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AN ITEM RESPONSE MODEL FOR MULTIDIMENSIONAL
ANALYSIS OF MULTIPLE-CHOICE DATA* e
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An item response model, similar to that in test theory, was proposed for multiple-
choice questionaire data. In this model both subjects and item categories are represent-
ed as points in a multidimensional euclidean space. The probability of a patticular
subject choosing a particular item category is stated as a decreasing function .f the
distance between the subject point and the item category point. The subject peint is
assumed to follow a certain distribution, and is then integrated out to derive n‘i‘a‘fginal
probabilities of response patterns. A marginal maximum likelihood (MML) method
was developed to estimate coordinates of the item category points as wellag dis-
tributional properties of the subject point. Bock and Aitkin’s EM algorlthm was
adapted to the MML estimation of the proposed model. Examples were given to
illustrate the method, which we call MAXMC. i

1. Introduction and motivation e
We propose a probabilistic multidimensional model for unordered cdtegorical
data. Such data arise, for example, when we ask a group of subjects:in attitude
surveys to endorse attitude statements expressing views close to their own, or in
personality inventory to choose adjectives which adequately describe their own
behavioral disposition. As a concrete example, let us look at the multiple-choice
questionaire items given in the appendix. These are a sample of sixiguestions
drawn from a large scale survey on Japanese national characters conducted at the
Institute of Statistical Mathematics in Tokyo (Hayashi, 1982). There are three
response options for each item, from which the subjects are to choose the one that
best fits their own view. Such data may be regarded as representingproximity
relations between the subjects and the item categories. Systematic. ipndividual
differences are common in such data, giving rise to dependencies among observa-
tions obtained from a same subject (Takane and de Leeuw, 1987). An jmportant
consideration in modeling such data is how to incorporate systematic individual
differences in characterizing the item categories. :
One way to allow for systematic individual differences in a model is to intro-
duce subject parameters. In the model proposed in this paper both item categorxes
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and subjects are represented as points in a multidimensional euclidean space. The
probability of a particular subject choosing a particular item category is stated as
a decreasing function of the distance between the two points. The model is a
combination of the unfolding model (Coombs, 1964) for a spatial representation of
the item category and the subject points, and Luce’s choice model (Luce, 1959)
connecting the interpoint distances to choice probabilities.

The introduction of subject parameters, however, creates a statistically un-
desirable condition. The number of subject parameters increases linearly with the
number of observations. Such parameters are called incidental parameters. In
the presence of incidental parameters, asymptotic properties of maximum likeli-
hood estimators (MLE) never hold. In particular, MLE may not be consistent. To
avoid this difficulty, a subject point is assumed to follow a certain distribution, and
is then integrated out to obtain marginal probabilities of response patterns. The
marginal maximum likelihood (MML) method is then used to estimate the coordi-
nates of item category points and parameters characterizing the distribution of the
subject point. The idea is similar to that in the item response test theory (Bock &
Lieberman, 1970), where essentially the same problem exists. We call our model an
item response model, although the target data type for the proposéd model is
essentially different from that of the traditional item response models for test data.
We call our method MAXMC, MAXimum likelihood IRT models for Multiple-
Choice data. ;

In the next section we present the proposed model and the marginal maximum
likelihood method for parameter estimation in some detail. We then discuss an
EM algorithm for maximizing the marginal likelihood. We then introduce three
examples of application for illustration. We conclude the paper with discussion.

2. The model
Suppose a group of N subjects have responded to a set of I items, each having
J: (i=1, -, ) response categories. The subjects may be classified by response

patterns which are indexed by .. Define

1, if option j of item ¢ is chosen in response pattern £ |
0, otherwise.

gikim:{ 1)

When there are missing data, the corresponding g, may be set equal to zero for
all j. Let f; denote the observed frequency of response pattern .. We assume that
item categories are represented as points in an A4 dimensional euclidean space. Let
Xiha denote the coordinate of category ; of item ; on dimension ¢ (j=1, -+, J;; i=

1, -, I; a=1, -+, A). We require for each 7 and for all ¢
; &nxina=0, k (2)

to avoid the item category points drifting away from origin, where
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g&‘j)=g Frgrun. (3)

We assume that a subject point is also represented in the same A dimensional
euclidean space. Let y=(yi, ---, v4)’ be a vector of coordinates of the subjéct point.
We further assume that y is a random vector with its density function denoted by
k(). Let di;(y) denote the euclidean distance between an item category point
(category j of item {) and a subject point, y. This is defined as :

dio9)={$ (tupa—yoF} ®

Let p:;(») denote the conditional probability of the subject at y choosing category
j in item ;. We assume that this is given by

B (=din(¥))
pin(¥)= Ee:;)(p(—a(';f;)‘zy)) ' ©

The model postulates that each category has “response strength”, exp (= d#:»(¥)),
which is a decreasing function of d;;(y), and that a particular category is chosen
with probability proportional to its response strength relative to that’of other
response categories within the same item. (The denominator of (5) is just a
normalization factor to make 3/ p;;(»)=1) The proposed model combines
Coombs’ (1964) unfolding model for the representation of stimuli (item categories
and subjects) and Luce’s (1959) choice model for the response mechanism: The v is
a prescribed power, set equal to 1.0 or 2.0. It modulates the shape of the response
strength function. When y=1.0, the response strength function is of exponential
form, and when p=2.0, it is of Gaussian form. The exponential form of the
response strength function was initially proposed by Shepard (1957) in a stimulus
generalization context, while the Gaussian form advocated by several aufhors (e.g.,
Nosofsky, 1986 ; Takane & Shibayama, 1986) as a model of stimulus identification.
There has been a controversy as to the relative efficacy of the two forms on both
theoretical and empirical. grounds (Shepard, 1986; Ennis, 1988; Takane &
Shibayama, 1992). We tend to prefer the Gaussian form, since the exponential form
is not feasible in the unidimensional case. This is because with y=1.0 and A=1 the
likelihood function is completely flat outside the range of stimuli, se that the
locations of two extreme stimuli are indeterminable. In addition, the Gaussian
form tends to fit the data better in the present context, albeit usually only slightly.

The conditional probability, P.(»), of response pattern k given y is stated as

Pn(y)=I']1:,[ Di(p)E™, (6)
The marginal probability, P}., of response pattern £ is then given by
Pi= [ Pu(3)i(3)dy. @)

We assume
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y~N(, 2), 8)

_ where X' is assumed diagonal with the diagonal elements denoted by o2, e=1,-, A
This can be done without loss of generality, because coordinate axes. can always be

set in the principal axes orientation. The assumption of zero means is a restrlctlve
one, however, and its validity should be empirically verified. See the next section
for how this can be done. The integral above may be approximated by a finite sum,

Ph=g Pu(ya)B(y4), 9)

at selected points y,. A special table is available for the quadrature weight,
B(vqa), where B(y,)=I1.B(y«). The likelihood of the entire set of obsérvations is
now stated as .

L=T] Pf", | (10)

where £ is taken over all possible response patterns. We determine model parame-
ters, X={(x:.a} and the diagonal elements of ¥, that is, ¢% a=1, ---,;,A, S0 as to
maximize the likelihood. ‘

Once (10) is maximized, we may use AIC (Akaike, 1974) or ABIC (Akalke, 1980)
for goodness of fit (GOF) comparisons among competeting models. Since we are
dealing with the marginal likelihood here, the latter reduces to AIC defined on the
marginal likelihood. AIC is defined by

AIC(r)=—21n L*¥(x)+ 27, v (11)

where r refers to a particular model being fitted, L*(x) is the maximumvlikelihood
under model 7z, and #, is the effective number of parameters in mddel n. The
model associated with the smallest value of AIC is considered the best fitting model.
The dimensionality in the distance model may be determined based on the minimum
AIC criterion. The effective number of parameters is calculated by ’

—A(g (]1—1)>+A, (12)

where A is the dimensionality of.the solution space, and J; is the number of response
categories in item ;. One is subtracted from J; before multiplied by A because of
the constraint, (2), and A in the second term is added because variances of y are
estimated.

IRT models, different from the one proposed above, have previously been
proposed for unordered categorical data. Bock (1972) was probably the first to
propose one (also, see Hoijtink, 1990). His model (as well as Hoijtink’s Parella),
however, was restricted to a single dimension. Bock and Aitkin (1981) extended
this model to a multidimensional case, who also used the MML estimation method
and the EM algorithm. Bock and Aitkin’s method was further elaborated by Bock,
Gibbons, and Muraki (1988). Bartholomew (1987) also proposed a model called RF
(Response Function) model similar to Bock and Aitkin’s model. All 'the models
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mentioned above for multidimensional analysis of unordered categorical data use
scalar products in the exponents that define the response strength functions for item
categories. MAXMC, on the other hand, uses the negative (squared) euclidean
distances in the exponents, following the idea of Coombs’ unfolding model for
preference choice data.

3. An EM algorithm

We use an EM algorithm to maximize the log of the marginal likelihood stated
above. The derivation of the algorithm heavily draws on Bock and Aitkin’s (1981).
The algorithm alternates the following two steps until convergence is reached.

E-step. For fixed X and X, calculate L
. Zain=DB(¥q) Zh: i) Pr(3¢) [Pr, (13)

where gy = faghii)-

M-step. For each ; separately, maximize e

li=§g Laitr In pin(¥a) L (4)

with respect to xia (j=1, -+, Ji; a=1, -, A), and after all x,;q's (i=1,-+, I) are
updated, maximize 3

4
i

=31 (1)

with respect to ¢% (a=1, ---, A). Maximizations in the M-step may be ¢arried out
by Fisher’s scoring algorithm. This algorithm is particularly attractive in the
present context, because the convergence is very fast, and the number of ‘parameters
to be updated simultaneously is relatively small, since X, i subblock of X, can be
independently updated for each ;. The maximization of / with respeet'to ‘o2 is,
however, conditional on the current estimate of X. The overall convergence rate
of the EM algorithm can still be very slow. It may be useful to switch to the
scoring algorithm to update all parameters simultaneously in the last few iterations,
if the total number of parameters to be estimated is not too large (say, less'than 50).
The observed information matrix necessary for the scoring algorithm can be
obtained by the methods proposed by Louis (1982) and by Lang (1992). This has the
side benefit of yielding asymptotic variance-covariance estimates of estimated
parameters. This provision has not been implemeted, however. We use a
quantification method III (Q3 ; Hayashi, 1952) solution as an initial estimate of X,
and we set ¢Z=1 for all ¢ initially.

After the convergence is reached, a subject point can a posteriori be estimated
for each response pattern. This is analogous to the factor score estimation in
factor analysis. We apply the EAP (Bayes expected a posteriori) estimation
method to estimate subject points (Bock and Aitkin, 1981), namely
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E(y| gh)=5k=2q: ¥ePu(¥4) B(32)/Pu. : (16)
Variance-covariance estimates of the EAP estimators are obtained bsr‘
V(y | 8)=Cov(94)=Z (5+— yo)(Fx—ya) Pu(94) B(34) Ps. an
As alluded to earlier, the distributional assumption on y, (8), can be relaxed by
estimating an empirical distribution of y. This could make the model, (7), more in

line with the observed data. It is done by re-estimating quadrature weights in each
iteration according to the following formula,

%) — B(yq) Zx f1xPu(¥g)
- B(ya) D¢ B(ye) 2k fuPi(ye)" - (18)
' Estimating the quadrature weights, however, also means that a substantially larger
number of parameters are to be estimated. It is thus only worthwhile when 4(y)
significantly deviates from the assumed distribution of MVN.

4. Examples

In this section we discuss three examples of application. The first two have
previously been analyzed by Bartholomew (1987) using his method. In reporting
the results of our analyses on these data sets we will draw some comparison with
his results.

4.1 Staff assessment data

The first example data set comes from Bartholomew (1987). Each of 405
managers was originally assessed on 13 aspects of his/her work using a 5-point
rating scale. For illustration only three of them were used. Also, rarely used
categories were combined to yield a 4Xx3x3 contingency table. Although the
categories are ordered, they were.treated as if unordered as in Bartholomew (1987).
The data are presented in Table 3, where response patterns are listed in order of
estimated component score. Eight patterns (113, 213, 313, 411, 412, 413, 421, and 431)
were unobserved out of possible 36 patterns.

Table 1l provides a summary of GOF statistics (AIC and n,,) obtained by

Table 1
Goodness of fit comparison : Staff assessment data
Saturated Model 40.4 (35)
Number of Quadrature 3-point 7-point 15-point i
Points .
dim=1 0.2 (8 0.2 (8 0.2 (8)
dim=2 8.4 (16) 8.4 (16) :

Main entries in the table are AIC values.
Effective numbers of parameters are given in parentheses.
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Table 2
Parameter estimates: Staff assessment data
Number of
Item Category Quadrature Points
7-point' 15-point
1 1 62 63
2 24 24
3 —.28 —.28
4 —.89 -9
2 1 1.48 1.48
2 04 04
3 -.32 -33
3 1 111 111
2 31 31
3 —.66 — 66

Variance Estimate=.750

MAXMC. All the analyses were done with v=2.0. The number of quadrature
points was varied from 3 to 15 to examine its effects on the GOF statistic and on
parameter estimates. Only a negligible effect of the number of quadrature points
was found on the GOF statistic. According to the minimum AIC criterion a single
dimension is sufficient to capture the variations in the three categorical variables
predicting success in the job. This is consistent with Batholomew’s (1987) finding.
Table 2 provides estimates of parameters for the best fitting model in two different
numbers of quadrature points. Hardly any differences are observed between the
two sets of estimates. It seems that the number of quadrature points is not so
crucial in MAXMC. Locations of the category points are consistent with their a
priori order and (inversely) with that obtained by Bartholomew. Items2 and 3 are
slightly more predominant than item 1 in characterizing the derived dimension.
Table 3 presents EAP estimates of coordinates (component scores) of response
patterns along with standard errors of the estimates. The standard errors are
rather large, but this is due to the small number of items (only three iternis) in this
data set. The distribution of the subject points (component scores) is slightly
positively skewed, but not to the extent that required re-estimations of quadrature
weights. : :

4.2 Employment in small industry data .

The second example also comes from Bartholomew (1987). The data set
analyzed was originally collected by Leimu (1983). The study was on 3 Sample of
469 employees from small industry in Finland, who responded to the following three
questions :
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Table 3
EAP estimates of coordinates of response patterns:
Staff assessment data.

Reporse | Qoeered | Coomainate | Stgndard
111 1 1.87 53
211 7 1.66 52
112 2 1.44 51
311 1 1.39 51
212 13 1.25 51
121 3 111 52
312 5 97 53
131 1 91 53
221 10 90 53
231 5 69 55 ,
122 12 66 55
321 3 59 55
132 4 43 56
222 64 42 56
331 1 36 56
232 36 18 57
322 38 08 58
123 1 04 58 »
332 31 -17 58 g
133 1 —21 59 o
223 37 —22 59
422 4 -35 59
233 23 —.48 59
323 34 —.59 60 .,
432 3 —61 60
333 41 — 86 61 ’
423 5 —1.05 62
433 11 —1.35 64
Total 405

T

1. Was there any alternative choice of job when coming to your present job ?
(1=no, 2=don’t know, 3=yes)

2. Is the job permanent ? (1=very unsure or quite unsure, 2=don’t know, 3=
quite sure or very sure)

3. Were you unemployed in the last three years? (1=no, 2=yes)

The data are presented in Table 6. Again, response patterns are listed in order of
estimated component score. e

As before, all the analyses were performed with »=2.0. Table 4 compares the
GOF of various models. Again, the effect of the number of quadrature points is
minimal on the GOF statistic, and the unidimensional model has turned out to be the
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Table 4

Goodness of fit comparison :
Employment in small industry data (Leimu, 1983).

Saturated Model 17.8 (17)
Number of Quadrature 3-point 7-point 15-point
Points
dim=1 58 (6) 6.0 (6) 6.0 (6)
dim=2 9.1 (12) 9.2 (12)

. Main entries in the table are AIC values.
Effective numbers of parameters are given in parentheses.

Table 5
Parameter estimates : Employment in
small industry data (Leimu, 1983).

7-Point
Quadrature
.25
04
-.17

.59
27
—.22

Item Category

—-.12
.61

N = W DN = [V I I )

Variance Estimate=.571
Estimates based on the 15-point quadrature are almost
identical.

best fitting model according to the minimum AIC criterion. The derived dimension
represents the ease with which employees can find secure employment,i Table 5
presents estimates of parameters. They are given only for the 7-point quadrature,
but the estimates obtained under different numbers of quadrature points are virtu-
ally indistinguishable. One interest in Bartholomew’s study was to see if the “don’t
know” category in questions 1 and 2 indeed fall between the “yes” and the “no”
categories, as often assumed. This has been confirmed in the present study as well
as in Bartholomew’s. Question 2 seems to be most discriminating of employment
security, as indicated by the fact that response categories of this item receive the
widest range of scores. Table 6 provides EAP estimates of coordinates of subject
points along with their standard errors. The standard errors of the estimated
subject points are rather large, but this is again due to the small number of items
(only three items) in this data set.

4.3 ISM data on traditional vs modern views
The third and last example pertains to a data set collected at, the Institute of
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Table 6
EAP estimates of coordinates of response patterns:
Employment in small industry data (Leimu, 1983).

o | Obed | Congnate | Sgnded
331 145 —.41 .66
231 54 -.23 65
131 72 —-.05 .64
321 33 —-.01 .64
221 22 16 .63
332 17 22 .63
311 24 .25 .63
121 14 .33 .63
232 9 .38 .62
211 9 41 .62
132 11 54 .62
111 21 57 .61
322 7 b8 .61
222 6 .74 61
312 6 .82 .61
122 7 .89 .61
212 2 97 .60
112 10 1.12 .60

Total 469

Statistical Mathematics (ISM). This was part of a large scale survey on Japanese
national characters conducted in Japan every five years since 1952. Questions used
in the present study represent various aspects of traditional and modern views on
Japanese society and culture, and are listed in the appendix. There are six ques-
tions each with three response categories. The sample size was over 3,000. Table
7 gives a summary of GOF statistics. When dim =2, the model was fitted with both
v=2.0 and v=1.0. The v=2.0 fitted the data better. While this is confirmed only
for dim=2, it is not likely that this tendency is reversed for other dimensionalities.

Table 7
Goodness of fit comparison: ISM data
Saturated 1,168.9 (728) R
d d
Number of Quadrature 3-point 5-point 3-point .
Points L
dim=1 23.2 (13) 22.5 (13)
dim=2 18.3 (26) 19.0 (26) 46.3 (26)
dim=3 28.4 (39)

Main entries in the table are AIC values.

Effective numbers of parameters are given in parentheses.
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f Variance Estimate = .734

41

32
211
62
81 51 _
22 Variance Estimate = .951

52

615312 63
42
43
13
33

23

Fig.1 The two-dimensional item category configuration for the ISM data - -

The two dimensional solution obtained under »=2.0 yields the best fitting model
according to the minimum AIC criterion.

Figure 1 depicts the best fitting solution. Only the item category points are
represented in this figure. The points are labelled by a pair of digits, thé'fitst one

(a) (b)

-1 -1 -1 - i

(© (d)

0.4

0.2

-1 -1 -1 -1

Fig.2 Conditional probability surfaces for three response categories of item 1 in thgvlSM
data. (a) Category 1, (b) Category 2, (c) Category 3, and (d) Maximum of the three
conditional surfaces. .
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designating the item (question) number while the second the category number within
the item, so 41, for example, indicates response category 1 of item 4. The top
portion of the configuration indicates more traditional views, characterized by such
item categories as 11, 21, 32, 41, etc. The middle left portion represents more
modern views, featured by 12, 22, 31, 42, etc., and the bottom portion indicates
indecisiveness (13, 23, and 33). .

The proposed model relates the distance between an item category point and a
subject point to the probability of choice via model (5). Item characteristic (condi-
tional probability) surfaces can be drawn by evaluating p,,(») at different values
of y. The item characteristic surfaces are displayed in Figures 2a,b, and c for
response categories 1, 2, and 3, respectively, of item 1. In each figure there is a peak
(the point where the conditional probability takes a maximum value) corresponding
to the location of the category to be chosen, and two dips corresponding to the
locations of the other categories of the same item. Figure 2d depicts the maximum
conditional probability surface, i.e., max; p:;(») as a function of y. Boundaries
may be seen where the most dominant category shifts from one to -another that
defines the maximum conditional probability surface. Similar pictures can be
drawn for other items.

5. Discussion

In this paper we presented an item response model for multiple-choice ques-
tionaire data along with an MML method and the associated EM algorithm for
parameter estimation. MAXMC is useful for structural analysis of unordered
categorical data representing proximity relationships between subjects and item
categories. MAXMC is widely applicable wherever proximity items are used.
Such data arise frequently in attitude surveys, personality inventories, aptitude
testing, etc.

There are, of course, other methods to analyze such data; Q3 (Hayashi, 1952 ;
also known as dual scaling (Nishisato, 1980)) and correspondence analysis (Green-
acre, 1984), log-linear models (e.g., Bishop, Fienberg, and Holland, 1975), latent class
analysis (LCA ; Lazarsfeld and Henry, 1968), etc. Of these, Q3 is perhaps the most
widely applicable method. It requires no statistical assumptions. However, it is
primarily descriptive with no built-in mechanism for statistical model evaluation.
Log-linear models constitute another class of general-purpose analytic methods for
categorical data. They allow statistical model evaluation under modest assump-
tions (large sample, independence among observations). However, they lack repre-
sentations of individual differences often crucial in psychological research. LCA
comes closest to the proposed model. It attempts to explain statistical depen-
dencies among observations by postulating latent variables (latent classes) over
which subjects vary. However, the representation of individual differences in LCA
is discrete, which often forces discretization of intrinsically continuous processes.
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This may give rise to too many latent classes which are difficult to interpret.
MAXMC overcomes all of these difficulties ; it allows continuous represenfations of
individual differences, and it allows statistical model evaluation.

Takane and de Leeuw (1987) discussed the relationship between vhe MML
estimation of IRT models and factor analysis of discrete data. Under certain
conditions they .are mathematically equivalent. The main difference is
computational. Whereas in the IRT approach discretization of continuous latent
processes precedes marginalization of subject parameters, just the opposite takes
place in the factor analysis approach. MAXMC is based on the IRT approach.
Presumably it can also be approached from the factor analytic perspective.
However, no methods have yet been developed for unordered categorical data from
the factor analytic perspective (Shigemasu, 1990). ‘
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Appendix

Questions used in the ISM data (Translations as given in Hayasljﬂ 1982).

1. If you have no children, do you think it necessary to adopt a child in order
to continue the family line, even if there is no blood relatlonshxp ? Ordo
you not think this is important ?

(1) Would adopt
(2) Would not adopt
(3) Depends on circumstances

2. In bringing up children of primary school age, some people tﬁink that one
should teach them that money is the most important thing. Do you agree
with this or not?

(1) Agree
(2) Disagree
(3) Undecided

3. If you think a thing is right, do you think you should go ahead and do it even
if it is contrary to usual custom, or do you think you are less apt to make
a mistake if you follow custom ?
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(1) Go ahead
(2) Follow custom
(3) Depends on circumstances

4. Some people say that if we get good political leaders, the best way to
improve the country is for the people to leave everything to them, rather
than for the people to discuss things among themselves. Do you agree with
this, or disagree ? :

(1) Agree
(2) Disagree
(3) Depends on circumstances

5. Here are three opinions about man and nature. Which one of these do you
think is closest to the truth?

(1) In order to be happy, man must follow nature.
(2) In order to be happy, man must make use of nature.
(3) In order to be happy, man must conquer nature.

6. Which one of the following opinions do you agree with ?

(1) If individuals are made happy, then and only then will Japan as a whole
improve.

(2) If Japan as a whole improves, then and only then can individuals be
made happy.

(3) Improving Japan and making individuals happy are the same thing.






