canonical correspondence
analysis [9] can be made equivalent to caLC by judicious choice of the
constraint matrices [11].

4.2. Multiple Regression Analysis with Linear Constraints
Choose Y = y in (3.11b). We obtain

(Px - PX.A)y = pXa. (4.4)
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If we put y = X8 + & and choose a = B, then the least squares estimate of
B with the constraint A’B = 0 is given by

X6 = x{(x'x)"'x" - (xx) " ala(xx) Al a(xx) T X}y,

(4.5)
which implies

B={(x 0 x ~ e Al axx) Al A (xx) Ky

(4.6)

if X'X is nonsingular. Equation (4.6) is the solution obtained by means of the
Lagrange multiplier method. It is to be noted here that (4.6) generalizes an
earlier result (for example, see [8, (3.59), p. 85)]) in the sense that the term
(A(X’'X)'A)lis replaced by (A’(X’X)"'A)". Further, from (3.11a), we
have Pypy = uXa, which leads to

B=B(B'X'XB) B'X'y. (4.7)
It can be shown that (4.6) is identical to (4.7).
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