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A multivariate reduced-rank growth curve model is proposed that extends the univariate reduced-
rank growth curve model to the multivariate case, in which several response variables are measured over
multiple time points. The proposed model allows us to investigate the relationships among a number of
response variables in a more parsimonious way than the traditional growth curve model. In addition, the
method is more flexible than the traditional growth curve model. For example, response variables do not
have to be measured at the same time points, nor the same number of time points. It is also possible to
apply various kinds of basis function matrices with different ranks across response variables. It is not
necessary to specify an entire set of basis functions in advance. Examples are given for illustration.
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1. Introduction

In a variety of areas, observations are taken over multiple time points on a particular char-
acteristic, often called a response variable, to investigate temporal patterns of change on the
characteristic. For instance, students may be asked to take a standardized test repeatedly over
several months. Satisfaction of customers toward a particular brand may be tracked down every
quarter. Effects of a certain drug on animals, blood sugar concentrations may be measured over
time.

Data of this type are usually analyzed by the growth curve model, initiated by Pot-
thoff and Roy (1964), and extensively studied by numerous authors, including Khatri (1966),
Grizzle and Allen (1969), and Rao (1965). (Refer to von Rosen (1991) for a nice review on the
growth curve model.) The basic idea of the growth curve model is to introduce some known
functions, so-called basis functions (e.g., polynomial functions), so as to capture patterns of
change for time-dependent measurements. The traditional growth curve model was designed
for the situations where individuals are measured on a single response variable. Reinsel (1982)
extended the univariate growth curve model to the multivariate case, where several response
variables are measured over multiple time points. The multivariate growth curve model enables
us to examine relationships between different response variables (also see Carter & Hubert,
1984; Lundbye-Christensen, 1996; Nummi & Möttönen, 2000). Another recent extension is to
impose reduced-rank restrictions on the univariate growth curve model, motivated by the fact
that the mathematical structure of the growth curve model is akin to that of the reduced-rank
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regression model (Albert & Kshirsagar, 1993; Reinsel & Velu, 1998, pp. 171–176). This univari-
ate reduced-rank growth curve model may provide more parsimonious results than the standard
growth curve model, if the rank restrictions are reasonable.

In this paper, we propose a multivariate reduced-rank growth curve model, which extends
the univariate reduced-rank growth curve model to the multivariate case. The proposed model
may lead to simpler interpretations about relationships among a number of response variables
than the traditional multivariate growth curve model. Moreover, the method is more flexible than
the traditional (multivariate) growth curve models in various aspects. For example, response vari-
ables do not have to be measured at the same time points, nor the same number of time points.
This can be an advantage compared with the existing multivariate growth curve models that
assume identically time-structured or balanced response variables. It is also possible to apply di-
verse kinds of basis function matrices with different rank across response variables. Furthermore,
it is not necessary to specify an entire set of basis functions in advance, and some of the functions
can be left unknown to be freely estimated to obtain their more optimal forms. This is distinct
from the traditional growth curve model in which basis functions are all fixed beforehand.

This paper is organized as follows: Section 2 discusses the proposed method in detail. It
provides the proposed model and estimation of model parameters. Section 3 illustrates empirical
validity of the proposed method with two examples. The final section briefly summarizes the
previous sections and discusses further prospects of the proposed method.

2. The Method

Suppose that N individuals are measured on the j th response variable ( j = 1, . . . , J ) at
Tj different time points. Let Y j denote an N by Tj matrix of complete repeated measurements
on the j th response variable. Let X j denote a known N by Pj matrix of time-invariant explana-
tory variables, where Pj corresponds with the number of the explanatory variables for the j th
response variable. Let A j denote a D j by Tj matrix of basis functions that represent specific
aspects of change of Y j across Tj time points. Let B j denote a Pj by D j matrix of unknown
coefficients. Let E j denote an N by Tj matrix of error. Then, the reduced-rank growth curve
model for the j th response variable is given by

Y j = X j B j A j + E j , (1)

with

rank(B j A j ) ≤ D j ≤ min(Pj , Tj ). (2)

Model (1) is the univariate reduced-rank growth curve model since there is only a single ( j th)
response variable involved. This model is distinct from the standard growth curve model that as-
sumes D j ≤ min(Pj , Tj ) (e.g., Reinsel & Velu, 1998, p. 155). In the model, A j may be a priori
known or partially known (i.e., some elements in A j are left unknown to be estimated). When
A j is prescribed, the model amounts to the standard growth curve model with a reduced-rank
restriction of rank(B j ) ≤ D j . In this case, the maximum likelihood (ML) estimates of B j can
be analytically obtained in the same way as in the standard growth curve model. The constrained
principal components analysis by Takane and Shibayama (1991) may also include the univariate
reduced-rank univariate growth curve model as a special case, where the portion of Y j explained
by both fixed row (X j ) and column constraints (A j ) is analyzed. If A j is totally unknown, on
the other hand, model (1) reduces to the reduced-rank regression model (e.g., Anderson, 1951;
Davies & Tso, 1982; Izenman, 1975; Rao, 1964), or equivalently the redundancy analysis model
(van den Wollenberg, 1977), given some identification restriction. Van der Leeden (1990, p. 121)
has applied the reduced-rank regression model for analysis of repeated measurements with em-
phasis on the rank restrictions as a distinguishing aspect from the standard growth curve model.
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Bijleveld and de Leeuw (1991) proposed a longitudinal reduced rank regression model that ex-
tended the reduced rank regression model to take into account autoregressive effects in X j B j .
However, their method does not explicitly capture time-dependent changes in repeated measure-
ments.

Albert and Kshirsagar (1993) and Reinsel and Velu (1998, pp. 171–176) proposed a special
case of (1) under the same terminology. Their model can indeed be viewed as a second-order
(reduced-rank) growth curve model (i.e., linear components of X j are nested within second-
order components) where B j is the product of two unknown sub-matrices of coefficients, say
B j1 and B j2 (i.e., B j = B j1B j2), so that rank(B j ) = rank(B j A j ) ≤ D = min(D j , Pj ), and A j

is fixed.
Let T = ∑

j Tj , D = ∑
j D j , and P = ∑

j Pj . The multivariate reduced-rank growth
curve model for measurements of N individuals on J response variables over multiple time
points may be expressed as

[
Y1, . . . , YJ

] = [
X1, . . . , XJ

]



B1 0
. . .

0 BJ







A1 0
. . .

0 AJ


 + [

E1, . . . , EJ
]
,

Y = XBA + E, (3)

where Y = [Y1, . . . , YJ ] is an N by T matrix of observations on J response variables, X =
[X1, . . . , XJ ] is an N by P matrix of explanatory variables associated with J response variables,
B = diag[B1, . . . , BJ ] is a P by D matrix of unknown coefficients, A = diag[A1, . . . , AJ ]
is a D by T matrix of basis functions linked to J response variables, and E = [E1, . . . , EJ ]
is an N by T error matrix. In this model, X j and A j are allowed to differ across J response
variables. Different rank restrictions may be imposed on the response variables, for example,
rank(B j A j ) = h while rank(B j+1A j+1) = h′, where h �= h′. Moreover, Y j is not necessarily
identically time-structured, that is, all individuals do not need to be measured on J response
variables at the same time points, nor the same number of time points.

We note that in its most general form model (3) is equivalent to J separate analyses of the
univariate reduced-rank growth curve model. Nevertheless, it should be emphasized that various
constraints can be imposed on parameters across J response variables, thus allowing evaluation
of a variety of hypotheses on relationships among the response variables. For instance, we can
examine whether certain elements of B j are identical across the response variables by imposing
equality constraints. Often, the same explanatory variables can be duplicated across response
variables or some comparable explanatory variables measured on the same scale can be observed
in different response variables. In such cases, equality constraints are of use to reduce the number
of redundant parameters, and provide simpler interpretations of solutions than the unconstrained
case. Moreover, if the constraints are consistent with the data, we can obtain more reliable pa-
rameter estimates.

We may consider numerous special cases of model (3). For example, often, all matrices of
explanatory variables are identical across J response variables, that is, X1 = X2 = · · · = XJ , so
that X comes down to a single matrix. Then, (3) can be expressed as Y = X[B1, . . . , BJ ]A + E.
If A j ’s are all known and no rank restrictions are involved, this case is essentially the same as the
standard growth curve model, but deals with more than one response variable (Reinsel, 1982).
This special case is further simplified when all known basis function matrices are also equal
across J response variables, that is, A1 = A2 = · · · = AJ . In either case, the ML estimates of
B are obtained in a similar way to the standard growth curve model. Model (3) also handles the
second-order structures in B j across J response variables in a simple way. To accommodate the
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second-order structure of coefficients for each response variable, the model can be expressed as

Y = X




B11 0
. . .

0 BJ1







B12 0
. . .

0 BJ2


 A + E,

= XB1B2 + E

= XBA + E, (4)

where

B = B1B2 =



B11 0
. . .

0 BJ1







B12 0
. . .

0 BJ2


 .

This model includes a multivariate extension of the univariate second-order growth curve model
(Albert & Kshirsagar, 1993; Reinsel & Velu, 1998, pp. 171–176) as a special case.

Under the assumption that each row of E is iid multivariate normal, we seek to maximize
the log likelihood function to derive the ML estimates of model parameters:

f (B, A, �) = ρ + N

2
log |�| − 1

2
tr[(Y − XBA)�−1(Y − XBA)′], (5)

where ρ = − 1
2 N T log(2π), and � is the T by T unknown population covariance matrix. In (5),

A is assumed at most partially known.
To maximize (5), we may use an optimization procedure similar to an alternating maximum

likelihood (AML) procedure (de Leeuw, 1989; van der Leeden, 1990). The procedure consists
of two global steps: In the first step, (5) is optimized over B and A for fixed �. In the second
step, (5) is optimized over � , for fixed B and A. These steps are alternated until convergence is
obtained.

The first global step minimizes

f (B, A | �) = 1
2 tr[(Y − XBA)�−1(Y − XBA)′], (6)

for fixed �. Let �−1 = RR′, and this is equivalent to minimizing

f ∗ = SS((Y − XBA)R)

= SS(Ỹ − XBÃ) (7)

where SS(M) = trace(M′M), Ỹ = YR, and Ã = AR (e.g., Rao, 1980). Due to the zero structure
of B and A, (7) is not solved in a closed-form. Instead, (7) should be minimized by an iterative
method. We use an alternating least squares (ALS) algorithm to minimize (7). Our algorithm
is a simple adaptation of the ALS algorithm developed by Kiers and ten Berge (1989). In the
algorithm, B and A are updated alternately until convergence is reached. The updates of one
parameter matrix are optimally obtained such that they minimize (7) in the least squares sense,
while the other is fixed.

To employ the ALS algorithm, specifically, we may rewrite (7) as

f ∗ = SS(vec(Ỹ) − vec(XBÃ)) (8a)

= SS(vec(Ỹ) − (Ã′ ⊗ X)vec(B)) (8b)

= SS(vec(Ỹ) − (R′ ⊗ XB)vec(A)) (8c)
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where vec(M) denotes a supervector formed by stacking all columns of M one below another,
and ⊗ denotes a Kronecker product. The algorithm can then repeat the following local steps until
convergence is reached:

1. Update B for fixed A as follows: Let b denote the vector formed by eliminating zero elements
from vec(B) in 8b. Let � denote the matrix formed by eliminating the columns of Ã ⊗ B →
Ã′ ⊗ X in 8b corresponding to the zero elements in vec(B). Then, the least squares estimate
of b is obtained by

b̂ = (�′�)−1�′vec(Ỹ). (9)

The updated B is reconstructed from b̂.
2. Update A for fixed B as follows: Let a denote the vector formed by eliminating any fixed

(or known) elements from vec(A) in 8c. Let � denote the matrix formed by eliminating the
columns of R′ ⊗ XB in 8c corresponding to the fixed elements in vec(A). Then, the least
squares estimate of a is obtained by

â = (�′�)−1�′vec(Ỹ). (10)

The updated A is recovered from â.

In the next global step, we update � for fixed B and A. This amounts to maximizing

f (� | B, A) = ρ + N

2
log |�| − 1

2
tr[V�−1], (11)

where V = (Y − XBA)′(Y − XBA). Given B and A, it is well known that the ML estimate of �

is �̂ = N−1V (e.g., Anderson, 1984, p. 62).
We alternate the two global steps until convergence of (5) is reached. The AML algorithm

seems to be fairly efficient thus far according to our experience with a number of examples. It
converges fast with random starts (usually within less than 10 iterations) and seems to be hardly
affected by the nonglobal minimum problem when being run with a number of different starts.
The optimization procedure can be extended to fit various special cases of model (3). For in-
stance, when the elements of A are all known, the algorithm becomes simpler since Step (10) is
not required. In addition, the algorithm can be readily extended to fit model (4) that accommo-
dates the second-order structure in B. In this case, the first global step of ALS repeatedly updates
each of the parameter matrices, B1, B2, and A, with the others fixed.

We may be interested in testing various structural hypotheses regarding B and/or A. A vari-
ety of structural hypotheses on parameters can be incorporated in the form of linear constraints.
The linear constraints may be specified by either the reparametrization or the null-space method
(Böckenholt & Takane, 1994; Takane, Yanai, & Mayekawa, 1991). The former method spec-
ifies the space spanned by column vectors of a constraint matrix, whereas the latter specifies
its ortho-complement space. In the proposed method, all linear constraints are imposed by the
reparametrization method. For example, let H denote a matrix of linear constraints on b. In the
step of (9), we incorporate H into b as follows:

b = H�, (12)

for some �. A least squares estimate of � is then given by

�̂ = (H′�′�H)−1H′�′vec(Ỹ), (13)
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which leads to

b̂ = H�̂ = H(H′�′�H)−1H′�′vec(Ỹ). (14)

This approach is called the projection method (see Seber, 1984, pp. 403–405; Takane, Yanai,
& Mayekawa, 1991). However, it is sometimes easier to specify constraints in the null-space
form (e.g., equality or zero constraints). In such cases, the constraints are first expressed in the
null-space form, and then transformed into the reparametrization form. The transformation is
straightforward. Let

L′b = 0 (15)

represent the constraints in the null space form. Suppose that the first and the last elements
of b are equal, then, L′ reduces to a vector whose first element is 1, last element is −1, and
other elements are zeros. We may reparametrize (15) into the form of (12) by defining H =
I − L(L′L)−L′. This implies that Ker(L′) = Sp(H). Linear constraints on a can be imposed in a
similar way.

The proposed method makes it possible to fit a wide range of models to the data in hand.
To assess the goodness of fit of fitted models, we use the Akaike information criterion (AIC).
AIC is defined as follows: Let � denote the −2 log maximum likelihood value for a particular
model, and γ denote the number of parameters estimated in the model. Then AIC = � + 2γ .
As shown in the formula, AIC adds some penalty to the log maximum likelihood value for
increasing the number of parameters. The criterion aims to balance model fit (represented by
�) and model parsimony (implied by γ ). AIC favors simpler models over complex models if a
similar fit sustains. It also applies to comparison across both nested and nonnested models. A
model that minimizes AIC is regarded as the most appropriate one among fitted models. AIC is
valid when γ is smaller than 2

√
N or N/2 at most (Sakamoto, Ishiguro, & Kitagawa, 1986, p.

83). We also note that the actual value of AIC for a specified model provides little information
on the goodness of fit of the model itself. It is only beneficial when being compared to the AIC
values of other models, that is, only the differences of AIC matter, not the actual values. Thus, we
employ another fit index that furnishes certain information on the goodness of fit of a particular
model itself. We call the index EV (which stands for Explained Variance) since it is proportional
to the total variance of Y explained by the assumed model. The EV is given by

EV = 1 − SS(Y − XBA)

SS(Y)
. (16)

It ranges from 0 to 1. The larger the value, the more variance of Y is explained. Thus, a model that
maximizes EV is preferable. Note, however, that EV is obviously affected by model complexity,
that is, the more parameters, the larger EV. We thus consider both fit measures at the same time
for more elaborate model selection.

In actual model selection, we may specify a class of candidate models for the data, and
then compare the goodness of fit of the models. However, it may be implausible to fit all possible
models for which the statistical fit measures are evaluated. Thus, additional knowledge from prior
investigation about the data structure or any theoretical information can be utilized to eliminate
less sensible models from the list of alternative models. Furthermore, it is often difficult to choose
a final model solely in terms of statistical measures of model fit, since different models may
have identical model fit. In such a case, nonstatistical considerations such as interpretability of
the fitted model play a crucial role in making a final selection, although they are usually more
complicated to justify since they are largely subjective.
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3. Examples

3.1. The NLSY Data

The first example is part of the National Longitudinal Survey of Youth (NLSY), conducted
by the U. S. Department of Labor. Starting in 1986, a large sample of children and their mothers
were administered a set of assessment instruments every other year until 1992. Interviews were
conducted on each child and her/his mother about the child. From the original sample of children
and mothers, we analyzed a smaller sample of child-mother pairs, provided in Curran (1998).
(Note that Curran (1998) considered only one biological child from each mother.) The sample
consisted of 221 pairs of children and mothers, who completed interviews at four time points.

Two variables were repeatedly measured over the four time points: Antisocial behavior and
reading recognition. Antisocial behavior of children was measured as a sum of the mother’s
responses to six items from the Behavior Problems Index antisocial behavior subtest. The child’s
reading recognition skill was computed by summing the total number of correct items by children
out of 84 items of the Peabody Individual Achievement Reading Recognition subtest. Besides
the two repeatedly measured variables, three variables were assessed once at the initial time
point: cognitive stimulation for children at home, emotional support for children at home, and
gender. A measure of cognitive stimulation was obtained as a sum of the mother’s responses
to 14 items in the cognitive stimulation subscale of the Home Observation for Measurement of
the Environment-Short Form (HOME-SF). Emotional support was measured by summing the
mother’s responses to 13 items from the HOME-SF. Female child was coded as −1 and male
child as 1.

The proposed method was applied to investigate optimal patterns of change in antisocial
behavior and reading recognition over time and also to examine the effects of cognitive stim-
ulation, emotional support, and gender on the temporal patterns. For our analysis, antisocial
behavior and reading recognition were used as two response variables in Y, so that J = 2, and
T1 = T2 = 4. The former response variable was regarded as Y1 and the latter as Y2. Cognitive
stimulation, emotional support, and gender were considered as explanatory variables in X j . In
addition, X j contained an intercept term. Matrix X j was common to the two response variables,
that is, X1 = X2.

Table 1 shows descriptive statistics for the two response variables measured at four differ-
ent time points. From the descriptive statistics it seemed that there was a linear trend in both
response variables because the mean levels of the response variables measured at each time point
increased over time. In addition, the response variables were merely measured over four time

TABLE 1.
Descriptive statistics for two response variables measured at four time points in the NLSY data

Response variable Mean S. D. Minimum Maximum

Antisocial Behavior
Time 1 1.49 1.54 0 7.00
Time 2 1.84 1.79 0 9.00
Time 3 1.88 1.80 0 10.00
Time 4 2.07 2.08 0 9.00

Reading Recognition
Time 1 2.52 0.88 0.70 7.20
Time 2 4.04 1.00 1.60 6.20
Time 3 5.02 1.10 2.20 8.40
Time 4 5.80 1.22 2.50 8.30
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TABLE 2.
Summary of fit for various multivariate growth curve models using the NLSY data

Type of Model Rank of B j A j γ EV AIC

Model 1: A j is known 4 ( j = 1, 2) 32 .86 5231.2
Model 2: A j is known 3 ( j = 1, 2) 24 .86 5230.4
Model 3: A j is partially known 3 ( j = 1, 2) 32 .86 5317.0
Model 4: A j is known 2 ( j = 1, 2) 16 .85 5304.9
Model 5: A j is known and B j is constrained 2 ( j = 1, 2) 14 .85 5302.4
Model 6: A j is known 1 ( j = 1, 2) 8 .75 5732.9

points. This relatively small number of time points may not be sufficient to provide a nonlinear
temporal change of the response variables. According to these prior investigations about the data,
we initially assumed a multivariate growth curve model with a prescribed A j of dimension 2×4,
so that the rank of B j A j is equal to 2, for both response variables. In this model, A j was defined
as a known matrix of orthogonal polynomials of order 1 to represent a linear trend of temporal
change in both antisocial behavior and reading recognition (the exact form of the orthogonal
polynomials are given below). This model is denoted by model 4 in the sequel. Based on the
model of rank 2, a number of models were contemplated as possible competing models. The
competing models were created in a hierarchical fashion that successively increased/decreased
the rank of the assumed model and also imposed/released constraints on parameters within the
same model. For final model selection, then, the assumed model was compared with the compet-
ing models.

A summary of the goodness of fit of the fitted models is presented in Table 2. In Table 2,
model 1 corresponds with a multivariate growth curve model, in which the rank of B j A j was
equal to 4. In model 1, A j was pre-specified as a matrix of orthogonal polynomials of order 3,
that is,

A j =




1 1 1 1
−3 −1 1 3

1 −1 −1 1
−1 3 −3 1


 . (17)

Model 2 is a model with rank of B j A j equal to 3, in which A j was given as a matrix of orthogonal
polynomials of order 2 for both response variables. Model 2 hypothesized that both antisocial
behavior and reading recognition changed in a quadratic fashion over time. Model 3 is also a
model with rank of B j A j equal to 3. In model 3, however, A j were assumed only partially known
in such a way that the first two rows of A j were given as a matrix of orthogonal polynomials of
order 1, while the last row of A j was left unknown to be estimated. That is,

A j =



1 1 1 1
−3 −1 1 3
a j1 a j2 a j3 a j4


 , (18)

where a jt is unknown (t = 1, . . . , 4). Model 5 is a constrained version of model 4, in which
the coefficients corresponding to the mean intercepts and mean growth rates were assumed to be
equivalent across the response variables. We contemplated these equality constraints since the
response variables were measured on a similar scale. Although the same explanatory variables
are replicated over the two response variables, on the other hand, we did not presume that their
effects on the response variables were also identical because the response variables were quite
different types of characteristics. The last model (model 6) specified A j as a matrix of orthogonal
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polynomials of zero order, assuming that there was stability in both response variables over time.
For each of the fitted models, A j was equal across Y j , that is, A1 = A2. Therefore, each of them
is a special case of (3) in which both explanatory variables and basis functions are replicated over
two response variables.

The EV values of models 1–5 were quite similar, in each case approximately 85% or 86%
of the variance of Y was accounted for. Model 2, on the other hand, had the smallest AIC value.
Model 2 presented that the measurements on both antisocial behavior and reading recognition
varied in a quadratic manner over time. However, it was found that the estimated mean quadratic
trends for antisocial behavior and reading recognition were equal to −.26 (s.e. = .11) and −.13
(s.e. = .05), respectively. It suggests that the levels of antisocial behavior and reading recognition
tend to first increase linearly and then gradually decrease toward the end of the time points. The
inverted U shaped quadratic trend seemed to be rather inconsistent with the descriptive statistics
that suggested monotonically increasing patterns of change in both response variables over time.
Thus, we did not select model 2 as a final model due to the inconsistent results, even though
it was found to be the best-fitting model in terms of AIC. Such conflicting solutions were also
found in the full-rank model (model 1), which had the second smallest AIC.

Instead, we chose model 5 as a final model because it had the third smallest AIC. More
crucial was that model 5 provided sensible and simpler interpretations of obtained results than
other fitted models. Model 5 was favored over the initially assumed model (model 4) because its
AIC was smaller than model 4’s AIC, providing essentially the same but simpler interpretations.
The final model posits that both antisocial behavior and reading recognition vary in a linear trend
or growth rate over time. The linear pattern of change in antisocial behavior of the same children
was also reported by Curran and Bollen (1999). Moreover, it shows that the mean intercept and
mean growth rate of the response variables are identical across the response variables.

Table 3 provides the ML estimates of B j in the final model with their standard errors in
the parentheses. The first column of B j under the label of Initial provides the effects of the
explanatory variables on the response variables at the initial status, and the second column under
the label of Linear represents the effects of the explanatory variables on a growth rate of the
response variables over time. The estimated mean intercept is equal to 3.19 (s.e. = .14) and
the mean growth rate is equal to .27 (s.e. = .04), which are constrained to be the same for
both response variables. The constrained mean intercept and growth rate estimates indicate that
antisocial behavior and reading recognition seem to increase in the same linear pattern during
the study. The effect of gender on the initial status of antisocial behavior is .64 (s.e. = .09). It
suggests that boys show a higher level of antisocial behavior than girls through the study. The
effect of gender on the growth rate is .02 (s.e. = .02), indicating that boys tend to increase
antisocial behavior at a higher rate compared to girls. Yet, this effect appears less reliable. The
effects of cognitive stimulation on the initial status and the growth rate of antisocial behavior
are equal to −.11 (s.e. = .02) and −.03 (s.e. = .00), respectively. It suggests that children

TABLE 3.
The ML estimates of B j in the final model for the NLSY data (standard errors
in parentheses). I = Intercept, G = Gender, C = Cognitive stimulation, E =
Emotional support

Antisocial Behavior Reading Recognition
Initial Linear Initial Linear

I 3.19 (.14) .27 (.04) 3.19 (.14) .27 (.04)
G .64 (.09) .02 (.02) −.07(.06) .01 (.01)
C −.11(.02) −.03(.00) .06 (.01) .00 (.00)
E −.15(.02) .00 (.00) .06 (.01) .02 (.00)
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receiving higher levels of cognitive stimulation at home show lower levels of antisocial behavior,
and also increase antisocial behavior at a lower rate than those receiving lower levels of cognitive
stimulation. The effect of emotional support on the initial status of antisocial behavior is −.15
(s.e. = .02), indicating that the higher levels of emotional support at home, the lower levels of
antisocial behavior. On the other hand, the effect of emotional support on the growth rate of
antisocial behavior is .00 (s.e. = .00). This estimate, however, looks less sizable to interpret.

The effects of gender on the initial status and the growth rate of reading recognition are
−.07 (s.e. = .06) and .01 (s.e. = .01), respectively. It suggests that girls show a higher level
of reading recognition than boys through the study, while boys seem to show a higher rate of
increase in reading recognition. However, both effects appear less reliable. The effect of cognitive
stimulation on the initial status of reading recognition is equal to .06 (s.e. = .01). It indicates that
the higher levels of cognitive stimulation at home, the higher levels of reading recognition skill
acquired. The effect of cognitive stimulation on the growth rate is .00 (s.e. = .00), which appears
less sizable to interpret. The effects of emotional support on the initial status and the growth
rate of reading recognition are .06 (s.e. = .01) and .02 (s.e. = .00), respectively. It suggests that
children with higher levels of emotional support gain higher levels of reading recognition at the
initial time point and also increase their reading recognition skills at a higher rate than those with
lower levels of emotional support.

The chosen model seems to fit well, providing useful information on the relationship be-
tween time-dependent response variables and time-invariant predictor variables. However, it does
not necessarily mean that the model fits perfectly and thus reflects the actual state of affairs.

3.2. The Substance Use Data

The second example comes from a longitudinal study on the predictors and consequences
of substance use among adolescents from American northwestern urban areas (Duncan, Duncan,
Alpert, Hops, Stoolmiller, & Muthén, 1994). For the present analysis, 632 adolescents were
measured on their use of three drugs such as marijuana, cigarettes, and alcohol over four time
points. The three measures of substance use were assessed based on a self-reported 5-point item:
(1) life time abstainers, (2) 6-month abstainers, (3) current use of less than four times a month, (4)
current use of between 4 and 29 times a month, and (5) current use of 30 or more times a month.
Five additional variables were measured once at the initial time point, including parental marital
status, family status, socio-economic status (SES), age, and gender. Marital status was classified
as follows: 0 = single and 1 = married or living in a committed relationship. Family status
was categorized as follows: 0 = step or foster families and 1 = others. SES was calculated as
the average of parental annual income and education level. Parental annual income was assessed
based on a 16-point scale ranging from “6,000 dollars and below” to “50,000 dollars or more. ”
Education levels range from “Grade level 6 or less” to “Graduate level. ” Male and female were
coded as 0 and 1, respectively.

The three measures of substance use were employed as response variables in Y. That is,
J = 3, and T1 = T2 = T3 = 4. Use of marijuana, cigarettes, and alcohol were taken as Y1,
Y2, and Y3, respectively. The five nonrepeated measures were used as explanatory variables in
X j . Also, X j consisted of an intercept term. Matrix X j was identical across the three response
variables, that is, X1 = X2 = X3. Table 4 shows descriptive statistics for the three response
variables measured at 4 time points.

From Table 4 it appeared that there was a linear trend in all three response variables because
the mean levels of the response variables measured at each time point were monotonically in-
creasing over time. Moreover, the number of repeated measurements seemed to be insufficient to
observe a nonlinear temporal change of the response variables. Therefore, we initially assumed
a multivariate growth curve model of a prescribed A j of dimension 2 × 4 as in Example 1. In
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TABLE 4.
Descriptive statistics for three response variables measured at four time
points in the substance use data

Response variable Mean S. D. Minimum Maximum

Marijuana
Time 1 1.52 0.95 1 5
Time 2 1.70 1.00 1 5
Time 3 1.84 1.07 1 5
Time 4 2.01 1.09 1 5

Cigarettes
Time 1 1.85 1.14 1 5
Time 2 2.07 1.27 1 5
Time 3 2.20 1.26 1 5
Time 4 2.50 1.35 1 5

Alcohol
Time 1 2.23 1.04 1 5
Time 2 2.46 1.00 1 5
Time 3 2.65 1.00 1 5
Time 4 2.94 0.94 1 5

this model, A j was specified as a matrix of orthogonal polynomials of order 1 to capture a linear
trend of temporal change in the three response variables. Starting from the model of rank 2, var-
ious models were specified as alternative models in a similar way to the previous example. They
were fitted and compared with the assumed model.

Table 5 provides the goodness of fit of the fitted models. In Table 5, model 1 is a multi-
variate growth curve model, where the rank of B j A j was equal to 4. In model 1, A j was given
as a matrix of the same orthogonal polynomials as (17). In model 2, A j was given as a matrix
of orthogonal polynomials of order 2, representing a quadratic pattern of change in the response
variables over time. Model 3 is the model we originally assumed. The rank of model 4 is equal
to model 3. In model 4, however, A j was assumed to be partially known. The first row of A j

was given as a matrix of orthogonal polynomials of zero order, while the second row of A j was
left unknown to be estimated. Model 5 is a constrained version of model 3 that imposed equality
constraints on all four explanatory variables except gender (i.e., parental marital status, family
status, SES, and age) across the three response variables. We expected that the effects of the four
explanatory variables could be interpreted in the same direction for all the response variables. For
example, adolescents living with a single parent might be expected to show higher levels of use
of all three substances than those living with both parents. Adolescents living with other types of
families were expected to show more frequent use of all the substances than those with single or

TABLE 5.
Summary of fit for various multivariate growth curve models using the substance use data

Type of Model Rank of B j A j γ EV AIC

Model 1: A j is known 4 ( j = 1, 2, 3) 72 .82 16180
Model 2: A j is known 3 ( j = 1, 2, 3) 54 .82 16180
Model 3: A j is known 2 ( j = 1, 2, 3) 36 .82 16167
Model 4: A j is partially known 2 ( j = 1, 2, 3) 48 .82 16171
Model 5: A j is known and B j is constrained 2 ( j = 1, 2, 3) 20 .82 16158
Model 6: A j is known 1 ( j = 1, 2, 3) 18 .81 16461
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foster families. Adolescents with low SES were expected to use the three substance more than
those with high SES. Older adolescents were expected to show more use in all the substances,
compared to younger ones. In addition, the four explanatory variables were duplicated over the
three response variables measured at the same scale. Thus, we assumed that the effects of the
four explanatory variables were identical across the response variables. Although gender was
also replicated across the response variables, on the other hand, we assumed that there would
be some gender differences in use of the substances (e.g., male adolescents may use more mar-
ijuana while female adolescents more cigarettes). Moreover, we presumed that there would be
mean differences in use of the three substances on the basis of the descriptive statistics. Thus, we
did not apply equality constraints to intercepts and gender across the response variables. Model
6 specified A j as a matrix of orthogonal polynomials of zero order, assuming that there was sta-
bility in the response variables over time. For each of the fitted models, A j was equal across Y j ,
that is, A1 = A2 = A3. Therefore, each of these is a special case of (3) where both explanatory
variables and basis functions are duplicated across response variables.

In this example, model 5 was chosen as a final model since its AIC is lowest. The EV
value of the model was essentially equivalent to those of more complex models, indicating that it
explained about 82% of the total variance of the response variables. Moreover, it provided much
simpler and more plausible interpretations of the obtained results than other models. The final
model posits that all three response variables change in a linear fashion over the four time points.
This is consistent with the result of Duncan et al. (1997). It also indicates that the effects of four
explanatory variables (i.e., parental marital status, family status, SES, and age) are equal while
the effects of intercepts and gender are different across all the response variables.

Table 6 presents the ML estimates of B j in the final model with their standard errors in
parentheses. The estimated mean intercept and mean growth rate for use of marijuana are .31 (s.e.
= .08) and .13 (s.e. = .02), respectively. The estimated mean intercept and mean growth rate for
cigarette use are .67 (s.e. = .10) and .16 (s.e. = .02), respectively. The estimated mean intercept
and mean growth rate for alcohol use are 1.08 (s.e. = .08) and .15 (s.e. = .02), respectively.
These indicate linearly increasing trends of change in all response variables. Due to the equality
constraints imposed, the effects of parental marital status, family status, SES, and age on the ini-
tial status and growth rate are identical across the three response variables. The effect of parental
marital status on the initial status of the response variables is equal to −.29 (s.e. = .04) across
the response variables. It indicates higher levels of substance use by adolescents living with
single parents than those living with both parents. On the other hand, the effect of parental marital
status on the growth rate of the response variables is .01 (s.e. = .01), indicating that adolescents
living with nonsingle parents seem to increase their use of substance at a higher rate. Yet, this
estimate looks less reliable. The effects of family status on the initial status and the growth rate

TABLE 6.
The ML estimates of B j in the final model for the substance use data (standard errors in parentheses). I = Intercept, P =
Parental marital status, F = Family status, S = SES, A = Age, G = Gender

Marijuana Cigarettes Alcohol
Initial Linear Initial Linear Initial Linear

I .31 (.08) .13 (.02) 67 (.10) .16 (.02) 1.08 (.08) .15 (.02)
P −.29 (.04) .01 (.01) −.29 (.04) .01 (.01) −.29 (.04) .01 (.01)
F .12 (.01) .01 (.00) .12 (.01) .01 (.00) .12 (.01) .01 (.00)
S −.05 (.02) −.03 (.00) −.05 (.02) −.03 (.00) −.05 (.02) −.03 (.00)
A .12 (.01) −.00 (.00) .12 (.01) −.00 (.00) .12 (.01) −.00 (.00)
G −.02 (.02) −.01 (.00) .03 (.03) −.02 (.01) .04 (.02) −.02 (.00)
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of the response variables are .12 (s.e. = .01) and .01 (s.e. = .00), respectively. It suggests that
adolescents living with other families rather than step or foster families show higher levels of
substance use, and also their substance use increases at a higher rate over time.

The effects of SES on the initial status and the growth rate are equal to −.05 (s.e. = .02)
and −.03 (s.e. = .00), respectively, for the response variables. It suggests that socially and eco-
nomically more disadvantaged adolescents show higher levels of substance use, and also show
a higher rate of increase in substance use than those less disadvantaged. The effect of age on
the initial status of the response variables is equal to .12 (s.e. = .01), indicating that older ado-
lescents show higher levels of substance use compared to younger adolescents over the study.
The effect of age on the growth rate of the response variables is −.00 (s.e. = .00), which looks
negligibly small. The effects of gender on the initial status for use of marijuana, cigarettes, and
alcohol are −.02 (s.e. = .02), .03 (s.e. = .03), and .04 (s.e. = .02), respectively. It suggests that
male adolescents seem to use higher levels of marijuana but lower levels of cigarettes and alcohol
compared to female adolescents over the study. Yet, they seem to be less accurately measured.
On the other hand, the effects of gender on the growth rate of use of marijuana, cigarettes, and
alcohol are −.01 (s.e. = .00), −.02 (s.e. = .01), and −.02 (s.e. = .00), respectively. It indicates
that male adolescents tend to increase use of all the drugs at a higher rate, compared to female
adolescents.

4. Concluding Remarks

The multivariate reduced-rank growth curve model enables us to investigate diverse rela-
tionships among more than one response variable measured over multiple time points in a more
parsimonious way than the traditional growth curve models. It helps us capture a more parsimo-
nious pattern of change on time-dependent measurements. It also allows us to examine a variety
of hypotheses among response variables. The method subsumes existing growth curve models
as special cases. The method is quite flexible in that it allows for unbalanced response variables,
and permits different rank restrictions for each response variable. In addition, some of the basis
functions may be left unknown, and estimated to obtain their more optimal forms.

The proposed method may be extended in various ways. Inspired by Chinchilli and Elswick
(1985), for example, it may be extended to include a MANOVA component as well as a growth
curve component (also see Reinsel & Velu, 1998, p. 166). This extended model allows for the
effect of additional explanatory variables on a response variable, which are not associated with
basis functions. It may be attractive when the effects of some explanatory variables are examined
in terms of time-dependent structure, whereas the effects of other variables are needed to be tested
independently of such a structure. The proposed method may also be extended to a mixture of
reduced-rank growth curve and full-rank growth curve components (e.g., Reinsel & Velu, 1998,
p. 176).

In the proposed method, the population covariance matrix � is assumed to be unstructured
or unconstrained. The unstructured covariance matrix becomes computationally less attractive
when the number of repeated measurements becomes large, often leading to less reliable pa-
rameter estimates (Laird & Ware, 1982). Instead, we may assume that the population covariance
matrix is structured in a certain way. The random effects growth curve model (e.g., Laird &
Ware, 1982; Nummi, 1997; Rao, 1965; Reinsel, 1982) provides one type of special covariance
structure, in which the covariance matrix is considered as a sum of the sub-covariance matrices
of errors and random coefficients. Furthermore, we may apply the generalized estimating equa-
tion (GEE) approach (Liang & Zeger, 1986; Zeger & Liang, 1986) for the proposed method to
accommodate a variety of covariance structures.

The proposed method may also be extended to deal with discrete (nominal or ordinal)
variables through certain data transformations. In particular, the optimal scaling approach (e.g.,
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Young, 1981) seems to be attractive since it may be readily suited to the AML estimation proce-
dure. It is also important to handle missing observations, which frequently appear in large data
sets. A simple way is to delete any cases having at least one missing observation. However, this
is unsatisfactory if missing values are numerous and scattered throughout the data set, as deletion
of the cases may incur substantial loss of information. A more effective way may be to impute
missing observations by their estimates. The estimates for missing observations may be obtained
in an iterative way (e.g., Gabriel & Zamir, 1979; Gifi, 1990): We start by completing the data
with some initial estimates for missing observations, obtain model estimates by fitting the model
to the complete data, update estimates of the missing observations based on the model estimates,
fit the model to the updated data, and so on. These procedures are repeated until no significant
changes take place in the estimates. This iterative imputation approach may be compatible with
the estimation procedure of the proposed method.

Polynomials are typically chosen as basis functions for the growth curve model. These clas-
sic basis functions may not be sufficient for describing the shape of complex time-varying data
(Ramsay, in press). Ramsay and Silverman (1997) suggested more diverse kinds of basis func-
tions: For instance, the B-spline basis functions may be considered as good candidates for non-
periodic data. Fourier series seems to be appropriate for periodic data. Different choices of basis
functions may make the growth curve model more in line with functional linear models (Ramsay
& Silverman, 1997).
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