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The DEDICOM method for the analysis of asymmetric data tables gives representations
that are identified only up to a nonsingular transformation. To identify solutions it is proposed
to impose subspace constraints on the stimulus coefficients. Most attention is paid to the case
where different subspace constraints are imposed on different dimensions. The procedures are
discussed both for the case where the complete table is fitted, and for cases where only off-
diagonal elements are fitted. The case where the data table is skew-symmetric is treated sep-
arately as well.
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Many research questions lead to the analysis of a square data table consisting of
relationship measures among a set of n objects. Often these relationships denote sim-
ilarities or distances among the objects, and usually such measures are symmetric, that
is, the similarity between objects i andj is the same as that betweenj and i. However,
relationships among a set of objects need not be symmetric. Asymmetric relationship
data may, for example, concern friendships that need not be mutual, mobility tables,
import/export figures, or confusion frequencies for pairs of consonants. Many methods
have been proposed for the analysis of asymmetric data (see, e.g., Chino, 1991, for 
review). An interesting method for the analysis of such square, asymmetric relationship
matrices is DEDICOM, which is an abbreviation of DEcomposition into Directional
COMponents (Harshman, 1978; also, see Harshman, Green, Wind, & Lundy, 1982).

In DEDICOM the asymmetric data table X (n × n) is modeled 

X = ARA’ + E, (1)

where A is an n × r matrix of coefficients expressing to what extent an object takes part
in each of the r "idealized" objects, R is an asymmetric r × r matrix of relationships
between idealized objects, and E is an n × n matrix of error terms. Each idealized
object should be seen as an object with a particular basic aspect of the relations among
the objects. According to the structural part of the model, the relationship between
objects i andj can be written as ~k Y.l aikajlrkl. That is, it is decomposed as the sum
of asymmetric relationships between idealized objects, multiplied by the coefficients
that express to what extent an object takes part in the idealized objects.

Harshman (1978) proposed fitting the model to the data by minimizing
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o’(A, R) IIg - ARA’II2, (2)

over A and R, and provided an algorithm for it (Harshman, 1981a). Harshman’s algo-
rithm was based on treating the left-hand A and the right-hand A as if they are inde-
pendent, without guarantee that they are equal upon convergence. Monotonically con-
vergent algorithms where left-hand A and right-hand A are not distinguished have been
proposed by Kiers (1989) and Kiers, ten Berge, Takane, and de Leeuw (1990). 
convenience, matrix A is usually constrained to be columnwise orthonormal, as can be
done without loss of generality. Even with this constraint, the solution is not identified.
One way of identifying it is to rotate the matrix A to simple structure, for instance, by
varimax (e.g., Harshman et al., 1982). Many other orthogonal simple structure rota-
tions exist, and it seems difficult to decide which of these should be used. Moreover,
there seems to be no compelling reason for constraining the columns of A to be mu-
tually orthogonal, hence, oblique simple structure rotations may be considered as well.
Note that whatever the rotation is, the rotation T should be compensated for in R; that
is, if A is replaced by P~ = A T, then R should be replaced by/~ = T- 1R (T’) - 1. Rather
than trying to solve the problem of choosing the most appropriate simple structure
rotation, in the present paper we will propose a method to invoke a particular, usually
simple, structure in the solution by imposing certain constraints on matrix A. Before
discussing how this can be done, we will pay a little more attention to the interpretation
of a DEDICOM solution, illustrated by an artificial example.

To interpret a DEDICOM solution it is crucial to have an idea of what the idealized
objects stand for. A simple situation is sketched in the following example. Suppose
there are 6 car types that belong to two groups, say the first three types of cars (A, B,
and C) are small cars, and the last three (U, V, and W) are big cars. Suppose, further,
there is a data matrix X consisting of car-switching frequencies, with xij denoting the
number of times a car of type i is replaced by a car of type j. Obviously, such a data
table is likely to be asymmetric, because it is not to be expected that type i is replaced
by type j just as often as type j is replaced by type i. Now an ideal two-dimensional
DEDICOM representation of such a data table would be one in which the first column
of A has nonzero elements only in the first three rows (corresponding to cars A, B, and
C) and the second column of A has nonzero elements only in the last three rows
(corresponding to U, V, and W). Assuming that the nonzero elements are not very
different, one may interpret the first "idealized object" as "the typical small car", and
the second as "the typical big car". Then the elements of matrix R represent the
asymmetric relationships among typical small cars and typical big cars. Specifically, if
the DEDICOM representation describes the data table perfectly, and the nonzero el-
ements of A are positive and are scaled to unit sums, the element rll represents the
frequency of small cars being replaced by small cars, rl2 the frequency of small cars
being replaced by big cars, etc. To see this, consider the element xAU, which can be
reconstructed by the model parameters as the product aalau2rl2 . Summing all ele-
ments of X for which the row element is a small car, and the column element is a big
car, one finds

~i~(A,B,C) ~-j~(U,V,W) ailaj2rl2 = (~’-i~(A,B,C) ail)(~j~(U,V,W) aj2) r12 = r12,

using the fact that (Y-i~fa,B,c) all) = (~.j~(u,v,w) aj2) = 1.
The above example is unrealistic in at least two respects. Firstly, we assume that

the DEDICOM representation is perfect, and secondly, we assume that the solution
will give a matrix A with only one nonzero element per row. In practice, the represen-
tation will usually not be perfect, and matrix A will usually not be as simple as in the
example. One way to approximate the ideal situation of the above example is, first to
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find a DEDICOM representation that approximates the data matrix sufficiently well (as
is done by minimizing o" over matrices A and R for different dimensionalities), and
secondly to transform the solution of A in such a way that it optimally resembles the
ideal matrix A from the example (which is in fact aimed at by simple structure rota-
tions). As mentioned above, we end up with the problem of deciding how to rotate A,
that is, which simple structure criterion should be used. Apart from the arbitrariness of
the choice of a rotation procedure, there is some arbitrariness caused by the approxi-
mation: It is possible that a different representation that approximates the data only
slightly worse will give a solution that is easier to interpret, giving a simpler description
of "idealized objects". For instance, it is possible that, if the optimal representation is
based on a matrix A with a first column (.8 .8 .7 .2 .2 .2)’, then replacing this column
by the perfectly simple (.8 .8 .7 0 0 0)’ would affect the optimality of the represen-
tation only marginally. In such cases we would prefer the latter simple solution over the
negligibly better optimal one. To invoke such a solution is especially useful in cases
where there is external information on the objects (like the information that cars A, B,
and C are small, and U, V, and W are big). Such solutions can be obtained by con-
straining matrix A to have the particular form desired. Note that the particular choice
of the constraint depends on the external information available. Often, such informa-
tion can be represented by subspace constraints (see Takane & Shibayama, 1991, and
Takane, Kiers, & de Leeuw, 1991, for examples of this in a different context). What-
ever the form of the constraint is, it will generally affect the optimality of the solution.
Obviously, a prerequisite of using constrained solutions is that they should still repre-
sent the data sufficiently well.

The main purpose of the present paper is to propose methods for constraining
matrix A such that interpretation is facilitated and the DEDICOM representation of the
data is, given the constraints, as good as possible. To start with, we will discuss fitting
the DEDICOM model subject to the constraint where A is forced to be in a specified
column space, which seems to be the most commonly used constraint. Next, DEDI-
COM with more specific kinds of constraints will be discussed in which each dimension
of A will be constrained in a different way (compare Takane et al., 1991). Algorithms for
these constrained minimization procedures will be presented, uniqueness of the solu-
tion will be discussed, and the methods will be illustrated on an example data set.

After discussing constraints on the standard DEDICOM procedure, we will treat
two special cases. First, we will discuss constrained variants of off-diagonal DEDI-
COM, which denotes the variant of DEDICOM in which only off-diagonal elements of
X are fitted. This model is of interest in situations where the diagonal elements of X are
not meaningful, or of an essentially different nature than the off-diagonal elements.
Secondly, we will discuss the case where X is skew-symmetric. The special form of the
DEDICOM solution for skew-symmetric matrices motivates the use of a special class
of constraints. To start, however, we will discuss the case where general subspace
constraints are imposed on the DEDICOM parameters A.

DEDICOM with Subspace Constraints

The first type of constraint on the coefficients matrix A to be discussed here is that
the columns of A should lie in a prescribed column space. If G (n x rn; rn < n) is 
orthonormal basis for that column space, the constraint implies that A can be written
as A = GU for a certain (m × r) matrix U. Note that any constraint written as A 
HV for some fixed matrix H can be rewritten as A = GU by defining G, for example,
as the Gram-Schmidt orthonormalized version of H, such that H = GT for a certain
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matrix T, and hence U = TV. Substituting the expression A = GU for A in the
DEDICOM loss function, we find

~(A, R) II g - ARA’II 2 = II g -  URU’G’II2 =c( U, R)

Using the columnwise orthonormality of G, (3) can be rewritten 

R) = IIg- GURU’G’II2

= IIg - aa’xaa’ll2 + IIa’xa - URU’II2,

(3)

(4)

(see Carroll, Pruzansky, & Kruskal, 1980, p. 7). Clearly, the first term in the right-
hand-side of (4) is constant over U and R, and minimizing (3) is equivalent to mini-
mizing IIG’XG - UR U’II2 over U and R. The latter problem is the original DEDICOM
minimization problem applied to G’XG rather than X. Hence, to find U and R the
DEDICOM model is fitted to the matrix G’XG. Having found the optimal U one can
findA byA = GU.

Some notes are in order here. Firstly, it should be noted that, if the subspace
constraint is given as A = GU for some nonorthonormal matrix G, then one should first
replace G by an orthonormal basis of the columns of G, and next proceed as above.
Secondly, it should be noted that, having obtained the constrained solution, one still
has not completely identified A. One may still apply nonsingular r × r transformation
matrices to A and compensate for this by replacing R by T-1R(T’) -1. For this reason
it is questionable if the subspace constraint will really facilitate interpretation consid-
erably. In cases where more than simple subspace information is available, one may
proceed differently, as exemplified below.

DEDICOM With Different Constraints on Different Dimensions

Instead of imposing a subspace constraint on the complete matrix A, one may use
external information in a more specific way by imposing different subspace constraints
on different dimensions (Takane et al., 1991). For instance, in the car switching exam-
ple discussed in the introduction, one might want to impose a constraint on the first
dimension such that it produces zero values for the last three car types, and a different
constraint on the second dimension to invoke zero values for the first three car types.
Specifically, one might require that al and a2 (the first and second columns of A) be 
the subspaces spanned by

°0°°00
Gl = 0 0 and G2 = 0 ’

0

00/

1
0 0

respectively. Constraints other than those producing a simple structure can be used, of
course. In general, one may impose the constraint that a! = Gtul, where Gl is a
columnwise orthonormal basis of a prescribed subspace, l = 1 ..... r. Note that, in
general, A’A = I r may no longer be assumed. Instead we will usually assume
Diag (A’A) = It, which can be done without loss of generality. An alternating least
squares algorithm for minimizing (2) subject to t =GlUt, and a~at = 1,l = 1,. . . ,
r, is derived in the Appendix. In the next sections, we will discuss some conditions for
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uniqueness of solutions of DEDICOM subject to different constraints on different di-
mensions, and apply the method to an example data set.

Uniqueness Conditions

As observed above, the unconstrained DEDICOM solution is not unique. Any
nonsingular transformation of A can be compensated for by a transformation ofR. The
same holds for general subspace constraints, discussed in the second section. In the
dimensionwise constrained variants of DEDICOM there still is a nonuniqueness of
scale and reflection, and one may arbitrarily impose the constraint that A has unit
column sums of squares. However, apart from this scaling and reflection, the solution
is typically unique. In fact, we have the following sufficient condition for uniqueness of
the DEDICOM solution when the dimensions are constrained by different subspaces.

Theorem. If the columns of A are constrained to be in subspaces spanned by
matrices G1 ..... Gr, then given .~" = ARA’ for full rank matrices A and R, matrix
A is unique up to scaling and reflection of the columns of A if and only if the subspaces
spanned by Gi and by the columns at (l # i) of A are disjoint for all 

Proof. Suppose that for each i, the subspaces spanned by Gi and by columns a!
(l # i) are disjoint. We want to prove that, then, ARA’ -- A*R*A*’ implies A* = AD,
for some diagonal matrix D. From ARA’ -- A*R*A*’ it follows at once that A* -- A T
for some nonsingular T. We have to prove that there is no nondiagonal transformation
matrix T such that A T satisfies the same subspace constraints as A does. Let t i denote
the i-th column of T, i = 1 ..... r. To satisfy the subspace constraints for the
columns of A* = AT, we must have Ati = Givi, for a certain vector vi, i = I .....
r. Then At i = tlia I + ... + tria r = tiia i + (al~ . . . ~ai_ 1 iai+l~ . . . iar)t_ i =

Givi, where t_i is the vector with the same elements as ti, except the i-th. The
disjointness of the subspaces spanned by (a1 ~ . . . ~ ai_ 1 i ai+ 1 ! ¯ ¯ ¯ ~ar) and Gi im-
plies that t_i = 0, for all i, hence T is diagonal, which had to be proven.

Conversely, if the spaces spanned by Gi and (a1 i . . . .:ai_ 1 ~ai+ 1 i . . . -"at) are
not disjoint, there is a linear combination hi of columns at (l ¢ i) that is in the subspace
spanned by Gi. Then a matrix A* defined as the matrix with the same columns as A,
except the i-th, which is replaced by ai + hi, obviously satisfies the constraint that ai
be in the column space of Gi . This A* is computed from A by a nonsingular transfor-
mation T that is defined as an identity matrix except for the elements in column i of T.
If R* --- T-1R(T-I) ’, we have ARA’ -- A*R*A*’. Hence, we find the same ̄  for
matrices A and A* that differ by more than a columnwise scaling. This proves that
uniqueness of A implies that no linear combination of the columns al (l # i) is in the
subspace spanned by Gi, for every i; that is, the spaces spanned by Gi and
(a 1 i . . . iai_ 1 ~ai+ 1 i . . . ~ar) are disjoint. []

The above theorem is useful in establishing uniqueness of a solution after having
obtained it. The following corollary gives a sufficient condition for uniqueness that can
be evaluated before finding the solution for A.

Corollary. If the columns of A are constrained to be in subspaces with bases
GI ..... Gr and if (G1 ~ ¯ ¯ ¯ ~Gr) has full column rank, then, given ~ = ARA’,
matrix A is unique up to scaling and reflection of the columns of A.

Proof. If(G~ ~ . . . i Gr) has full column rank, for every i and every set of vectors
u/, the subspaces spanned by Gi and at = Glut (l ~ i) are disjoint. It follows from the
above derived theorem that this implies uniqueness of the solution. []
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That this condition is not necessary for uniqueness of A to hold can be seen from
the following example. If G1 and G2 have one column in common (and hence (G1 ~ G2)
is not of full column rank), then the solution for A can still be unique. For example,
suppose

GI = , G2 = , and A = .

Any other candidate solution A* for A should at least be in the same column space of
A (since ARA’ = A*R*A*’). Hence, A* = AT for a certain matrix T. Any nondiag-
onal T would produce an A* = A T with either a 31, or a 22, or both nonzero. Hence,
the columns of A* would not both satisfy the constraints that they be in the subspaces
spanned by G1 and G2, respectively. Therefore, in this case T must be diagonal, and
A is unique up to scaling and reflection of its columns.

Exemplary Analysis of Car Switching Data

Harshman et al. (1982, p. 221) provided a data set on car switching frequencies
among 16 types of cars, ranging from Subcompact/Domestic to Luxury Import. The
abbreviations used here (and in Harshman et al., 1982) consist of two components: The
first three characters mainly indicate size (SUB = subcompact, SMA = small specialty,
COM = compact, MID = midsize, STD = standard, and LUX = luxury); the fourth
character indicates mainly origin or price (D = domestic, C = captive imports, I 
imports, L = low price, M = medium price, S = specialty). The authors produced an
unconstrained four-dimensional solution, but at that time lacked a procedure for finding
an optimal solution (see p. 237). Using the currently available algorithm we did obtain
the four-dimensional solution (which accounted for 92.0% of the total sum of squares),
but, after normalized varimax rotation of the orthonormal matrix A, we found one
dimension to be related mainly to the single category of medium priced standard cars.
DEDICOM with only three dimensions still accounted for 86.4% of the total sum of
squares. For these reasons the three-dimensional solution was preferred. In Table 1 we
report the optimal normalized varimax rotated solution for A (with the columns of 
taken to be orthonormal). The first dimension of A pertains to a cluster of plain large
and midsize cars, the second dimension mainly represents fancy large cars, and the
third mainly represents the small/specialty cars. In fact, we found more or less the same
dimensions as Harshman et al., except that specialty and small cars have been merged
into one dimension.

These results suggest that the solution could be simplified into one in which each
car category is represented by one dimension only. For that purpose we constrained the
columns of A such that the first dimension has nonzero elements only for COML,
COMM, MIDD, MIDI, and STDL, the second dimension only for STDM, LUXD and
LUXI, and the third dimension only for SUBD, SUBC, SUBI, SMAD, SMAC, SMAI,
COMI, and MIDS. The DEDICOM solution thus constrained accounted for 83.7% of
the total sum of squares. We now normalized A to unit column sums (instead of sums
of squares), because then the resulting matrix R represents approximations to the
switching frequencies between the nonoverlapping clusters of cars, as explained in the
introduction. The resulting matrices A and R are given in Table 1 under the heading
constrained nonoverlapping solution. Note that the numbers are not comparable in size
to those of the previous solution. The dimensions have almost the same interpretation
as before, except that the relative importances of the car types for their clusters have
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TABLE 1

(Constrained) DEDICOM Applied to the Car Switching Data

345

unconstrained constrained constrained

followed by varimax nonoverlapping overlapping

1 2 3 1 2 3 1 2 3

matrix A

SUBD .13 -.02 .36

SUBC .02 .00 .03

SUBI .03 .01 .30

SMAD .01 .03 .53

SMAC .00 .00 .00

SMAI .00 .01 .09

COML .24 -.11 .17

COMM .10 -.01 .06

COMI .02 .00 .03

MIDD .54 .00 .12

MIDI .02 .00 .02

MIDS .09 .24 .58

STDL .68 -.08 -.18

STDM .32 .67 -.27

LUXD -.23 .69 .05

LUXI .00 .02 .01

matrix R (divided by 1000)

dim. 1 127 57 78

dim. 2 26 92 23

dim. 3 17 12 75

.17

.08

.39

.02

.34

.21 .43

.02 .04

.14 .29

.22 .46

.00 .00

.03 .08

.27

.13

.02 .04

.68

.31

.01

325 108 362

66 162 107

94 56 341

.61

.03

.36 .21 .66

.54

.48

-.07

.71 -.28

.68

.02

fit 86.4 % 83.7 % 85.3 %

127 30 106

-6 83 9

35 17 86
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changed slightly. Especially the relative importance of STDM and LUXD for the sec-
ond cluster has changed. Matrix R now reveals that, apart from many within cluster
switches, there is a very high frequency of switches from the first (plain large and
midsize cars) cluster to the third (small/specialty cars) cluster.

The nonnegligible change in relativeimportances of STDM and LUXD, as well as
other major differences between the unconstrained and constrained solutions may have
come about because certain relatively high "loadings" in the unconstrained solution
were constrained to zero in the constrained solution. To see what happens if such
elements in A are left unconstrained we did a third analysis in which the same elements
were constrained to zero, except those that were larger than .20 or smaller than -.20
in the original unconstrained varimax solution. Specifically, we no longer fixed to zero
the loadings of MIDS on the second dimension, of STDM on the first and third dimen-
sions, and of LUXD on the first dimension. In this way we created dimensions that
correspond to partly overlapping clusters of variables.

The DEDICOM solution, subject to the above constraints, accounted for 85.3% of
the total sum of squares, which is only 1.1% less than the unconstrained solution. The
solution for A and R, with A normalized to unit sums of squares, is presented as the
constrained overlapping solution in Table 1. The constrained overlapping solution re-
vealed more or less the same pattern as the unconstrained DEDICOM solution. How-
ever, the present solution is simpler in that one does not have to account for small
secondary or tertiary loadings for most of the car categories. To interpret this solution
in a little more detail, note that the first dimension is related to plain large and midsize
cars, and inversely related to domestic luxury cars. The second dimension represents
big, luxury, and midsize specialty cars. The third dimension represents small/specialty
cars and is inversely related to medium price standard cars. The numbers in R show
that medium sized cars are often replaced by other medium sized cars, but also rela-
tively often by small/specialty cars. Big cars are usually followed by big cars, and
small/specialty cars are usually followed by small/specialty cars. So the most pro-
nounced asymmetry is in the fact that medium sized cars tend to be replaced by
small/specialty cars.

Variants For Off-Diagonal DEDICOM

Above, the standard DEDICOM procedure was used. This procedure can only be
used when the elements on the diagonal are meaningful. In certain kinds of asymmetric
tables, the diagonal is not meaningful, or not even defined at all. For instance, in
friendship rating data it does not seem meaningful to rate one’s friendship with oneself.
In other cases, relations of an object to itself may be meaningful, but of a different
nature than relations of an object to a different object. In both cases, the DEDICOM
model can still be used, but the quality of the representation should be expressed in
terms of the off-diagonal elements only (see Harshman, 1978). In the present section 
will discuss variants of constrained DEDICOM that only fit the off-diagonal elements.

Takane (1985) suggested two algorithms for minimizing the sum of squared off-
diagonal differences between X and ARA’. One of these, in line with a suggestion by
Harshman et al. (1982, p. 209), adds an additional cycle to the algorithm to estimate the
off-diagonal elements. That is, the algorithm proceeds by alternately updating A and R,
and substituting the current diagonal elements of ARA’ in X, until convergence. This
procedure could be very slow. Ten Berge and Kiers (1989) provided a more efficient and
monotonically convergent algorithm.

The purpose of the present section is to provide algorithms for handling the sub-
space constraints described above. A straightforward way to do so would be to use the
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constrained DEDICOM algorithms described above, supplemented with a diagonal
estimation step. However, such a procedure is expected to be slow. In the rather
common case where certain elements are fixed to zero, it is possible to adjust the ten
Berge and Kiers (1989) algorithm so that it minimizes the off-diagonal DEDICOM
function over A and R subject to that particular constraint on A. For all other con-
straints we can resort to the constrained DEDICOM algorithms proposed above, sup-
plemented with a diagonal estimation step.

The off-diagonal DEDICOM algorithm proposed by ten Berge and Kiers (1989)
minimizes the sum of squared off-diagonal differences by alternately updating R given
A, and each row of A, given the other rows of A, and R. The updating of a~ (the i-th
row of A) consists of minimizing

Ci) /AIR\ 
~q(a/) II ri - ~AeR’)aill ’ (5)

over ai, where ei and ri denote the i-th column and row, respectively, of X, with the
i-th elements deleted, and Ai denotes A with the i-th column deleted. Now suppose A
is constrained to have zeros in certain prespecified places. Then updating ai, i =
1 ..... n, can be handled by deleting the zero elements in ai (forming "~i) and deleting

r AiR ~the corresponding columns of ~A,R’J, forming ~,. Then it remains to minimize II(rel) 
Z~i]I 2 over "~i, which is a straightforward regression problem. To obtain the optimal aifrom "~i, we substitute the elements of "~i at the positions for the nonzero elements of
ai. Clearly, each of the rows of A can be updated in this way, for given R. Alterna-
tively, for given A, R is updated as by ten Berge and Kiers (1989, p. 334, also see
Appendix A, Equation (9)), where for the diagonal of X we substitute the diagonal of 
current values of ARA’. Alternately updating the rows of A, and R in this way, we
monotonically decrease the off-diagonal sum of squares of (X - ARA’). Because this
function value is bounded below by zero, the procedure must converge to a stable
function value.

Skew-symmetric DEDICOM With Different Constraints on Different "Bimensions"

Another interesting special case of DEDICOM is when it is applied to a skew-
symmetric matrix. A skew-symmetric matrix is a matrix in which xij = -xji, i, j =
1 ..... n. Skew-symmetric matrices emerge most notably in cases where an asym-
metric table is split into a symmetric part and a skew-symmetric part, both of which are
analyzed separately. They can also occur in a more natural way, like in preference data,
or debts/credits balance data. The skew-symmetric part is sometimes represented by a
truncated singular value decomposition (SVD) that has a particularly simple form
(Gower, 1977; also, see Constantine & Gower, 1978). That is, the singular values of 
skew-symmetric matrix come in pairs of equal singular values (supplemented by one
zero singular value if the order of the matrix is odd), and, if the left-hand singular
vectors associated with such a pair of singular values are Pl and ql, then the right-hand
singular vectors are ql and -pl. Hence, if one writes U for the matrix of left-hand
singular vectors, X can be written as X = UE U’, where E is the block-diagonal matrix
with blocks (_0~, ~,), and a final 1 x 1 block with element 0 if the order is odd. This
shows that the truncated SVD of a skew-symmetric matrix gives the DEDICOM rep-
resentation for this matrix as well. Gower (1977), Harshman (1981b), Dawson 
Harshman (1986), and Harshman and Lundy (1990) presented examples of the analysis
of a skew-symmetric matrix. Interpretation of the solution is done "bimensionwise"
(Harshman, 1981b), that is, by a pair of corresponding dimensions at a time. Specifi-
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cally, the contribution of one bimension to the representation of xij equals +- the
singular value times twice the area of the triangle formed by the origin and the points
i and j in the bimension plane (with the sign depending on whether going from i to 
along one of the sides of the triangle is clockwise (-) or counterclockwise (+)).

Harshman (1981b) has suggested simple structure rotations of those bimensions 
facilitate interpretation. If an arbitrary simple structure rotation is applied to A, this will
typically cause the bimensional structure, giving separable contributions of different
pairs of dimensions, to disappear. What does preserve bimensional structure (and
maintains separability of contributions of different pairs of dimensions) is a rotation of
the dimensions of one bimension by the same rotation matrix. To see this, one can
rewrite the DEDICOM model for the skew-symmetric case as

f(= PAQ’ - QAP’ = X/r/(plq[ - qtP~), (6)

where A is a diagonal matrix with elements ~t denoting the singular value corresponding
to the/-th bimension, and Pl and q~ are the columns in A that correspond to the l-th
bimension. Now, if one writes/v = PA 1/2, and ~ = QA 1/2, then

~ = PO.’ - O.P’ = FTT’O.’ - O_TT’~’ = X~’~(utv~ - vtu~), (7)

where T is an orthonormal matrix, uI = ~tl(t~F’~tt)-l/2 and vt = 0t/(t~0’Ot/)-l/2
are the unit normalized dimensions of the/-th rotated bimension, and ~ denotes the
"contribution" of this rotated bimension. Hence, orthonormal rotations of ~ and 0 do
not change J~, and, as is apparent from (7), yield again a bimensional structure, with
separable contributions of different bimensions. These are not the only transformations
that retain bimensional structure. For instance, rotation of the two dimensions of a
bimension retains bimensional structure as well, and so does any combination of rota-
tions within bimensions and the above (more complicated) type of rotations across
bimensions. Harshman (personal communication, September 18, 1991; also, see Harsh-
man, 1981b, p. 33) has proposed several procedures for using such combined rotations
to obtain simple structure. However, nothing in these procedures seems to preclude
that a (simply structured) solution is found in which the two dimensions of a bimension
are related to different clusters of stimuli. For instance, the first dimension may be
related to Stimuli I, 2, 3, and 4, (and not to 5 through 8), while the second is related 
Stimuli 1, 3, 5, and 7 (and not to 2, 4, 6, and 8). Such solutions do not adequately
facilitate the interpretation of a bimension. It is preferred to have two dimensions of a
bimension being related to the same cluster of stimuli (e.g., the whole bimension being
related mainly to Stimuli 1, 2, 3, and 4). Instead of solving this problem of simple
structure rotation of bimensions, we propose here, as in the previous sections, to
constrain the solution to have a particular simple structure. Specifically, it is proposed
that the same constraint, usually of simple structure, is imposed on both dimensions of
a bimension, that is, on/~ and ~.

To formulate the above proposal in terms of the original DEDICOM model, we
rewrite the DEDICOM model for the skew-symmetric case as

~ = ff~’ - ~_.ff’ = ARIA’, (8)

where RI is a fixed block-diagonal matrix with 2 x 2 blocks J = (° 1 ~) along the
diagonal, and A = (~1 i ~11 i . . . ~ ~r ~ ~r)" Thus, each pair of two consecutive columns
of A contains the coordinates on one bimension. Note that we assume from now on that
for skew-symmetric data A has an even number of dimensions, because otherwise a
bimensional representation is not possible. Moreover, if the dimensionality is not even,
the last dimension does not contribute to the fit (Harshman, 1981b). To impose bimen-
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sionwise simple structure constraints on ff and ~ implies that, if certain elements of one
column of A are fixed to zero, then so are the corresponding elements of the other
column that belong to the same bimension.

We distinguish two possible cases, one in which a simple structure with nonover-
lapping clusters is imposed, and the other in which simple structure with overlapping
clusters is imposed. The first case is simple to solve, because the solution can be found
from separate DEDICOM analyses. For example, suppose we have a 10 × I0 skew-
symmetric data matrix, and in the first two columns of A the first four elements are fixed
to zero, and in the next two columns of A, the remaining six elements are fixed to zero.
Then, one can write A = (0A~ A02), with A 1 of order 4 x 2 and A 2 of order 6 x 2. Hence,
the model can be written as

(Xll X12)=ARIA,+E= (A1JA’I +Eli El2
X = \X21 X22

\ E21 azJa’2 + E22 ’

where Ell ..... E22 denote submatrices of the error matrix E. To fit this model
reduces to the two separate DEDICOM problems of fitting X11 and Xz2.

If the simple structure constraints imply overlapping clusters, one can no longer
turn to fitting different DEDICOM models separately. To fit a model with constraints in
terms of overlapping clusters we use the observation that, for DEDICOM on skew-
symmetric data, one can use both the columnwise procedure for fixed diagonal DEDI-
COM, and the rowwise procedure for off-diagonal DEDICOM. The latter procedure
will always maintain the diagonal elements of ARA’ equal to zero, as follows from the
fact that R will be skew-symmetric. Hence, diagonal value estimates always produce
zeros on the diagonal of X. Therefore, to fit the DEDICOM model with zero-constraints
to a skew-symmetric matrix, one can use the adjusted rowwise ten Berge and Kiers
(1989) algorithm described in the previous section, with R kept fixed to t. I n t his way,
one can deal with bimensionwise constraints for producing overlapping clusters of
stimuli, by using an algorithm already described above.

As an example we reanalyzed a data set given by Wiepkema (1961; see also van der
Heijden, 1987, pp. 126-130) on frequencies of 12 different courtship behaviors (rows)
being followed by any of these courtship behaviors (columns) of 13 bitterlings. The 
different behaviors are jerking (JK), turning beats (TB), head butting (HB), chasing
(CHS), fleeing (FL), quivering (QU), leading (LE), head down posture (HDP), 
ming (SK), snapping (SN), chafing (CHF), and fin flickering (FFL). We analyzed 
skew-symmetric part of this data set, and found that the one- and two-bimensional
solutions accounted for 94.8% and 97.5%, respectively, of the total sum of squares.
Note that the skew-symmetric part describes the frequency of nonreciprocal behavior
sequences. In Table 2 the (unrotated) two-bimensional solution is reported. It should 
noted that these results are based on the principal axes, which are, within bimensions,
rotationally undetermined. On the basis of these results, we chose to constrain the
bimensions such that the first is associated only with the behaviors QU, LE, HDP, and
SK (the sexual behaviors), and the second with the other (aggressive and non-repro-
ductive behaviors). This constrained DEDICOM problem reduces to two separate
skew-symmetric DEDICOM analyses, which together turned out to account for 94.3%
of the total sum of squares.

Obviously, the above constrained solution is simpler than the unconstrained two-
bimensional solution, but the fit is also markedly poorer, and does not even exceed that
of the one-bimensional solution. Therefore, we decided to constrain the bimensions
such that they correspond to partly overlapping clusters of behavors. The first bimen-
sion again pertained to the sexual behaviors QU, LE, HDP, and SK, and the second



350 PSYCHOMETRIKA

TABLE 2

(Constrained) DEDICOM Solution of the Skew-Symmetric Part

of the Wiepkema Data

unconstrained solution constrained solution

bim.1 bim.2 bim.1 bim.2

matrix A

JK

TB

HB

CHS

FL

QU
LE

HDP

SK

SN

CHF

FFL

matrix R

-.05 .00 -.27 -.68 .01

.00 -.01 -.60 .20 .18

-.03 .02 .11 .47 -.14

-.02 -.10 -.32 .13 .51

.03 .00 -.13 .21 .06

-.19 -.55 .48 -.04 -.66 .12 -.73

-.42 -.02 -.01 -.38 -.20 -.35

-.15 .82 .26 -.01 .63 -.45

.87 .00 .12 -.22 .37 .81 -.11

-.06 -.09 -.14 .15 .37

.02 -.02 .06 -.02 .03

-.02 .00 .30 .04 -.07

0.0 -104.8 0.0 0.0 0.0 112.5 0.0

104.8 0.0 0.0 0.0 -112.5 0.0 0.0

0.0 0.0 0.0 -17.2 0.0 0.0 0.0

0.0 0.0 17.2 0.0 0.0 0.0 -26.1

fit 97.5 % 95.8

-.26

-.09

.33

.08

.13

.10

-.89

-.03

-.05

-.01

0.0

0.0

26.1

0.0
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FigURE 1.

First constrained bimension of the Wiepkema data.

was now associated with TB, HB, CHS, FL, QU, SK, SN, CHF, and FFL. Note that
these bimensions overlap in terms of the behaviors QU and SK. The solution thus
constrained accounted for 95.8%. To interpret this solution, one can focus on the
relations between behaviors within bimensions, as plotted in Figures I and 2. The first
bimension gives by far the largest elements in R (see Table 2), so apparently most of the
skew-symmetric relations is found between sexual behaviors. To interpret these skew-
symmetric relations one may compute the areas of certain triangles (see Figure 1) to see
to what extent a particular behavior is followed more often by the other than vice versa.
For example, the head down posture (HDP) is followed much more often by skimming
(SK) than the other way around (triangle has a large area). In fact, it is easy to see 
particularly large triangles are found while going from quivering to leading behavior,
from leading to head down posture, from head down posture to skimming, and from
skimming to quivering, which may therefore well establish a dominant circular order of
sexual behaviors of bitterlings. Since this bimension accounts for most of the skew-
symmetry in the data, it seems that this sequence of behaviors can well be seen as the
most dominant sequence of nonreciprocal behaviors. The second bimension can be
interpreted analogously, but it should be taken into account that this bimension is not
very strong (as indicated by the associated elements in R).

Discussion

Above, a series of methods have been discussed for DEDICOM analysis subject to
various constraints. The algorithms to fit DEDICOM subject to these constraints have
been given, and the methods have been illustrated by means of example analyses. In
these analyses we imposed constraints that were mainly chosen on the basis of the
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Second constrained bimension of the Wiepkema data.

unconstrained analyses. Alternatively, one may use prior knowledge on the stimuli (if
available), and assess whether the imposed structure explains most of the information.
Combinations of these strategies will probably be most fruitful.

The idea of using different constraints on different dimensions has been proposed
by Takane et al. (1991) for constraining dimensions in principal components analysis
(PCA). A prevalent alternative for PCA is common factor analysis, where a covariance
matrix is approximated by the product moment of a loading matrix, and the diagonal
elements of the covariance matrix (communalities) are estimated as well. A well-known
procedure for this is MINRES (Harman & Jones, 1966). Since MINRES can be seen 
applying off-diagonal DEDICOM to the covariance matrix (ten Berge & Kiers, 1989),
the present procedure for dimensionwise constrained DEDICOM can also be used as a
method for dimensionwise constrained MINRES factor analysis.

Another extension of the constrained DEDICOM methods described above is
found by imposing constraints on the three-way variant of DEDICOM proposed by
Harshman (1978; see also Harshman et al., 1982). If X1 ..... Xp denote p asymmet-
ric data matrices of the same order, the three-way DEDICOM model can be written as

Xk = ADkRD~A’ + Ek,

where A and R have the same meaning as in two-way DEDICOM, D1 ..... Dp are
diagonal matrices denoting the differential importance of the "basic aspects" in the p
different data sets, and E1 ..... Ep denote matrices with error terms. An algorithm
to fit this model has recently been proposed by Kiers (in press). His algorithm can easily
be adjusted to allow for general subspace constraints, or different constraints on dif-
ferent dimensions of A.
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In the present paper a number of different iterative algorithms have been proposed.
No mention has been made of how the parameters should be initialized. In the analyses
carried out here, A was initialized randomly. Because the procedure usually converged
fast, there seems to be little reason to look for better starts. In case one does want to
use rational starts, we suggest to use the first eigenvector of GIG)(X + X’)GIG~ as a
start for the/-th column of A, ! = l ..... r, in the case of different constraints on
different dimensions. In the case of different constraints on different bimensions, one
might use a varimax rotation of the bimensions as an initial configuration for A, with the
elements constrained to be zero set equal to zero.

In some of the analyses we imposed the constraint that objects should "belong" to
nonovedapping clusters of variables. However, as remarked by an anonymous re-
viewer, some caution should be taken in imposing such constraints in DEDICOM. That
is, in case objects are associated with only one dimension (cluster), the relations be-
tween such objects assigned to the same cluster are modeled to be symmetric by
definition, which need not be the explicit intention of the user. Indeed, it can be judged
reasonable to model the relationships between objects belonging to the same cluster in
a symmetric way, since their membership in the same cluster indicates that they "be-
have" similarly. However, if it is desired to model relationships within clusters asym-
metrically as well, then the DEDICOM model with nonoverlapping clusters is too
restricted for that purpose, and one might resort to more general models, for instance,
the dual domain DEDICOM model (see Harshman et al., 1982, p. 239), in which X 
ARB’ ÷ E, with A and B giving weights for the relations of the row-objects to idealized
row-objects, and for the column-objects to idealized column-objects, respectively. In
this approach, using nonoverlapping clusters does not entail certain forced symmetric
modelings. However, the transition from the single domain DEDICOM model to the
dual DEDICOM model is accompanied by a considerable loss in parsimony. It should
be emphasized once more that the above phenomenon only occurs for objects that are
associated with one single dimension. As a result, in skew-symmetric DEDICOM,
using nonovedapping clusters does not entail such forced symmetric modelings, be-
cause each object is associated with one bimension, and hence with more than one
single dimension.

Appendix
An Alternating Least Squares Algorithm for DEDICOM Subject to

Different Constraints on Different Dimensions

To minimize the DEDICOM loss function (2) subject to the constraint that at 
GlUl , one can use an alternating least squares algorithm as follows. The minimum of g
over R for given A is attained for

R = (A ’A) -1A’XA(A ’A) -1; (9)

see Penrose (1956). If A ’A is singular, the inverse should be replaced by a generalized
inverse. The minimum of ~r over A for given R is more difficult to obtain. We propose
to minimize tr over A columnwise. That is, tr can be expressed as a function of the/-th
column of A asrr (
~r(a,) II x- Z rj ~aja~ll 2= X-Z Z rj ~aja’~

j = I = 1 j#l

(10)
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The constraint Diag (A’A) I r implies a~a / = 1 , andhence u)u/ = 1. If onedefines
X_l =-- (X - Xj~l ~’-k~l rjkaja’k), Yl =-- (~j#l rjlaj), and zI -= (Y-j#l rljaj), and
substitutes al = GlUl for a/, (10) can be rewritten 

O’(Ul) ]l X-i yl u~G) -- GlU lZ~ -  , , 2- rllGlUlUlGl]l

= c~ -- 2 tr X’_ty~u~G~ - 2 tr X’-lGlUlZ~ -- 2rn tr X’-lGtutu~G~

+ 2 tr G~uty~Gtu~z) + 2rtl tr GlUly~GlUlU)G) + 2rll tr zlu)G~GlUlU~G)

= c~ + (-2y)X_~Gt - 2z)X’-~Gt 2r tly~Gt + 2r ilZ~Gl)Ul

+ u~(2G~ylz~Gi - 2rllG~X’-lG~)Ul, (11)

where Cl is a constant not depending on Ul. To minimize (11) we use a procedure similar
to the one proposed by Kiers (1989). That is, we first replace the asymmetric matrix

~(7’" z’ (2G)ylZ)G l - 2rliG)X’_lG i) by its symmetric part S -= [ l[Yl l + ziy))Gl
rllG)(X-i X’-l)Gi), an d compute the ei gendecomposition

S = KAK’, (12)

with A diagonal, and K orthonormal. Next, we define

Wl =- K’G~(X’-lyl + X-lZt - rllYl -- rttzt), (13)

and

bl = K’ut, (14)

so that (11) can be written 

tr(b~) = cI - 2w~bt + b}Ab/. (15)

The problem of minimizing this function subject to the constraint that b)b/ = U’lKK’ul
= U)Ul = I, has been solved by ten Berge and Nevels (1977). Having found the optimal
bI we can obtain the optimal uI from uI = KbI and, finally, obtain the optimal al as aI
= GlUl = GiKbl. In this way we can update each column of A successively. Each
updating of a column of A decreases (or at least does not increase) the loss function, 
alternately updating the columns of A by the procedure described above, and R ac-
cording to (9), monotonically decreases the loss function. Because the loss function 
bounded below by zero, this procedure will converge to a stable function value.
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