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Neural networks are often employed as tools in classification tasks. The
use of large networks increases the likelihood of the task’s being learned,
although it may also lead to increased complexity. Pruning is an effec-
tive way of reducing the complexity of large networks. We present dis-
criminant components pruning (DCP), a method of pruning matrices of
summed contributions between layers of a neural network. Attempting to
mterpret the underlying functions learned by the network can be aided by
pruning the network. Generalization performance should be maintained
at its optimal level following pruning. Weé demonstrate DCP’s effective-
ness at maintaining generalization performance, applicability to a wider
range of problems, and the usefulness of such pruning for network in-
terpretation. Possible enhancements are discussed for the identification
of the optimal reduced rank and inclusion of nonlinear neural activation
functions in the pruning algorithm,

1 Introduction

Feedforward neural networks have become commonplace tools for clas-
sification. A network containing sufficient neurons will learn a function
distinguishing patterns from a well-separable data set. Because the nature
of the function is not known a priori, the necessary size and complexity of
the trained neural network are not known in advance. Consequently we
tend to employ a neural network that can learn a greater variety of func-
tions. We may then encounter the problem of overparameterization, which
reduces reliability and generalization performance, as well as complicating
interpretation of functions represented by the trained network. A plausi-
ble means of reducing the degree of overparametenzatlon is to prune or
regularize the complexity of the network. -

A variety of approaches to pruning have been proposed: elimination of
connections associated with small weights is one of the earliest and fastest
methods; early stopping monitors performance on a test set during training;
ridge regression penalizes large weights; skeletization (Mozer & Smolensky,
1989) removes neurons with the least effect on the output error; Optimal
Brain Damage (Le Cun, Denker, & Solla, 1990) removes weights that least
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affect the training error; Optimal Brain Surgeon (Hassibi, Stork, & Wolff,
1992) is an improvement of Optimal Brain Damage. Each method has ad-
vantages and disadvantages (Hanson & Pratt, 1989; Reed, 1993) in its ap-
proach to minimizing pruning errors, its applicability to different types of
problems, or its computational efficiency. Principal Components Pruning
(PCP) (Levin, Leen, & Moody, 1994) uses principal component analysis to
determine which components to prune and will be used as a benchmark for
comparison.

Discriminant components pruning (DCP), the pruning method we present,
reduces the rank of matrices of summed contributions between the layers
of a trained neural network. We describe DCP and demonstrate its effec-
tiveness by comparing it with PCP in terms of their respective ability to
reduce the ranks of weight matrices. Fisher’s IRIS data are used as an ini-
tial benchmark for comparison, and two empirical data sets with specific
complexities verify particular performance issues. The first of the latter two
sets contains sparse data in which groups are not easily separable. The sec-
ond demonstrates DCP’s ability to cope with data of varying scales across
individual inputs, and hence discriminant components that differ from the
principal components of the data set. A brief demonstration of the use-
fulness of optimal DCP rank reduction to the interpretation of underlying
functions represented in trained neural networks follows. The discussion
summarizes our results and points out directions for future work.

2 Discriminant Components Pruning

We write the original trained function of a complete layer i of the network .
Ziv1 =0 (ZWi) = 0 (X)), 2.1)

where rows of the N x n1; malrix Z; are the input vectors z;(k) at layer i
including a bias term, of N samples k = 1,..., N. The W; is the mi_ X m;
matrix of weights that scale inputs to the m; nodes in layer i, where i =
1,...,IL Layer 1 is the first hidden layer, and layer ! is the output layer of
the network. The matrix Xi represents the input contributions, and o () is
the (often sigmoidal) activation function, also called the squashing function,
that transforms elements of Xi = Z;W; into bounded output activations.
Outputs at layer i, Z;,;, form the inputs to layer i + 1, or network outputs
wheni = 1. Wheni = 1, Z; = Z; is the matrix of N input patterns. We can
describe the pruned function as

ZD, = 0 @wW), 2.2)

where W,(') is the weight matrix with reduced-rank 1.
The parameter space is pruned by consecutive rank reduction of the lay-
ers, obtaining W{” at ranks r; = 1, ... » ;. To achieve good generalization
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performance, we choose the optimal combination of reduced ranks at suc-
cessive layers yielding the lowest sum of squared errors for the network
output of the test set,

SS(Y — Z{)), S (2.3)

where Y is the matrix of test set target values, and Z,(_?] is the matrix of
predicted outputs for test samples from the pruned network.

The reduced rank approximation Wi of the weight matrix W is derived
by minimizing the sum of squares,

SS(ZiW; — Z{"Wn)y, N (2.4)

subject to rank(W{") = ri, where Z{" is the matrix of outputs from the

previous pruned layer (see equation 2.2), with the special case of Zg" =17
ati=1.

Equation 2.4 can be minimized by standard reduced-rank regression
analysis (Anderson, 1951). Let P,wZiW; = UID}V?¥ be the singular value
decomposition (SVD) of P,nZ;W;j, where

Pyo = Z(Z{' Z0) 1z : (2.5)

is an orthogonal projector onto the space spanned by column vectors of Z{".
Then the best rank ri approximation to Z;W; is given by

: * * 4
ZPW = ypprnyre’, (2.6)
If for some reason wi is required, it can be obtained by
’ _ - ’
Wi = @Z{'z") 1z Uy 2.7)

A more detailed derivation of equation 2.6 is in the appendix.

The diagonal elements in D} reflect the importance of corresponding
discriminant components (DCs). The best rank r; approximation W{" of w;
is obtained by retaining the first r; columns of U; and V;, and the first r; rows
and columns of D} corresponding to the ; largest singular values. The new
weights W{" serve to implement X{” = Z{"W",

Due to the requirement that network topology be maintained, a reduced-
rank approximation to each layer must be derived separately, which im-
pedes optimal regularization to some degree. Another factor affecting the
precision of the approximation lies in the exclusion, in the derivation of W§",
of effects of the nonlinear transformation of propagated contributions. This
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component is added to the approximation error. Where generalization per-
formance of the pruned network is required to remain at least as good as
that of the original network, the presence or absence of the additional error
component could on occasion be significant to the minimum rank that can
be achieved. (But see a further discussion in section 5.) Both of the above
are factors that DCP shares with all similar methods, however. DCP’s main
advantage is efficiency in computation time and the number of components
necessary to approximate the original network. The optimal fixed-rank ap-
proximation to Z;W; on individual layers for the training samples is erlsured
through DCP’s direct reduction of the matrix of summed contributions us-
ing SVD.

3 Effectiveness of Rank Reduction with DCP

DCP’s ability to achieve low optimal ranks and its broad applicability is
demonstrated by theoretical and empirical comparison with PCP, a compa-
rable technique proposed by Levin, Leen, and Moody (1994).

3.1 Theoretical Advantages over Principal Components Pruning. PCP
is amethod of rank reduction based on principal component analysis (PCA).
As such, itis similar to DCP, and it serves as a useful benchmark for compar-
ison. PCP seeks a rank r; approximation to the input matrix Z; at each layer.
This approximation can be found in a manner similar to that employed by
DCP, with the SVD of Z; denoted as

Z; = U;D;V.. (3.1)
The reduced-rank weight matrix is given by

W = VIOVI'w,, (32)
where r; principal components (PCs) to be retained in V{” do not neces-

sarily correspond to the largest singular values. (The specific procedure is
described below.) We can now write

ZWE = UD;V;VOVIY'W; = ZIOW,, ' (3.3)
for the new contributions at layer i, where

z{ = uPpPve' (34)
is a rank ; approximation to Z;. The U{”, D{”, and V{” retain r; columns of U;

and V;, and r; rows and columns of D;. Composing a matrix of contributions
with the reduced-rank weight matrix W{” inlayeriin equation 3.3 is equal to
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the matrix of contributions composed of pruned inputs Z{” and the original
weight matrix.

Salient PCs in equation 3.2 may not be relevant DCs, since input pa-
rameters with relatively small variance may well be important factors for
discrimination (Flury, 1995). PCP uses the following technique to rank-order
principal components (PCs) according to their importance for discrimina-
tion. Since the total sum of squares in Z;W; is

mi
SS(Z;W;) = SS(U;D;ViW;) = Zd,?iv*v;iw,,-, (3.5)
j=1

where dj; is the jth diagonal element of D;, and v"v;l. is the jth row of W; =
ViW;, we may use each term in the summation of equation 3.5, namely,

dEWiWi, (3.6)

to reflect the importance of the jth component. That is, r; components are
chosen according to the size of d,.zjv"v;’.v'v,'i.

DCP has advantages over PCP in that it is scale invariant. It also prunes
more efficiently, which leads to a lower optimal reduced rank. The fewer
number of effective parameters in the pruned network aid identification and
interpretation efforts, while reducing instability of weight estimates. Scale
invariance cannot be achieved as far as we deal with the input matrix alone,
since SVD(Z) # SVD(ZA), where A is a diagonal scaling matrix. Scaled
inputs are compensated in the neural net by inversely scaled connection
weights, A~ w. Thus, the matrix of summed contributions, ZW, whose SVD
we obtain in DCP, is invariant over the choice of A,as ZW = (ZA)(A™'W).

PCP deals with this problem by combining the salience in PCs (d,.zi) with
salience in discrimination (W[ W), as in principal component discriminant
analysis (Jolliffe, 1986). Scaling or additive offsets alter the very PCs ex-
tracted from Z, however. Although such scaling may be quite common in
natural data sets, the situation cannot be adequately dealt with by the indi-
vidual salience measures. PCP’s ability to prune a correspondingly trained
network effectively is therefore impaired.

More efficient pruning can be expected as a direct consequence of rank
reduction of ZW, in comparison with rank reduction of Z only. In PCP,
the effects of pruning in previous layers are not taken into account when
pruning in following layers. Despite the linear simplification, DCP’s PonZ;
propagation maintains optimality at least relative to PCP.

3.2 Empirical Evaluation. PCP and DCP results were compared for
pruning three-layer backpropagation networks (Rumelhart, Hinton, &
Williams, 1986) on empirical data sets, the IRIS data set (Fisher, 1936), and
two sets obtained or adapted from Toyoda (1996).
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Pruning methods strive to reduce rank while approximating the original
function as muchas possible. A measure of the effect on the linear system ata
single approximated layer can be obtained as the sum of squares of Z;W; —

Z;W{". Performance of the combined layers in the neural network must
be measured to determine the divergence of the approximated network
function from the original, where generalization performance is indicated
by performance on test set samples.

The sum of squared errors (SSE) for the pruned network output SS(Y —

Z,(:_)l) does not show monotonic decrease for an increase in the rank of

individual layers. The adjusted WY) affects inputs to the following layer,
although differences are usually small. Even small differences can be sig-
nificant at times, especially when they are mediated by a nonlinear transfer
function. The sigmoid function leads to a situation in which relatively small
differences on large positive or negative contributions are harmless, since
they are bounded by the output-limiting asymptotes of the sigmoid func-
tion. Yet the same differences on contributions near zero, where the sigmoid
function is steepest, can lead to significant changes in Z,. In such cases, prun-
ing according to original inputs Z; may not be optimal with PCP, demon-
strating the importance of propagating these differences through PonZ,;.

R. A. Fisher’s IRIS data set has been used widely as a benchmark for
discriminant analysis methods. The data set consists of 150 samples report-
ing measurement of four characteristics—sepal width, sepal length, petal
width, and petal length—of three species of iris flower: Iris setosa, Iris ver-
sicolor, and Iris verginica. The four characteristics are represented by inputs
21,1 to 23,4 of the neural network, where the first index indicates the layer
and the second a node in that layer, with the additional bias term zy 5 = 1.
Each iris species is given a corresponding output node y1 = 231 to y3 = 23 3.
With the split-half method, separate training and test sets were created with
75 samples each and an equal number of samples (25) for each target class.
A backpropagation neural network with 5 input units (21,1 to z3 5), 5 hidden
units (4+ bias), and 3 output units, one for each species, achieved an SSE of
0.34, correctly classifying 100% of the training set and 93.3% of the test set,
with an SSE of 7.69.

In our second example, which we call academic aptitude requirement
data, interviews were conducted with professors in six different faculties—
Arts, Medicine, Engineering, Education, Agriculture, and Science—to deter-
mine academic aptitude requirements for students in their particular field
or specialty. The frequencies with which particular qualifications were men-
tioned by professors comprise the data set: math-science ability, interest in
people and/or children, interest in the field of study, interest in humanitari-
anism, interest in fieldwork, discussion ability, ability to work with comput-
ers, knowledge in foreign languages, reading ability, and logical thinking.
Each is represented by an input node 211 to z) 19 of the neural network,
with bias 23,11 = 1. The faculty to which each professor belonged was used
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Swimming Data: target function

(b)

Figure 1: (a) The swimming decision target function, z;; = 1 when Zy1+2z12 >
.S0and |z; — 2;5] < 3,23, = 0 otherwise. (b) The corresponding trained output
function, with training sample responses indicated.

as corresponding classification target, y; to ys. Separate training (120 sam-
ples) and test (116 samples) sets were created with the split-half method. A
backpropagation neural network with 11 input units (z1,1 to z3,11), 16 hid-
den units (15+ bias), and 6 output units (classes) achieved an SSE of 26.3,
classifying 81.7% of the training samples correctly. Performance on the test
set was 41.4% correct, with an SSE of 118.9.

In the third example, which we call school swimming decision data, there
are 4 inputs with bias z; 5, 21 ; (air temperature) and z; (water temperature)
from statistics on the decision to allow schoolchildren to swim, and a single
targetoutputy, classes: “no” y = 0, “yes” y = 1.Irrelevantinputsz; 3and z; 4
are generated by normal random numbers with a relatively large variance
and a mean offset of 50, imposing a clear distinction between PCs and DCs.
The training and test sets each contain 24 samples, with 12 from each of the
two target classes. A backpropagation neural network, with 5 units (z1.1 to
21,5) in the input layer, 5 units (4+ bias unit) in the hidden layer, and 1 unit in
the output layer, achieved an SSE of nearly 0 on the training data, correctly
classifying 100% of the training set and 79.1% of the test set (with an SSE of
4.99). 4
Figure 1a depicts the target function in terms of the relevant temperature
inputs. Figure 1b depicts the function obtained from the trained network,
where the surface mesh shows the response for temperature combinations
when 21,3 = 214 = 0. Numbers indicate network outputs for training sam-
ples with target values 1 and 0.

3.2.1 Performance on Iris Data. The PCP rank-reduction procedure pro-
duced a combination of reduced ranks deemed optimal at4 x 2, recognizable
as the peak in Figure 2a. The corresponding ratio of correctly classified test
samples was 96.0% with an SSE of 29.1.

Results of DCP rank reduction were restricted by the size of the contribu-
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PCP Classification Results DCP Classification Results
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Figure 2: Test set classification ratios for Fisher’s IRIS Data at (a) PCP and
(b) DCP reduced ranks.

tion matrices in the two layers: 4 on the hidden layer (4 hidden units) and 3
on the output layer (3 output units). Optimal pruning was achieved at rank
combination 2 x 2, with a test set classification ratio of 0.95% and an SSE of
23.8 (note these lowest ranks to which the plateau in Figure 2b extends).

The usefulness of Fisher’s IRIS data as a benchmark for discriminant anal-
ysis was borne out in the clear distinction between optimal pruning ranks
achieved by PCP and DCP, respectively. Although both methods managed
to prune the parameter space considerably and a slight improvement of
generalization performance in terms of the test set classification ratio was
observed in both cases, PCP was unable to reduce the rank of the first layer
as rigorously as DCP. :

3.2.2 Performance on Academic Aptitude Data. Optimal performance for
binary classification on the test set of the second example was determined
at PCP reduced-rank combination 11 x 14 (see Figure 3a), with a ratio of
43.1% correctly classified samples and an SSE of 117.4.

In our second example, the DCP target rank is restricted by the rank of the
matrix of summed contributions—hence, 11 (10 inputs + 1 bias unit) on the
hidden layer and 6 (6 output classes) on the output layer. The optimal test
set classification ratio was 44.0% at rank 1 =5o0rr =8withrankr, =4
in the hidden and output layers, respectively, visible as the two peaks at
output rank r; = 4 in the center of Figure 3b. Combination 8 x 4 was chosen
over 5 x 4, because the test set SSE was better—110.2 instead of 117.4—as
was performance on the training set.

PCP was able to maintain generalization performance of the neural net-
work, but was unable to prune the hidden layer at that level of performance,
so that rank 7; = 11 remained unaltered. DCP managed to attain slightly
better generalization performance at a much lower rank.
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PCP Classification Results DCP Classification Results

3
hidden rank (U] 5 output rank (a) hidden rank 01 2 output rank (I))

Figure 3: Test set classification ratios for the academic aptitude data at (a) PCP
and (b) DCP reduced ranks.

»

3.2.3 Performance on Swimming Decision Data. The third example was
chosen to demonstrate wider applicability of DCP. Not surprisingly, PCP’s
linear pruning error leaps from 0 to 13,633 even at rank r; = 4 and remains
atapproximately that level for all reduced ranks, expressing the detrimental
effect of PCP’s focus on the largest PCs of Z;. This translates into an output
performance error for which only combinations with full rank on the hidden
layer approximate original performance reasonably well. PCP’s ability to
prune the two meaningless input parameters was impaired. Optimal gen-
eralization pruning was determined to be 5 x 1 at 79.2% and an SEE of
4.82 (note that the training set ratio dropped to 87.5%). The output function
becomes a near constant value with chance level (50%) performance below
that rank, as shown in Figures 4 and 6a. -+

The largest DCP ranks for the swimming decision network are restricted
by the number of hidden nodes (11; = 4) and the single output on the second
layer, fixing rank r, = 1. The individual linear pruning error with a maxi-

~ mum SSE of 6702 at r; = 1 shows no PCP-like step function characteristics.

Classification ratios and SS(Y — Z/(2|) errors show optimal performance up
to reduced-rank combination 3 x 1, recognizable as the maximum plateau in
Figure 6b, achieving 75.0% correct classifications, with an SSE of 6.14, and
perfect training set performance. The resulting output function (see Fig-
ure 5) closely resembles the original output function of the trained neural
network. .

PCP failed to prune the hidden layer and identify the two salient pa-
rameters governing this classification task, where PCs and DCs are not the
same. DCP correctly identifies the two and the necessary compensation bias
for the mean offset on z; 3 and 1,4, retaining relevant DCs and successfully
approximating the implicit function. In these and other empirical applica-
tions, DCP was consistently shown to prune to significantly lower ranks
than the benchmark PCP method.
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Swimming Data: PCP 4x1, training output

Swim

Twater 20 0 Tair

Figure 4: Output function of the swimming decision example after attempting
to prune with PCP to ranks 4 x 1, in the absence of the two irrelevant inputs.

4 Neural Network Interpretation with DCP

We present interpretations of the classification functions of our two repre-
sentative examples in which the dimensionality was reduced with DCP by
pruning the number of parameters involved in the neural computation to
optimal combined ranks.

4.1 Interpretation of Academic Aptitude Network. Our optimal DCP
solution maintains generalization performance and retains a network of
ranks 8 x 4 on the hidden and output layers, respectively. There is no known
target function for this example.

The SVD of hidden-layer and output-layer matrices of contributions,
Z;W; = U;D}VY{ and Pz:nZsz = U;D3;V}', are used to determine the
relative importance of components and parameters. The first 11 and 6 diag-
onal elements of D} and D;, respectively, are nonzero. Proportions of sums
of squares explained by these are: 33.1%, 19.3%, 13.9%, 11.8%, 8.4%, 5.5%,
3.7%; 2.0%, 1.8%, 0.3%, and 0.2%, for the hidden layer; and 58.8%, 14.9%,
11.8%, 7. 6%, 4.5%, and 2.5% for the output layer. The 8 x 4 components re-
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Swimming Da'ta: DCP 3x1, t

raining output

Swim

Figure 5: The output function of the swimming decision example after DCP
pruning to ranks 3 x 1, in the absence of the two irrelevant inputs.

PCP Classification Results 0.75 DCP Classification Results
0.7
g""""
5
Sos
B
0.55
4 3~ - /-‘/‘ 5
N I 05, ~
hidden rank 1 output rank (a') ! 2 hidden rani 4( b)

Figure 6: Test set correct classification ratios for the swimming decision data at
combinations of (a) PCP and (b) DCP reduced ranks.

tained represent 97.7% and 93.0% of the original component contributions,
respectively.

To understand the meaning of the retained components at the hidden
and output layers, U; and U, are correlated with normalized input (Z;) and
targets (Y), respectively. The correlation matrices are subsequently rotated
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Figure7: Correlations of aptitude requirements with rotated components in the
hidden layer.

by a varimax (Mulaik, 1972) simple structure rotation (see Figure 7).

On the hidden layer, each of the eight rotated components is closely
related to one input variable. We note significant correlations with these ap-
titude requirements used in the network for discrimination: math-science
ability (z;,1), interest in people and/or children (z1,2), interest in field of
study (zi,3), interest in humanitarianism (z1,4), ability to work with com-
puters (z1,7), knowledge in foreign languages (z; 3), and logical thinking
(z1,10), as well as the bias input (z,11). Input variables not important to the
discrimination task are interest in fieldwork (z1,5), discussion ability (z1,6),
and reading ability (z;,9). These abilities are all fairly basic to any fields of
study and perhaps not recognized as particularly important in any specific
fields.

Four target classes are highly correlated with the four remaining compo-
nents of the rotated matrix in Figure 8. They are the faculties discriminated
by the DCP-reduced, trained network: Arts (1), Medicine (y2), Engineering
(¥3), and Education (y4). Aptitude requirements for Agriculture (ys) and
Science (ys) are not discriminated by the network, which is consistent with
the classification results,
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Figure 8: Correlations of target faculties with rotated components in the output
layer.
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Figure 9: Correlations of output layer components with the eight components
of the pruned hidden layer.

Correlations of components in the hidden layer with components in the
output layer are shown in Figure 9. Only component number 2 in the hidden
layer is not strongly correlated with any components in the output layer,
which is explained by the fact that this component was correlated with bias
input above.

Combining the correlations found for the inputs (see Figure 7) and out-
puts (see Figure 8) with those for the components in the two layers gives us
the important qualifications for thie four discriminated fields of study: Arts
values logical thinking, interest in the field of study, and interest in human-
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itarianism; Medicine values logical thinking, interest in people and/or chil-
dren, and humanitarianism; Engineering values interest in people and/or
children and math-science ability; Education values knowledge in foreign
languages, ability to work with computers, and interest in people and/or
children. ‘

The distributed nature of the trained neural network complicates rule-
based (formalist) interpretations of its inner workings. A number of hidden
units contribute to each output unit to varying degrees, so that a distribution
of (binary) component tasks cannot easily be obtained. DCP scales down
the number of PCs requiring attention during interpretation. We were able
to focus on significant discriminant components and the input and output
variables they refer to.

4.2 Interpretation of Swimming Decision Network. The activation
functions of the individual nodes in the hidden layer after applying DCP
to the trained network are depicted in Figure 10. The surfaces depict the
network hidden unit responses to the first two inputs, which are the only
relevant variables. Target labels 0 and 1 in the contour plot indicate the loca-
tions of lest set patterns, where the response does not match in a few cases
due to the influence of z1,3 and z; 4. DCP retains only components of the
two salient parameters and bias, lowering the dimensionality to allow in-
terpretation of the hidden layer. We can compare the known target function
for this example with the components of the interpreted function.

The output function does not show the abrupt cutoff at low temperatures
seen in the target function. This is a result of not having our training samples
in the region z; ; + 215 < 50, but close to Z11 + 21,2 = 50, a good example
of approximations resulting from training under natural circumstances. We
did not find evidence of the first rule “z37 = 1 when 211 + 212 > 50”7
among hidden unit functions. The output function appears to move from
z1,1 = 21 at low temperatures to 211 — 212] < 3 at high temperatures,
corresponding to the second component of our target function. The ad-
justed weight matrix for connections to the output layer after optimal DCP
is W;” = [9.78, 8.43,2.39, —8.31, —6.95]. A combination of the functions per-
formed by the two hidden units withwy 1 = 9.78 and w72 = 8.43 suffices to
generate the output function in Figure 5. The response of hidden unit 4 and
the bias combine to form a constant offset of —15.26 on the output layer. The
weight w; 3 is too small to affect the output. The steepest gradient of the de-
cision boundary of the first hidden unit (see the top of Figure 10) goes from
air and water temperatures of 20 and 20.6 degrees (suggesting z; ; < Z12
at low temperatures) to 30 and 27.3 degrees (suggesting (z1 1 — 21,2) < 3at
high temperatures), respectively. Similarly, the second hidden unit (on the
lower half of Figure 10) approximates 211 2 z12atlow and (23, —- 211) <3
at high temperatures.

A detailed expression of the binary equivalent of the output and the two
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Figure 10: Activations and contour plots of the first two hidden units of the
DCP pruned network as a function of the two relevant temperature parameters.
Training samples are indicated in the contour plots.

)

decisive hidden unit responses can be derived from contour plots of hidden
and output unit responses in Figures 11a and 11b, in terms of line equations
in the parameter space of inputs z;,; and z; 5. The lowest, middle, and upper
diagonal lines in the contour plots indicate decision boundaries at 0.1, 05,

and 0.9 response values, respectively.
The equations for the decision boundary at hidden unit responses of 0.5

are approximately,

212 =0.67z11 + 7.2, 4.1)
and, ‘

z1,2 = 115231 — 14, 4.2)

where z;,1 and z; 3 are the air and water temperature inputs, respectively.
These correspond well with the equations for the decision boundaries of the
network output in Figure 11. The two hidden units do indeed contribute the
significant component functions of the network.
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Swimming Data: DCP 3x1, training output  Swimming Data: DCP 3x1, test output

2 W, % B (a) 2 W % 7 (b)

Figure 11: Contour plots of output unit responses to air and water temperature,
including (a) training and (b) test patterns with their target values. Outer, cen-
tral, and inner lines represent 0.1, 0.5, and 0.9 values of the decision boundary,
respectively.

We can express the output function in the form of a rule,
if b b b :
if 2 ; and z; , then z3 | = yes(swim),

where 7-12’,1 and z’z’_2 arelow (< 0.5) or high (> 0.5) binary hidden unit outputs, -

and zg'l is the binary network output. Similarly, equations 4.1 and 4.2 give
us the rules, :

if 212 > 0.6721,1 + 7.2 then 25 ;| = true(high),

and,
if 212 < 1.15z1,1 — 1.4 then zg‘z = true(high).

Consequently, the rule governing the complete function of the network is,

if (z1,2 > 0.67z3,3 + 7.2) and (212 <1.1521; — 1.4)
then zg’l = yes(swim). 4.3)

The distributed and connectionist implementation of the function of this
network is interpreted by equation 4.3 in terms of formalized functions of
the significant components remaining after regularization with DCP.

Two conceptually distinct approaches dealing with the relationship be-
tween formalist or rule-based knowledge and distributed knowledge in
neural networks are notable in this context. On the one hand, there are
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those that begin with a formalist representation, attempting to define a sen-
sible topology and initial weights for a neural network on the basis of prior
rule-based knowledge. One such technique is KBANN (Towell, Shavlik, &
Noordewier, 1990; Maclin & Shavlik, 1991). On the other hand, there are
algorithms for the automatic extraction of rules from trained feedforward
neural networks, such as KT (LiMin, 1994; Koene, 1995). KBANN has been
shown to improve on regular artificial neural network (ANN) methods for
complex tasks. KT, in turn, has been shown to generate rule-based represen-
tations that can outperform the original neural network for specific tasks. 1t
may be useful to combine methods when seeking to preserve rule structure.
In this way, KBANN can provide the initial rules, DCP prunes the trained
neural network to fundamental components, and an extraction technique
such as KT returns the resulting set of rules implicit in the function learned
by the network. DCP simplifies the extraction of representative rules by
identifying significant components and reducing the number of parame-
ters involved in the learned function. DCP performance is greatest when
there is complete freedom in the design of resulting W{". If a requirement
is specified that rules initialized by KBANN must be preserved, the degrec
of pruning achievable by DCP may be affected, similar to the manner in
which it is constrained by the requirement that a layered network topology
be maintained.

5 Discussion

We have shown that the error resulting from the use of DCP for rank re-
duction is consistently lower than that of PCP at the same rank. This is
helpful for interpretation efforts. DCP recognizes the components relevant
for discrimination, achieving scale invariance and handling offsets in Z;.
The propagation of changes in Z; due to W}i’l through P,inZ; allows for
compensation of potentially cumulative individual divergences.

Generally, computational efficiency of DCP can be achieved compared
to PCP, as a result of rank(Z;W;)<rank(Z;), and because DCP finds discrimi-
nant components in a single phase, whereas PCP requires two phases (find-
ing PCs and determining their order of significance) and time-consuming
verifications of results when a particular PC is pruned.

Classification performance of networks regularized with DCP and PCP
at their respective optimal reduced-rank combinations is maintained. At
equal rank combinations, performance after DCP is significantly better than
after PCP. Pruning by SVD(Z;W;) clearly gives the best approximation of
Z;W;. We place emphasis on the lower rank that can be achieved in view of
its usefulness for the interpretation of distributed functions by minimizing
neural network complexity. '

Among the less satisfactory elements, the effect of nonlinear squashing
functions can be dealt with by generalizing the criterion for the sum of
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squared errors SS(Z;W; — Z{"W{”) = tr(E;) for linear PCA to include a
metric matrix My (Jolliffe, 1986, p- 224),

";
D_1Ziwi — ZPOW MG Zw; — z{w]. (5.1)
j=1

The sigmoid function O (-) restricts its outputs toa given range. The partic-
ular metric matrix to be used is determined by the differential 30" (x;)/9x;
of the sigmoidal activation function at neuron j in layer i,

M; = diag(0 (Ziwy)(1 — O (Z;wy))). (5.2)

The desire to account for nonlinear activation functions mainly addresses
the possibility of even greater rank reduction. DCP does not obtain a linear
approximation of the nonlinear function represented by the network, but
rather of the summed contributions, which are subsequently nonlinearly
transformed. Since this method accepts only solutions that lead to equal or
better generalization performance, the nonlinear transformation of pruned
summed contributions does not impede the performance of the network.
Taking nonlinear propagation into account in future implementations may
allow for even more rigorous pruning of combined layers.

An important implementational issue is the desire to determine the opti-
mal rank of layers without having to compute all possible combinations of
reduced ranks. The nonmonotonic nature of the combined error of concate-
nated layers makes it impossible to determine the optimal rank separately
in each layer using the linear Z;W; matrix. Future work is aimed at inves-
tigating the possibility of a maximum likelihood approach that enables the
use of the Akaike information criterion (AIC) (Kurita, 1989), for efficiency
at pruning individual layers. However, the difficulty of pruning on a layer-
by-layer basis remains. An iterative technique for finding the optimal rank
combination may prove to be the most rewarding, since an analytical solu-
tion examining all layers simultaneously remains an unlikely prospect due
to the structure imposed on pruned network matrices by topological restric-
tions. In the absence of these restrictions, pruning of a neural network in
a single DCP step is conceivable. An interesting development for problem
domains where prior rule-based knowledge is available, or where a for-
malist representation of the function inherent in a trained neural network is
desirable, might be the sequential application or the integration of KBANN,
DCP, KT, and similar methods.

In summary, application of DCP decreases variance and subsequently
maintains reliability and generalization performance at the smallest pos-
sible rank, while only the least significant components with regard to the
discriminant behavior of the neural network are pruned. Propagating the
effect of pruning at previous layers and adjusting the pruned matrix of con-
tributions accordingly further improves the approximation. DCP achieves
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greater pruning precision to a lower optimal reduced rank, resulting in &
greater simplification of the network function in terms of the number of
parameters to be identified during analysis and interpretation.

Appendix: Solution of the Reduced-Rank Regression Problem

Define P,»n = z{" (Z,(')/Z,('))‘IZ,(')I. We then have the following identity
(Takane & Shibayama, 1991): .

SS(Z;W; — Z,V)W,m) = SS(Z;W; — PZ'V)Z,-W,-) 4
+ SS(PymZiW; — Z{PW{"). (A.1)

The value of the first term on the right-hand side of equation A.1is inde-

pendent of W{". Therefore, the criterion in equation 2.4 can be minimized
by minimizing the second term, which can be done by SVD of Py ZiW;.

This means that to obtain Z{”W{"” that minimizes equation 2.4, we first ob-
tain the unconstrained least-squares estimate P,nZ;W; (without the rank

restriction) of Z{" W{?, and then obtain the reduced-rank approximation of
this unconstrained estimate, given by equation 2.6. Note that PynZi = Z;

when Z,(') = Z;, as in the first hidden layer.
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