Journal of Classification 11:79-99 (1994)

A Generalization of GIPSCAL for the Analysis of
Nonsymmetric Data

Henk A. L. Kiers Yoshio Takane

University of Groningen McGill University
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hence that the graphical representation from Generalized GIPSCAL can be used to
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another method for joint representation of the symmetric and skew-symmetric
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1. Introduction

Multidimensional scaling (MDS) is a popular family of techniques for
generating graphical representations of data consisting of (dis)similarities
among a set of objects. Usually these (dis)similarities are symmetric, in the
sense that the relation between object i and object j is the same as that
between object j and object i. However, there are many situations in which
relations between objects are nonsymmetric. For instance, a person i may like
person j very much, while person j dislikes person i. If a data set consists of
nonsymmetric relationships among a set of objects, one cannot apply ordinary
MDS to obtain a (graphical) representation of the data. Several techniques
have been proposed to find representations of nonsymmetric data, some of
which first split the data table into a symmetric and a skew-symmetric part,
and analyze the symmetric part by, for instance, classical MDS (Torgerson
1958; Gower 1966), and the skew-symmetric part by specially designed
methods (e.g., see Gower 1977; Constantine and Gower 1978). That is, if X is
a square matrix with nonsymmetric relationships scores between n objects,
then the symmetric part of X, X, = % (X + X"), is analyzed by using an MDS
technique, and the skew-symmetric part X = /2 (X —X") is analyzed by the
technique proposed by Gower. Thus, one obtains two different representations
of the same data, one representing the symmetric part of the relationships and
the other representing the remaining skew-symmetric part. If different, unre-
lated mechanisms underlie the symmetric and skew-symmetric part of the
data, the above procedures can be used to study these independently. How-
ever, in practice, one usually does not know if one deals with such unrelated
mechanisms. Then, it can be useful to find a single representation of the
observed nonsymmetric relationships. A method designed for the joint
analysis of symmetric and skew-symmetric relationships is DEDICOM
(DEcomposition into DIrectional COMponents), proposed by Harshman
(1978). This method decomposes the n X n data matrix X as

X=ARA'+E, 1

where A is an n X r (r < n) matrix containing coefficients to relate the objects
to ‘basic concepts’ underlying the objects, the r X r matrix R contains meas-
ures to represent nonsymmetric relations between those basic concepts, and E
is an n X n matrix of residuals. DEDICOM finds the A and R that fit model (1)
in the least squares sense (by minimizing tr E’E). Although DEDICOM gives
a single representation for the stimuli (in A), it does not give a simple graphi-
cal representation of the objects to represent the nonsymmetric relationships.
Chino (1978, 1990) proposed a method that both handles the symmetric
and skew-symmetric part simultaneously and gives a graphical representation
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of the nonsymmetric relationships. In matrix notation, his GIPSCAL method
(Generalized Inner Product SCALing; Chino 1990, also see Chino 1980, p.
23) is based on the representation

X =aAA"+bARA  +cl1’+E, @)

where the n x r matrix A contains coordinates for the objects on r dimen-
sions, Ry is a fixed skew-symmetric matrix with off-diagonal elements 1or
—1 in such a pattern that neighboring off-diagonal elements have opposite
sign; for example, if

r=4, R1=

|
— ket O
— O

-1 1

1-17 .

0o 1}
- -1 0
furthermore, I is an n-vector with unit elements, E is an n X n matrix of resi-
duals, and a, b, and c are scalars to express relative importances of the three
parts of which the model exists. Although not explicitly done by Chino, we
henceforth assume that a =0, because for negative a the model would not
make sense graphically (unless we deal with dissimilarities, but in such cases
we would multiply the data by — 1 to obtain similarities). It may be worth
noting that the sizes of a, b and A are undetermined, because multiplying a
and b by a positive scalar and dividing A by the square root of that scalar
does not affect the model.

Chino’s GIPSCAL model (2) is fitted to the data in the least squares
sense by minimizing tr E’E. The coordinates in A are used for representing
the objects in an r-dimensional space. The configuration represents both the
symmetric part of X and the skew-symmetric part of X. That is, for the sym-
metric part, the element (i,j) of X, is represented by aa’;a; + ¢, where a’;
denotes the i-th row of A, and ¢ an additive constant; so the symmetric part is
represented, as in classical MDS, by the inner product of the coordinate vec-
tors for i and j. For the skew-symmetric part, each element (i,j) of X; is
represented in a more complicated way. For each pair of dimensions, we
compute the area of the triangle formed by the origin and the projections of i
and j on these dimensions. Then element (i,) is represented by the sum of all
these areas, each multiplied by + 2b, where the sign depends on whether in
going from the projection of i to that of j we make a clockwise (—) or coun-
terclockwise (+) movement. Clearly, if r > 2, it takes considerable effort to
deduce the representation of the skew-symmetric part of the data from the
graphical displays. In the present paper, we will simplify the model (without
affecting the representation and the goodness-of-fit of the model), and next,
offer a slightly more general variant of GIPSCAL, which yields a goodness-
of-fit which is at least as good as GIPSCAL’s and usually better.
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Chino (1990) has derived an alternating least squares algorithm for
fitting the off-diagonal elements of the GIPSCAL model. For the case where
diagonal elements should be fitted as well (denoted as ‘fitting the full
model’), no alternating least squares algorithm is available. In the present
paper, we will derive an alternating least squares algorithm for fitting the gen-
eralized GIPSCAL model, which, by some simple modifications can also be
used for fitting the full GIPSCAL model.

One of the main problems with the DEDICOM model is its nonunique-
ness: Any nonsingular transformation T of A, yielding A = AT, can be com-
pensated by replacing R by R = T!R(T")™!, without affecting the DEDI-
COM representation. Such transformations can affect the interpretation of the
DEDICOM results considerably. The GIPSCAL model also has some
nonuniqueness, but this deficiency does not interfere with the interpretation
of the GIPSCAL solution, as will be derived below.

Chino (1980) has mentioned that his model is a constrained version of
the DEDICOM model. We will show that our generalization of GIPSCAL
also is a constrained variant of DEDICOM. In addition, we will derive neces-
sary and sufficient conditions for equivalence of the two models. These condi-
tions turn out to be rather mild, and hence, in cases of (near) equivalence, the
graphical display from generalized GIPSCAL can be seen to provide the
DEDICOM results, which until now could only be represented ‘numerically’,
with a graphical representation. This advantage will be illustrated by the
analysis of an empirical data set.

A third method for simultaneous representation of the symmetric and
skew-symmetric part of a nonsymmetric relationships table has been pro-
posed by Escoufier and Grorud (1980) and independently by Chino (1991).
As a final result we show that the Escoufier and Grorud method is a con-
strained variant of generalized GIPSCAL.

2. A Simplification of GIPSCAL

The interpretation of GIPSCAL results is relatively complicated with
respect to the skew-symmetric part of the data. To simplify the GIPSCAL
model, we can reparametrize the matrices A and R; as follows. Let
R; = UAU” denote the ‘Gower decomposition’ of R;, where A is a block-

A ,
diagonal matrix with 2 X 2 matrices —(7)~1 O[ along the diagonal and, if » is

odd, a zero element in the last diagonal position, and U is an orthonormal
matrix (Gower 1977). Note that the nonzero elements of A (being the singular
values of R;) are fixed, because_the elements of R; are fixed. Using this
Gower decomposition, we define A = AU, and rewrite model (2) as
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X =aAA” + bAAA" +c11° + E. 3
In this representation the skew-symmetric part is represented by
X, = bAAA". @

Now each element (i,j) of X, is represented by the sum of the representation
obtained from the first two dimensions, that of the third and fourth, etc. That
is,

[Xilij = bA(ai1 Gj2 — ai2 aj1) + bAa(Gi3 G54 — Gig Gj3) + ...y )

hence [X;];; can be seen as the weighted sum of triangle areas lying within
the origin, and the projections of a“; and a“; on the first two dimensions, on
the second two dimensions, etc. This description makes it possible to study
the contribution of pairs of dimensions (christened ‘‘bimensions” by Carroll;
see Harshman 1981) separately. For instance, the first pair contributes
b\ (a;1 aj2 ~ a;3 a;y) to the skew-symmetric relation between i and j, and the
first and second dimension contribute a(a;; a;;) and a(a;; d;;), respectively
(or a(a;, aj + a;; a;y) together), to the symmetric relation between i and j.
As a result, it is possible to display the total contribution of one pair of
dimensions in one plot, where the inner product of two vectors (times a)
describes the symmetric portion of the relation, and the related triangle area
(times +2bA;) describes the skew-symmetric portion. This representation
involves %: r two-dimensional plots, and hence is considerably simpler than
GIPSCAL, which requires % r(r — 1) two-dimensional plots for a complete
representation of the nonsymmetric relations.

3. Generalized GIPSCAL

Above, we have rewritten the GIPSCAL model as (3), or, after drop-
ping overline tildes (-):

X=aAA" + bAAA" +c11" + E, 6)

where A is a fixed matrix with singular values of the matrix R; in skew-
symmetric 2 X 2 blocks along the diagonal. The elements of A serve to indi-
cate the importances of the bimensions in representing the skew-symmetric
part of X. The importances are fixed to the singular values of R;, a matrix
which was fixed to have elements equal to 0 and * 1, which clearly facilitated

the interpretation of the %r(r —1) GIPSCAL plots. In our description of
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GIPSCAL, the fixed values in Rj;, and hence in A, no longer facilitate
interpretation. In fact, there no longer seems to be any reason to keep the
nonzero elements of A fixed, as long as they indicate the importance of each
bimension. Therefore, we propose a "Generalized GIPSCAL" model in which
the nonzero elements in A are left free, except for the requirement that A
should have skew-symmetric 2 x 2 blocks along the diagonal. In fact, this
modification comes down to replacing the special skew-symmetric matrix R;
in Chino’s GIPSCAL model by an arbitrary skew-symmetric matrix. Note
that, in this relaxed model, we can, without loss of generality, delete the
scalars a and b, by subsuming a” in A if @ >0, and b in A. Obviously, if
a =0, the term involving a vanishes, and we would have a simplified model,
with b again subsumed in A. In that case, the corresponding generalization of
GIPSCAL would be equivalent to Gower’s (1977) method for decomposing a
skew-symmetric matrix. We will only consider the case where a > 0. Conse-
quently, we propose Generalized GIPSCAL as the method that minimizes

0 (A8),...,8,,0) =X -AA = AAA" —c11"|F, 0))

where A is the matrix with 2 X2 blocks -08, %’] I=1,...,q, along the
diagonal, and if r is odd a zero element in the last diagonal position. The
interpretation of results of the Generalized GIPSCAL method can be made
analogously to the bimensionwise interpretation suggested above for GIPS-
CAL results.

Generalized GIPSCAL generalizes GIPSCAL to the effect that weights
for different bimensions are no longer fixed to prespecified values (computed
via the singular values of R;). For the case with only one bimension (r = 2 or
r = 3), this relaxation can be done without affecting the model’s goodness-
of-fit, because any rescaling of A can be compensated by the free scalar b. In
case r 2 4, this strategy is no longer possible, because different elements of A
are rescaled differently; hence Generalized GIPSCAL differs from GIPSCAL
as soon as there are two bimensions or more, that is, in case r 2 4.

To interpret the Generalized GIPSCAL solution, we may use the above
simplified interpretation derived for GIPSCAL. This simplification facilitated
the interpretation by decreasing the number of plots to be interpreted, but the
interpretation of one plot is still quite complicated since it involves inferring
the contribution of a stimulus pair to symmetry and to skew-symmetry via
entirely different processes (viz., via taking inner products, and via computing
triangle areas, respectively). To represent the total nonsymmetric relations we
have to sum these portions. The total nonsymmetric relation between two
stimuli cannot directly be read from the plot. This drawback seriously
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detracts from the usefulness of the plot for inferring contributions of stimulus
pairs to the whole matrix of nonsymmetric relations. Therefore, we propose
an alternative procedure, which is closely related to a suggestion by Gower
and Zielman (1992), and made in a slightly different context.

The model’s representations for all stimulus pairs are given by the
matrix X = AA” + AAA’, where we ignored the additive constant which con-
tributes equally to all relationships. For the I-th bimension, we can write the
associated vectors of A in an (n X 2) matrix A,, and the associated portion of

)
A can be written as A; = -081 0’ . Then, the representation by this bimen-
sion is given by
X; = AA" + A AA7 = AL+ ADAY). ®)

Now, we can_ wrte (I+A)=pT) where B;=(+87), and

-3
T, =B 81, 1’ , and verify that T, is orthonormal. Specifically, let

¢; = arctan (§;), then T; is a clockwise rotation over the angle ¢;. Substituting
d+ A) =BT for I + A;) in (8) we find

X;=BAT AT =AB, ©)

with A; = B;/’A,, and B; = A;T;. By means of (9) the nonsymmetric relations
between the stimuli are represented by inner products between rows of A; and
of B;. Thus, a scalar-product representation (also known as biplot, see Gabriel
1971) is obtained for the nonsymmetric relations. Specifically, the relation of
stimulus i to stimulus j is represented by the inner product of the i-th row of
A, and the j-th row of B;, whereas the relation of stimulus j to stimulus i is
represented by the inner product of the j-th row of A; and the i-th row of B,
as in ordinary biplots. This biplot is special, however, in that the
configuration for the column stimuli is equal to that for the row stimuli,
except for a rotation over the angle ¢; (just as in Gower and Zielman 1992).
As a result, stimuli close to each other will have more or less the same non-
symmetric relationships with other stimuli.

An advantage of this biplot type of interpretation is that the impor-
tances of the skew-symmetric and the symmetric part of a particular relation
can be compared more easily than in the original GIPSCAL interpretation. In
the latter, the contributions to symmetry and skew-symmetry were displayed
in incomparable units (inner products and triangle areas, respectively). In our
new interpretation procedure, we can ‘read’ the inner products between i and
j, and between j and i from the plot, and the difference between these
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indicates the amount of skew-symmetry, whereas the sum of these indicates
the amount of symmetry. In practice, it may suffice to compare size and sign
of these two inner products: Having X;; and Xj; both positive (or both nega-
tive) and of more or less the same size indicates little asymmetry and much
symmetry, fc,-j large and J'Eji small (both positive or both negative) indicates
considerable amounts of both symmetry and asymmetry; X;; and X;; of oppo-
site sign, and at least one of these being large indicates much asymmetry and
little symmetry. To aid ‘reading’ the inner products from the plot, one may
use the projections of the vectors for i (one for row i and one for column {) on
the vectors for j from the other configurations, having lengths that are propor-
tional to the required inner products.

With the above interpretation procedure, Generalized GIPSCAL
becomes a method which yields bimensional biplots between row and column
configurations that are constrained to be rotations of each other. The rotation
angle ¢ is determined for each bimension separately and may thus vary con-
siderably over bimensions. The size of the angle indicates the amount of
skew-symmetry represented by bimension I: if ¢, is close to zero, hardly any
skew-symmetry is represented by the bimension. If ¢; is close to 90°, the
representation is dominated by skew-symmetry. The interpretation procedure
sketched here will be illustrated in an analysis at the end of the paper.

4. An Alternating Least Squares Algorithm for GIPSCAL

Chino (1990) has derived an alternating least squares (ALS) algorithm
for fitting the GIPSCAL model to off-diagonal elements only. All diagonal
elements are considered missing, and his derivation does not yield an ALS
algorithm for cases where the diagonal is to be fitted as well. That is, the steps
used in the algorithm for off-diagonal fitting are not the least squares optimal
steps for fitting the full (including diagonal) model, and hence need not
decrease the function value monotonically. In the present section, we will
derive an ALS algorithm for fitting the (full) Generalized GIPSCAL model,
with an option for handling missing data (thereby including the off-diagonal
case). At the end of the present section, we indicate how the algorithm can be
modified to fit the original GIPSCAL model.

We will first derive an ALS algorithm for the case without missing
data. The problem is to minimize (7) alternately over A, A, and c. For fixed A
and A, minimizing (7) over ¢ amounts to minimizing a quadratic function in c,
which is solved by taking

c=1(X-AA"—AAA)1/n?. (10)
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For fixed A and c, function (7) can be minimized over A row by row as
follows. Consider the problem of minimizing ¢, over the i-th row a“; (where
the prime is used to emphasize that we are dealing with row rather than
column vectors) of A, with the other rows of A considered fixed. Let A_;
denote the matrix A with the i-th row deleted, let the element x;; denote the
element (i,j) of (X —c11°), and let x,;) and x.(;y denote the i-th (transposed)
row and column, respectively, of (X —c117) with the element (i,i) deleted.
Then, with a“;Aa; = 0 because A is skew-symmetric, it remains to minimize

N e a2 X i) A_,'(I + A') .
= (x; —a%,)* + ¢ - Fa;|f (11)
- |Xr® - |A-d +A) . .
where we define ¢ = Xey |’ and F= AL +A) | This problem is of the

form discussed and solved by Ten Berge (1991). Thus, we have derived a
solution for minimizing (7) over the i-th row of A given the other rows of A.
By updating each row of A in the way described above, we decrease (7)
monotonically.

Finally, for fixed A and ¢, we have to minimize (7) over A, or rather
over 9y, . ..,8,. To solve this problem, we first write A as KD, where K is a
fixed matrix of the same form as A, with the elements §,, . . .,8, replaced by
unit elements, and, if # is odd, a unit element on the final diagonal position,
and D is the diagonal matrix with diagonal elements 8;,8,,8,,5;, . ..,8;,8,,
and a final O if r is odd. Then, the problem of minimizing o, over A reduces to
minimizing

c,(D) =[(X-AA") - AKDA"|f

=| Vec (X — AA") — Vec (AKDA") |?
=| Vec (X ~ AA") - (A ® AK) Vec (D)

=|| Vec (X — AA") — (A x (AK))d|F , (12)

where Vec denotes a matrix strung out columnwise into a vector, ® denotes
the Kronecker product, A X (AK) denotes the n? xr matrix containing
Kronecker products of corresponding columns of A and AK (see Carroll &
Chang, 1970, p.286, for an earlier use of this product), and the vector d con-
tains the diagonal elements of D. Now constructing the n X g matrix B with
sums of consecutive columns of (A X (AK)), ignoring the last column of
(A x (AK)) if r is odd, and defining w =(3,, . . .,3,)", the problem reduces to
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the regression problem of minimizing || Vec (X — AA") — Bw|f, for which the
solution is given by

w=(B"B)YB Vec(X-AA"), 13)

where ()~ denotes a generalized inverse. We thus find a solution for the
parameters 9y, . . . ,8,, and hence for A. Alternately updating c, A, and A, we
have a monotonically converging algorithm for Generalized GIPSCAL.

The algorithm derived above can straightforwardly be modified to
allow for missing data. Let W be an n x n binary indicator matrix with unit
elements for nonmissing data and zeros for missing data. Then the problem is
to minimize

n n
Gg(A,al, - ,Sq,C) = Z Z w,-j(x,-j —a’ia,- - a’iAaj —-C)z . (14)
i=lj=1

It is readily verified that this problem is equivalent to the minimization of
o; (A3, ...,58,0,X) =X —AA -~ AAA" —c11’|P (15)

over ¢, A, A, and the missing elements of X. To see why these methods are
equivalent, note that the missing elements of X are updated by setting them
equal to the corresponding elements in the model representation, thus setting
the loss for these elements to zero. Using the second description, an ALS
algorithm is obtained at once by alternatingly minimizing o, over X, c, A,
and A, which differs from the original algorithm only in that an additional step
for updating the missing values in X is needed.

The algorithm above can be used for missing data at any position.
However, in the special case where all diagonal elements are considered
missing (the off-diagonal case), we prefer to use a different procedure for
updating A, as follows. In the off-diagonal case, the problem of minimizing
o, over a’; reduces to minimizing

ALd+A)

A +a) |8l =l¢-Falf (16)

ooy = |Xr® ] _

where we dropped the term (x; — a’;a;)? from (11) since this term can, regard-
less of the value of a;, be set equal to zero by immediately updating the miss-
ing value x;. The problem of minimizing (16) is a simple regression problem
with solution a; = (F'F)"F¢.

The Generalized GIPSCAL algorithm derived above can be used for
fitting the original GIPSCAL model by setting A equal to KX, where X is the
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diagonal matrix with singular values of R;, and allowing for a scalar b in the
skew-symmetric model part. The scalar a can still be considered subsumed in
A. Then the problem of minimizing (16) is modified into that of minimizing

o; (A,b,c,X) =X~ AA" -~ bAAA" - 11", 17)

An ALS algorithm can be constructed by updating the missing values of X,
the rows of A and ¢ as before, and, instead of updating A, we now have to
update b as

b=(rA"(X—cl1)AA") /(trAAA’AA°A7), (18)

which follows from minimizing a quadratic function in b. In the off-diagonal
case, this algorithm is basically equivalent to Chino’s (1990) algorithm.

5. Uniqueness of the Generalized GIPSCAL Representation

In general, the Generalized GIPSCAL model does not provide a unique
representation for A, ¢, and A. However, if A has full rank and does not con-
tain 1 in its column space, and if the elements of A that belong to different
bimensions are distinct, then A and ¢ are determined uniquely given the total
Generalized GIPSCAL representation, and A is unique up to bimensionwise
rotations. To prove this claim, suppose we have a different set of parameters
A* A", and ¢, satisfying the same assumptions and giving exactly the same
representation for X. That is, suppose that

AA“ + AAA +c11" = AAY + A'A'AY + 7117 . (19)
Then, for the symmetric part of (19) we have
AA” +cll”=AAY +¢"11" . (20)

Let J=(I- n"lll) then from (20) we have AA’J=A'A"J. From the
assumption that A' does not contain 1 in its column space it follows that JA®
has full rank; hence A" = AT, for a certain matrix T, which is nonsingular
because A and A” are assumed to have full rank. It follows that

AAJ =ATTA7), (21)

which upon premultiplication by (A'A)‘IA’ (using the full rank of A) and
postmultiplication by JA(A ‘JA)! yields TT = I; that 1s T is orthonormal.
As a by-product, we now have AA“ = A *A™’; hence ¢* = c. For the skew-

symmetric part of (19), we have
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AAA = AA™AY 22

Now we can derive from (22) that AAA” = ATA*T"A” and, hence, exploiting
the full rank of A, that A = TA™T". If we substitute A = KD and A* = KD" in
A=TA'T’ and define the orthonormal matrix U as U=TK, we find
KDI = UD"T", of which left- and right-hand side both define a singular value
decomposition (SVD). From the uniqueness properties of the SVD with partly
distinct singular values, it follows that D = D* (hence A = A") and, for the
right-hand singular vectors, T = IN = N, where N is an orthonormal matrix
that commutes with D, which hence contains nonzero elements only in the
2 x 2 blocks along the diagonal (because D has distinct singular values for
different bimensions). To conclude, we find that, under the mild conditions
specified above, ¢ and A are unique given the Generalized GIPSCAL
representation, and A is determined up to a bimensionwise rotation.

For the interpretation, the above derived uniqueness is quite useful.
Indeed, the only indeterminacy is the orientation of the axes of a bimension.
However, this orientation is of no importance in the bimensionwise interpre-
tation proposed above.

6. Conditions for Equivalence of Generalized GIPSCAL and DEDICOM

The basic difference between DEDICOM and Generalized GIPSCAL is
that in the former we have R, where we have (I + A) in the latter. It follows
that Generalized GIPSCAL is a constrained variant of DEDICOM, where the
constraint is that R can be written as (I + A). This constraint is not as
stringent as it seems, because we can replace R by TRT" for any nonsingular
matrix T, if we replace A by AT, In this way, it may be possible to find a
matrix R that does satisfy the constraint, even though that was not apparent at
first. In the following theorem, we describe a necessary and sufficient condi-
tion under which the DEDICOM solution can be made to satisfy the con-
straint implicitly used in Generalized GIPSCAL.

Theorem. Given a DEDICOM solution with full rank matrices A and R, the
DEDICOM representation ARA” can be written in the form of the General-
ized GIPSCAL model with ¢ = O, if and only if the symmetric part of matrix R
in the DEDICOM solution is positive definite (p.d.).

Proof. Let R and R, denote the symmetric and skew-symmetric parts of R,
respectively. If R; is p.d., then we can decompose it as R, = TT” (e.g., using
the Cholesky decomposition). Defining X=ARA’, we find
X =ARA +ARA" = ATT'A" + ATT!R(T)!T’A". Let TRy (T")™
= UI'U” denote the Gower decomposition of the skew-symmetric matrix
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T!R,(T")~!, with U orthonormal and T'_block-diagonal. Then, with the
definition A = ATU, we obtain X = AA” + ATA", which is of the form of the
Generalized GIPSCAL model with ¢ = 0.

Conversely, if the DEDICOM representation can be written in the form
of the Generalized GIPSCAL model with ¢ = 0, then, ARA” = AA” + AAA’,
for certain matrices A and A, where A is skew-symmetric. Then it follows that
A is in the column space of A, and hence A = AT for a certain matrix T.
Since A and R have full rank, A also has full rank; hence T is nonsingular. It
follows that ARA” = ATT’A” + ATAT A’, and hence R = TT” + TAT". As
aresult, Ry = TT", whichisp.d. =

The above theorem implies that for every DEDICOM solution with R p.d., it
is possible to give a graphical representation in exactly the same way as in
Generalized GIPSCAL. A similar result has been found by Zielman and
Heiser (1991) for the case where r = 2. For this case they mentioned the
(near) equivalence of DEDICOM and GIPSCAL after the A in DEDICOM
has been rotated such that R; is diagonalized. Here, we have generalized their
result to the case where r 2 2.

If DEDICOM and Generalized GIPSCAL are equ1va1ent we have thus
furnished DEDICOM with a plotting procedure which, moreover, gives a
unique sequence of two-dimensional plots (except for rotation of the plots
themselves). If Ry in DEDICOM is not p.d., and hence Generalized GIPS-
CAL (with ¢ = 0) and DEDICOM are not equivalent, we can apply General-
ized GIPSCAL to the same data, and compare the goodness-of-fit value to
that obtained by DEDICOM. If these differ only slightly, one may prefer the
Generalized GIPSCAL representation because it gives almost the same
representation of the data but adds a graphical display to the output.

7. Escoufier and Grorud’s Method as a Special Case of
Generalized GIPSCAL

A third method for the simultaneous representation of the symmetric
and the skew-symmetric part of a nonsymmetric data table is given by
Escoufier and Grorud (1980; also see Chino 1991). We will now show how
this method is related to DEDICOM and Generalized GIPSCAL. The method
is based on the eigendecomposition of the Hermitean (usually complex)
matrix X, +iX;. As noted by Escoufier and Grorud, the eigenvectors of
X, +iX; are_ directly related to the eigenvectors of the matrix

X, -X

H= X; Xk . Escoufier and Grorud have shown that the eigenvalues of
S

this matrix have multiplicity 2, and that to an eigenvalue A; correspond eigen-

u e/
vectors vj and Ui . It can be verified that the 2g-dimensional Eckart-
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Young (1936) approximation of H reduces to the following representations
for X; and Xp:

- q
X, =Y Muu +vvy, (23)
1
and
A q
X =Y M(viu—wv7). 24)

1=1

In fact, Escoufier and Grorud’s method minimizes | X, - X, |F +| X; - X; P

over A, wyand v;, I = 1,...,q. We will now show how this method is related
to DEDICOM and Generalized GIPSCAL.
Collecting W and \/} into a matrix
AsQfvy I a1 M’ vl lg’uq),weﬁnd
X, =AA"+E,, (25)
and
X; =AKA' + E, (26)

where K is the 2q X 2¢ matrix with 2 x 2 blocks [7(1) (1)] along the diagonal

and zeros elsewhere. Minimizing | X, - X, P + )| Xs — Xi|P then reduces to
minimizing
ox(A) =] X, - AA“|f +|| X, —AKA"|f
=X, + X - (AA” + AKA) P
=X, + X~ Ad + KA) P, @7

using the fact that tr(X; - AA)(X — AKA") = 0, because it is the trace of a
product of a symmetric and a skew-symmetric matrix. If we denote (I + K) as
R, it follows that minimizing o} is equivalent to DEDICOM, subject to the
constraint that R = I + K; hence the Escoufier and Grorud method is a con-
strained variant of DEDICOM. It is also a constrained variant of Generalized
GIPSCAL with ¢ set equal to zero, since the latter fits the model X = AA” +

b
AAA"+E= A(I+AA’+E, with A containing 2 x2 blocks [_ 8? Ol

along the diagonal, for arbitrary §;. Clearly, the Escoufier and Grorud method
is the constrained variant of Generalized GIPSCAL with the scalars
81, ...,8, fixed to unity. In conclusion, we have shown that the Escoufier and
Grorud method is a constrained variant of Generalized GIPSCAL, which in
turn is a constrained variant of DEDICOM.
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Incidentally, it should be mentioned that Chino has also established
certain relations between Escoufier and Grorud’s method and GIPSCAL.
Chino (1991) has recently pointed out that Escoufier and Grorud’s method
has a finite-dimensional complex Hilbert space structure if all (nonzero)
eigenvalues of X + iX, are positive, and Chino and Shiraiwa (1993) esta-
blished the corresponding metric properties for this method as well as for
GIPSCAL and DEDICOM.

We have shown that the Escoufier and Grorud (1980) method is a con-
strained version of Generalized GIPSCAL. However, there seems to be no
data analytic reason for constraining the Generalized GIPSCAL model in this
particular way. The main use of the Escoufier and Grorud method then seems
to rest in the fact that it gives a closed-form solution, whereas both GIPSCAL
and DEDICOM require iterative procedures to find a solution. The Escoufier
and Grorud method may serve as a useful starting configuration for the itera-
~ tive algorithms used in Generalized GIPSCAL and DEDICOM.

8. Example

As an example, we reanalyzed the car switching data for 16 car types
reported by Harshman, Green, Wind, and Lundy (1982). Each cell (i,j) in this
16 x 16 data matrix pertains to the frequency with which type i car owners
switch to a new type j car. The car types are Subcompact/Domestic (SUBD),
Subcompact/Captive Imports (SUBC), Subcompact/Imports (SUBI), Small
Specialty/Domestic (SMAD), Small Specialty/Captive Imports (SMAC),
Specialty/Imports (SMAI), Low Price Compact (COML), Medium Price
Compact (COMM), Import Compact (COMI), Midsize Domestic (MIDD),
Midsize Imports (MIDI), Midsize Specialty (MIDS), Low Price Standard
(STDL), Medium Price Standard (STDM), Luxury Domestic (LUXD), and
Luxury Import (LUXI). For more details the reader is referred to Harshman et
al. (1982).

We first obtained (using the Kiers, Ten Berge, Takane, and De Leeuw
1990 DEDICOM algorithm) the two-, three- and four-dimensional DEDI-
COM solutions for these data, and found that the solutions accounted for
" 77.2%, 86.4%, and 92.0%, respectively, of the total sum of squares of the data
matrix. In all three cases the symmetric part of R turned out to be p.d., so in
all these cases DEDICOM is equivalent to Generalized GIPSCAL. Using this
equivialence, we can plot the first and second bimensions as in Generalized
GIPSCAL, and interpret the results on the basis of these plots. We therefore
transformed the DEDICOM solution into ‘GIPSCAL form’ and plotted the
coordinates (A; in (9)) for the most contributing car types on the first two
dimensions in Figure 1, and on the third and fourth dimensions (A, in (9)) in
Figure 2.
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Figure 1. Plot for the first bimension of the car switching data. Explanation of the labels:
SUBD:  Subcompact/Domestic; SUBC: Subcampact/Captive  Imports;  SUBI:
Subcompact/Imports; SMAD: Small Specialty/Domestic; SMAC: Small Specialty/Captive
Imports; SMAI: Specialty/Imports; COML: Low Price Compact; COMM: Medium Price
Compact; COMI: Import Compact; MIDD: Midsize Domestic; MIDI: Midsize Imports;
MIDS: Midsize Specialty; STDL: Low Price Standard; STDM: Medium Price Standard;
LUXD: Luxury Domestic; LUXI: Luxury Import. Lower case labels refer to rows of the data
table, upper case labels refer to columns.
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Figure 2. Plot for the second bimension of the car switching data. For the explanation of the
labels, see Figure 1.
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From the bimension weights 8, (.4479) and 8, (.0904), we computed the rota-
tion angles ¢; = 24.1° and ¢, = 5.2°. Clearly, the second bimension does not
make an important contribution to the skew-symmetric part of the data. The
first bimension’s contribution to skew-symmetry is considerably larger,
although this bimension also contributes more to symmetry than to skew-
symmetry. This result is an implication of the fact that the sum of squares of
the skew-symmetric part of the data is much smaller than the sum of squares
of the symmetric part.

To interpret results for the first bimension, we rotated the configuration
over 24.1° and superimposed the resulting configuration (B; in (9); with
labels capitalized) on the original configuration (with lower case labels). As
represented by this bimension, the largest (approximations of) car switching
frequencies (i.e., the largest inner products between vectors emanating from
the origin to the plotted points) are found for pairs of car types that are far
from the origin, and close to each other, like the pairs (stdl,MIDD),
(stdl,STDL), (stdl,MIDS), (mids,MIDS), (midd,MIDS), and (midd,MIDD),
which involve the car types with the largest market shares: MIDD, MIDS,
and STDL; car switchings of medium frequency involve SUBD, SMAD, and
STDM. So the first bimension mainly reflects car switchings between these
car types. Of these, the car types ‘midd’ and ‘stdl’ are displayed far to the
right, near many capitalized versions of other car types. Apparently, there is a
considerable amount of car switchings from these car types to others, for
instance, from ‘midd’ to MIDS, SMAD, SUBD, STDM, and MIDD, and from
‘stdl’ to MIDD, STDM, SUBD, COML, and MIDS. These switchings reflect a
general tendency (also reported by Harshman et al.) of owners of medium
sized or standard cars to switch to small and/or specialty cars. In line with this
finding is that the main ‘receivers’ (the car types whose capitalized versions
are far to the left) turn out to be the MIDS specialty cars and to some extent
the small SMAD cars, to which many switches occur, for instance, from
‘mids’, ‘midd’, ‘smad’, ‘subd’, and ‘stdm’. It is thus possible to read the
(approximated) car switching frequencies from the plot.

To find the largest asymmetric relations (i.e., with largest difference
between cells (i,j) and (j,i)), it is easier to use the original GIPSCAL
interpretation, based on triangles’ areas in the original (or the superimposed)
configuration. It can be seen then that the largest triangle is formed by the
stimulus pair (STDL,MIDS), and other large triangles are found for
(STDLMIDD), (STDL,SMAD), and (MIDD,MIDS), thus indicating rela-
tively large differences in ‘car switchings to’ and ‘car switchings from’. These
large asymmetries reflect real asymmetries in the data, except the asymmetry
between STDL and MIDD, which occurred as a result of a sizable modeling
error for this stimulus pair. It should be mentioned that, apart from this large
modeling error, we found only one similarly large residual, namely for the
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(symmetric) relation of STDL to itself. The (real) largest asymmetries again
display the tendency to switch to smaller and/or specialty cars.

To interpret the results from the second bimension, we rotated the
configuration for the second bimension over 5.2° and superimposed the
resulting configuration (B, in (9)) on the original configuration for the second
bimension. The second bimension mainly represents the relations between car
types STDM and LUXD; all other car types were located too close to the ori-
gin and to each other to display them separately. The inner products between
‘stdm’ and LUXD and between ‘luxd’ and STDM are both fairly large, indi-
cating that the relation between these stimuli is mainly symmetric. As far as
there is any asymmetry, we can see that ‘stdm’ is closer to LUXD than ‘luxd’
is to STDM, and hence that there are more car switchings from ‘stdm’ to
LUXD than from ‘luxd’ to STDM, but as mentioned, this asymmetry is small
compared to the symmetric relations implied by car switchings within types
STDM and LUXD. This interpretation is in accordance with the data table
telling that there were 21,974 switches from type STDM to type LUXD, and
only 9,187 in the other direction, but compared to switches from STDM to
STDM (81,808) and from LUXD to LUXD (63,509), this amount of asym-
metric car switchings is almost negligible.

If we had interpreted the plot for the second bimension on the basis of
triangle areas, we would have inferred that there is a sizable asymmetry
between the car switchings from ‘luxd’ to STDM and those from ’stdm’ to
LUXD. This observation may seem to contradict the above (biplot based)
interpretation, holding that the car switchings between LUXD and STDM are
mainly symmetric. However, it should be noted that the size of the triangle
area approximates (up to a scalar multiplication) the difference (12,787)
between the amount of switches from STDM to LUXD (21,974) and from
LUXD to STMD (9,187), which is indeed a large difference compared to what
is found for other pairs of car types. Nevertheless, this sizable difference is
small compared to the (very large) total amount of switches from LUXD and
STDM to LUXD or STDM (176,478), and it should be concluded that, glo-
bally, the majority of switches from ‘luxd’ (to LUXD or STDM) is accom-
panied by switches to LUXD (from ‘luxd’ or ‘stdm’), and a similar result
holds for STDM. Hence, the car switchings between LUXD and/or STDM
take place mainly symmetrically, as was already concluded from the biplot
type of interpretation of Figure 2. We have thus demonstrated that interpreta-
tion on the basis of triangle areas alone is somewhat hazardous. Such an
interpretation should be accompanied by an interpretation of the symmetric
relations between the car types, and the contributions of these should be
weighted in the ratio 29;:1, where §; is from the solution of minimizing (7).
The fact that for the present bimension §; =.09 confirms that the skew-
symmetric part has very little importance indeed. The advantage of the biplot
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approach is that such an a posteriori weighting of contributions is not neces-
sary, because the necessary information is already reflected in the plot.

9. Discussion

The idea of plotting two configurations for the stimuli in which one is a
rotation of the other is rather similar to the slide vector model suggested by
Kruskal (1973, personal communication to De Leeuw; see De Leeuw and
Heiser 1982, Gower and Zielman 1992). In this model, nonsymmetric data are
modeled by distances between points of two configurations, one for the rows
and one for the columns. As in our interpretation of Generalized GIPSCAL,
the configurations are the same but located differently. Whereas in General-
ized GIPSCAL the two configurations differ by a rotation from each other, in
the slide vector model, the two configurations differ by a translation (slide
vector) from each other. After having been ignored for a long time, the slide
vector model has recently been revisited and provided with an algorithm by
Zielman and Heiser (1993).

We have shown that Generalized GIPSCAL is equivalent to DEDI-
COM if the symmetric part of R (in DEDICOM) is p.d. This condition was
met in the example analyzed here, for all three dimensionalities. Of course, it
may happen that this condition is not met. Then, we may still have ‘near
equivalence’ of DEDICOM and Generalized GIPSCAL. To check for near
equivalence, we suggest applying both methods and comparing the
goodness-of-fit values. If they differ only slightly, the solutions can be called
nearly equivalent; if the values differ considerably, the solutions can be con-
cluded to be ‘clearly nonequivalent’.

When DEDICOM and Generalized GIPSCAL are equivalent, the
DEDICOM representation is of a very special kind;
X = Z;8,A;T" ;A" = ARA’, where R is the block-diagonal matrix with 2 x2
blocks B;T"; along the diagonal. The Generalized GIPSCAL representation
is, apparently, based on transforming A and R such that R becomes a block-
diagonal matrix that is row- and columnwise orthogonal.

In the data analysis reported above, the representation was dominated
by the car types with large market shares. This result stems from interpreting
‘relations’ by the amounts of car switchings, and these amounts are obviously
largest for the most prevalent car types. DEDICOM aims at minimizing the
sum of squared modeling errors; hence the model will focus on an optimal
representation of the car types with large market shares and will model car
switchings involving underrepresented cars only as far as doing so fits in with
the mainstream of car switchings. Therefore, in the interpretation, car switch-
ings involving car types like SUBC, SMAC, SMAI, COMM, COMI, MID],
and LUXI were ignored. When more information is desired on such car types,
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it seems necessary to decrease the large size differences in the reported car
switching frequencies. One might, for instance, preprocess the data so that the
rows sum to 1, or take logarithms, to mention two possible transformations.
However, in doing so, one actually analyzes derived measures, and in inter-
preting the results one should take this fact into account. For further discus-
sion of this problem, see, for instance, DeSarbo and De Soete (1984, p.602).

Chino (1990) suggested preprocessing X by centering X row- and
columnwise. If this preprocessing is done, the symmetric part of X is
represented exactly according to the classical MDS approach, and may hence
be seen as a procedure for representing the elements of (- 2X) by squared
distances between the associated points in the plot. It is, however, doubtful if
the symmetric part of ( —2X) can indeed often be considered as a matrix of
squared distances between stimuli.
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