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Takane, Young, and de Leeuw proposed a procedure called FACTALS for the analysis of
variables of mixed measurement levels (numerical, ordinal, or nominal). Mooijaart pointed out
that their algorithm does not necessarily converge, and Nevels proposed a new algorithm for the
case of nominal variables. In the present paper it is shown that Nevels’ procedure is incorrect,
and a new procedure for handling nominal variables is proposed. In addition, a procedure for
handling ordinal variables is proposed. Using these results, a monotonically convergent algo-
rithm is constructed for FACTALS of any mixture of variables.
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FACTALS has been proposed by Takane, Young, and de Leeuw (1979) as 
method for common factor analysis of variables of mixedmeasurement level. FAC-
TALS minimizes the loss function

or(A, D, Z)= IIZ’Z/N- AA’ - 92112, (1)

where Z is an N x n matrix of scores on n variables, A is an n x r loading matrix, and
D2 is an n x n diagonal matrix of unique variances. The function in (1) is minimized
over A, D2, and over those columns of Z that correspond to nominal or ordinal vari-
ables. If the variables are all numerical, Z contains standard-scores, and Z’Z/N con-
tains correlations between the variables. If some of the variables are nominal or ordinal,
only categorical scores are available, and these are transformed into quantitative scores
by means of optimal scaling. That is, if nj denotes the number of categories of variable
j and Gj denotes the N x nj indicator matrix (with, if variablej is ordinal, the columns
ordered in accordance to the ordering of the categories), then columnj of Z is computed
as Gjyj, where yj is determined such that the total loss in (1) is minimized, subject 
the constraints that Gjyj is standardized, and, if variable j is ordinal, yj(1) >- yj(2) 
"’" yj(nj).

Takane et al. (1979) proposed an algorithm for this method based on iteratively
updating A, D2, and Z subject to the constraints at hand. This algorithm was based on
the equivalent problem of minimizing
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~*(A, D, Y) = tr [D:I/2(Y’Y- AA’ - 02)071/2]2, (2)

where Ds denotes the diagonal of Y’ Y, and Y is an N x n matrix with centered but
nonnormalized (quantified) scores on the n variables. The pre- and postmultiplication
by Ds--1/z is used to avoid the explicit normalization of the quantified variables. Finding
the optimal quantifications of a variable, say j, then reduces to minimizing

O’j (y j) , (3)
YJ J JYj)

where Yff denotes the N × (n - 1) matrix with quantified variables except thej-th, and
~j is the j-th column of AA’ + D~, with the j-th element eliminated. Mooij~ (1984)
pointed out that the procedure by Takane et al. for minimizing (3) was inco~ect. Nevels
(1989) derived a different solution, but as will be shown below, this procedure is also
inco~ect. In the present paper we derive a co~ect procedure for handling nominal
variables, and a procedure for handling ordinal variables (for which no alte~atives
since Takane et al. seem to have been given). With these two procedures, and the ones
for updating A and D 2 discussed by T~ane et ~., we are in a position to const~ct a
monotonically convergent FACTALS algorithm for handling mixtures of numericS,
nomin~, and ordinal variables. We will first discuss why Nevels’ procedure is incor-
rect, and then present correct procedures for handling nominal and ordinal variables,
respectively.

Why Nevels’ Procedure Fails

Nevels (1989) approached the problem of minimizing (3) over yj by first defining
new parameters in terms of the old ones, and then minimizing the function over these
new parameters. For convenience we drop the constant N, as can be done without loss
of generality. In terms of our interpretation of his procedure, he used the singular value
decomposition (SVD) Y~ ~ UX 1/2 V’, with U an orthonormal N × N matrix, X v2 
N × (n -I) matrix composed of an (n - 1) × (n - 1) diagonal upper part, and 
in the lower part of the matrix (where it is tacitly assumed that N -> (n - 1)), and 
an orthonormal matrix of order (n - 1) × (n - 1). Furthermore, the definitions 
~’,l/2E 1/2’, W ~ U’Gjyj, andx -= ~,I/2v’~j are used. Here Y~ is anN × (n - 1) matrix
of optimally scaled data (Nevels seems to have taken the SVD of the full N × n matrix
Y*, including the j-th column, but must have meant Y~, as is clear from the context).
With these definitions, he elaborated (3) 

w’Xw - 2x’w + t)tj
tr(w) , (4)

W~W

and minimized this function over arbitrary w. However, the reparametrization w --
U’ Gjyj is admissible only if one can make sure that the solution for w can be written
as w -- U’Gjyj. Nevels made no such provision, and, in fact, there are many possible
situations in which w cannot be written as w --- U’Gjyj. For instance, let n = 6, and
nj = 3, which is a very natural situation. Then the solution for w can be written as w -=
U’Gjyj only ifw is in the column space of the 6 × 3 matrix U’Gj. However, the vector
w that minimizes (4) can be anywhere in 6. Nothing constrains wtobe in thecolumn

space of U’Gj. Hence, Nevels’ procedure gives a solution for w, but there may be no
yj that corresponds to this w (as illustrated in the appendix), thus leaving the basic
problem of finding the yj that minimizes (3) unsolved. In the next section we propose
an alternative procedure for finding the optimal scaling of nominal variables. To do so,
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we use the original minimization problem (of minimizing (1)) instead of using the 
rived problem of minimizing (2).

A Monotonically Convergent FACTALS Algorithm

A monotonically convergent FACTALS algorithm can be constructed by alter-
nately updating A, D z, and Z, such that each of these steps decreases (or at least not
increases) the loss function (1). For updating A and D z, we can use the same procedure
as Takane et al. (1979), or Harman and Jones’ (1966) MINRES procedure supplemented
with a procedure for avoiding Heywood cases (see Harman & Fukuda, 1966; Mulaik,
1972, pp. 152-153; ten Berge & Nevels, 1977). Hence we focus on updating Z. The
matrix Z can be updated column by column (considering the other columns fixed). 
column of Z has to be updated only if a variable j, j = 1,..., n, is nominal or ordinal.
Before considering how a column of Z is to be updated in those cases, we simplify the
notation by constraining the columns of Z to have unit sums of squares instead of unit
variances, and consequently drop the N in loss function (1).

If variablej is nominal, we want to update yj such that (1) is minimal, considering
*A, Dz, and all other columns of Z, collected in Z j, fixed. The problem then reduces to

minimizing

f(Yj) = IIZ~’G~y~ - ~112, (5)

subject to the constraints that Gjyj be centered, and that y)G)Gjyj = 1. First note that
Zj is centered columnwise, and hence Gj in (5) can be replaced by JGj, where J --- I -
II’/N is the centering operator, and 1 a vector with unit elements. Now we can express
JGjyj in terms of an orthonormal basis B for JGj as Bt, and hence we have to minimize

g(t) 11/7’nt - ejII 2, (6)

over t, subject to the constraint y)G)Gjyj = y)G)JGjyj = t’B’Bt = t’t = 1. This
problem is equivalent to Mosier’s oblique Procrustes problem, and has been solved by
ten Berge and Nevels (1977). To obtain the updated category quantifications (in yj), 
have to solve yj from

JGjyj = Gjyj = Bto, (7)

where t o denotes the t obtained from the ten Berge and Nevels procedure applied to the
problem of minimizing (6). From the regression of Bt0 on G j, we obtain the unique
solution yj0 = (G)Gj)-1G)Bto. To check if yj0 indeed satisfies (7), we first write B 
JGjTj for a certain matrix Tj. Then the second equality in (7) follows from Gjy~ =Gj(G)Gj)-I G)JGjTjt° = JGjTjt ° = Bt0, where it is used that the projection of JGj

on Gj yields JGj, because JGj lies in the subspace spanned by Gj. From this result, it
follows at once that Gjyj°is centered, thus establishing the first equality in (7).

The procedure for updating yj in case variablej is ordinal is more complicated. We
now minimize (5) over yj, subject to the constraints that Gjyj be centered, y)G)Gjyj 
1, and the elements of yj are weakly ordered. Because of the ordering constraint it is
no longer useful to reparametrize yj by a vector t. Instead, we propose a different
approach in which centering will be maintained automatically. In analogy to a proce-
dure by Meulman (1986, pp. 147-149), we use the fact that we can update yj so that f(yj)
decreases (or at least does not increase) by minimizing a function that majorizes f(yj).
To find such a majorizing function, we view f as a function of q = Gjyj, and expand it
as
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f(q) = IIz~’q - ~.112

~*~*’ ’ (8)= ~)~j - 2~)Z~’q + tr ~jLj qq 

which is a special case of Kiers’ (1990) general function f(X) (with q instead of 
function that majorizes f(q) is (see Kiers, p. 421)

* *t 0 2g(q) = c~ ~(llq ° - (2~)-~(-2z~j~j + 2zjzj q ) - qll + c2), (9)

where Cl and c2 are constants for q, a is the first eigenvalue ¯., q0of Z jZ j , and denotes
the current (or "old") value for q. Because g(q) majorizes f(q), and g(q0) 
minimizing g(q) will yield an update for q that decreases (or at least does not increase)
f(q). Re-expressing q and q0 in yj and y~, respectively, we end with the problem 
minimizing

* *t 0 2h(yj) = IIGjyfl- (2~)-~(-2Z~j 2ZjZj Gj yj) - GjyjII

-1 *^ - 1 ,-~*~*t ~, 0x
= II(Gjy~ + a Zjrj -- ot z.,j/_,j ojyj) -- G./y~.ll2

--IIz - Gjyyllz, (lo)
-1 *^ - 1 ~*~*~ ~.’-,where z -= (Gjy~ + o~ Zjrj - a z, jz, j t_,jyj ), over yj subject to the constraints

that Gjyj be centered, y)G)Gjyj = 1, and the elements of yj are weakly ordered.
Noting that z is centered, we can observe that this problem is equivalent to the nor-
malized monotone regression problem encountered in PRINCIPALS (Young, Takane,
& de Leeuw, 1978; also, see de Leeuw, Young, & Takane, 1976). Applying their
procedure to the problem of minimizing (10), we find an update for yj for the case where
variable j is ordinal.

Implementing the above procedures for updating category quantifications for nom-
inal and ordinal variables in the FACTALS algorithm described by Takane et al. (1979),
we obtain an algorithm that monotonically decreases the FACTALS loss function.
Because the FACTALS loss function is bounded below by zero, the algorithm must
converge to a stable function value.

Exemplary Analysis

The algorithm has been programmed in the matrix language PCMATLAB. Specif-
ically, the algorithm is started at prespecified values for the scalings in Y4’ j = 1,...,
rn; then the modified MINRES approach is used for updating A; next D ~ is computed
as the diagonal ofR - AA’, where R is the correlation matrix for the variables (based
on the current scalings); finally, the scalings of the variables are updated by the pro-
cedures described in the previous section. In an attempt to accelerate the program, the
update of the ordinal variables is repeated until the total absolute difference between
consecutive solutions for yj becomes smaller than some prespecified value (here
.000001), or a maximum of 20 such inner iterations has been performed. The complete
cycle of updating A, D 2 and the scalings is repeated until the function value decreases
by less than a prespecified proportion of the function value (here .0001), or the function
becomes smaller than .01 times this proportion.

As an example, we analyzed Hartigan’s (1975, p. 228) hardware data, consisting 
scores of 24 objects on five nominal variables and one ordinal variable (the fifth). 
obtained solutions with one and two factors. Both solutions were replicated by using
different starts. To give an impression of the convergence rate, Table 1 lists some
important aspects of the iteration history of the first one-dimensional FACTALS anal-
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TABLE 1
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Iteration History of The One-Dimensional FACI’ALS Analysis of The Hartigan Data

iteration number number of inner iterations function value

for the ordinal variable

0 - .7107

1 20 (maximum) .3197

2 20 (maximum) .2216

3 20 (maximum) .1832

4 20 (maximum) .1558

5 13 .1272

6 1 .1213

7 1 .1202

8 1 .1193

9 1 .1186

10 1 .1179

11 1 .1174

12 1 .1170

13 1 .1168

14 1 .1167

15 i .1166

16 i .1166

ysis. It can be seen that in the first steps, repeated updating of the scale values of the
ordinal variable is necessary, but quite soon one inner iteration per major cycle suffices.
This phenomenon of relatively quick convergence with few inner iterations after a few
main cycles was also observed in one-dimensional FACTALS analyses of other data
sets. For the Hartigan data (as well as for other data), higher dimensional solutions with
nearly perfect fit took many more major iterations. For example, a two-dimensional
FACTALS analysis of the Hartigan data required 819 iterations before the function
value dropped below I0-6.

Without attempting to give a full account of the FACTALS analysis of the Hartigan
data, in Table 2 we briefly report the matrices A and D 2 obtained from the one- and
two-dimensional analyses, as well as the optimal correlation matrices. Clearly, the two
solutions differ considerably. The one-dimensional solution seems the most reasonable
one, because the obtained factor reflects a strong association between the first three
variables, a result which is similar to that of other analyses of these data (e.g., Girl,
1990, pp. 128-135). In the two-dimensional solution the first three variables are scaled
in such a way that they hardly correlate with each other, contradicting the considerable
association between these variables. Apparently, FACTALS obtained a good fit here
by finding scalings such that the variables were correlated only mildly, and by modeling
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TABLE 2

Matrices A, D~ and R From The One- and Two-Dimensional

FACTALS Analyses of The Hartigan Data

r=l

A

0.98

1.00

0.99

0.61

-0.05

-0.25

D~ R

0.03 1.00 0.98 1.00 0.58 0.00 -0.22

0.00 0.99 1.00 0.99 0.61 -0.05 -0.25

0.01 1.00 0.99 1.00 0.60 -0.06 -0.22

0.63 0.58 0.61 0.60 1.00 -0.17 -0.26

1.00 0.00 -0.05 -0.06 -0.17 1.00 -0.13

0.94 -0.23 -0.25 -0.22 -0.26 -0.13 1.00

r=2

A D~ R

0.63 0.08 0.60 1.00 0.16 0.19 0.58 0.00 -0.22

0.21 0.45 0.76 0.16 1.00 -0.07 0.15 0.42 -0.23

0.34 -0.31 0.78 0.19 -0.07 1.00 0.35 -0.35 0.00

0.94 -0.10 0.11 0.58 0.15 0.35 1.00 -0.21 -0.26

-0.12 0.99 0.01 0.00 0.42 -0.35 -0.21 1.00 -0.31

-0.31 -0.36 0.77 -0.22 -0.23 0.00 -0.26 -0.31 1.00

most variance as unique variance, which is reflected by the relatively high unique
variances in the two-dimensional solution.

Discussion

As the results of the FACTALS analysis of the Hartigan data indicate, one has to
be very careful in interpreting FACTALS solutions. Especially with nominal variables,
the large amount of freedom in scaling the variables may cause the method to capitalize
on finding unique factors rather than common, even though strong common factors may
clearly be present. More research will be needed to understand these phenomena and
to assess the usefulness of FACTALS in practice. The main purpose of the present
paper was to make such research possible by providing a working algorithm for FAC-
TALS of mixtures of nominal, ordinal, and numerical variables.

Appendix

The following example shows that Nevels’ procedure cannot always solve the
problem of minimizing (3). Suppose, at a particular stage of his procedure,
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Y~ = 2-1/2 ,-1 ~. = 2-1/2 , and Gj = .

0

Then, Nevels’ solution for w must be

6 - 1/2

W0 = ,

\2/31/2]

because w0 globally minimizes (4), since it yields a function value of 0, as can 
verified as follows. First we calculate the singular value decomposition of Y~ =
UX 1/2 V’, which yields

3 -1/2’ 2/6 1/2 1/2/2

[_i/61/2

O 0 3_1/2/

(6

and

t2-1/2 2-1/2 ~V= k2-1/2 _2-1/2),

where U can be taken equal to the first two columns of 0 supplemented by any rotation
of the last two columns of O; hence,

for an arbitrary orthonormal matrix T. With these expressions, we can compute

1/2 0
0 0
0 0

and X ~- ~ l/2v’~j = 1/2/4

Oo/’
and it can now be computed that wbEwo = 1/2, x’wo = I/2, and ~j.~j = 1/2; hence,
tr(Wo) -- 0. This shows that o globally minimizes (4). Now, we should find the vector
yj such that

W0 =

6 - 1/2

\2/31/2/

We can calculate

(0 i)0’~= °o 0,
31/2
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and hence, with

find that the first two rows of U’G are zero. It follows that we can never find a yj such
that w0 = U’Gjyj, demonstrating that Nevels’ procedure, which if it minimizes (4)
should give the unique solution w0 (see Nevels, 1989, pp. 343-344), fails to solve for the
Y0 that minimizes (3).
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