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We propose an alternative method to partial least squares for path analysis with components, called
generalized structured component analysis. The proposed method replaces factors by exact linear combi-
nations of observed variables. It employs a well-defined least squares criterion to estimate model parame-
ters. As a result, the proposed method avoids the principal limitation of partial least squares (i.e., the lack
of a global optimization procedure) while fully retaining all the advantages of partial least squares (e.g.,
less restricted distributional assumptions and no improper solutions). The method is also versatile enough
to capture complex relationships among variables, including higher-order components and multi-group
comparisons. A straightforward estimation algorithm is developed to minimize the criterion.

Key words: Path analysis with components, partial least squares, alternating least squares.

1. Introduction

Partial least squares (Wold, 1966, 1973, 1982) is employed for path analysis with compo-
nents or weighted composites of observed variables. Partial least squares (PLS) estimates model
parameters by the so-called fixed point (FP) algorithm (Lyttkens, 1968, 1973; Wold, 1965, 1981).
In the FP algorithm, a set of model parameters is divided into subsets, and each subset is “par-
tially” estimated by ordinary least squares (OLS) with other subsets fixed. This OLS estimation
is cycled through repeatedly until convergence is reached.

PLS avoids improper solutions (e.g., factor correlation estimates greater than ±1, negative
variance estimates, and so on) since it replaces factors by linear composites of observed vari-
ables as in component analysis (Meredith & Millsap, 1985; Schönemann & Steiger, 1976). PLS
provides unique component score estimates of cases, which may be used for additional analy-
ses or for selection or segmentation of the cases. Furthermore, since its parameter estimation is
based on (partial) OLS, PLS does not rely on stringent distributional assumptions, such as the
multivariate normality of observed variables, which is often violated in nonexperimental data
(Micceri, 1989). Nonetheless, PLS does not solve a global optimization problem for parameter
estimation, indicating that there exists no single criterion consistently minimized or maximized
to determine model parameter estimates (Jöreskog & Wold, 1982; Fornell & Bookstein, 1982).
Due to the lack of a global optimization criterion, it is difficult to evaluate the PLS procedures
(McDonald, 1996). Also, it is not guaranteed that the obtained PLS solutions are optimal in a
well-defined sense (Coolen & de Leeuw, 1987). More seriously, PLS provides no mechanism to
evaluate the overall goodness of fit of the model. Given no overall goodness of fit measures, it
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is difficult to examine how well the model fits to the data and also to compare it with alternative
models. Therefore, it seems to be the major limitation of PLS that no global optimization crite-
rion is available, although there were a few attempts to alleviate the problem (e.g., Bookstein,
1982; Hanafi & Qannari, 2002).

In this paper, we propose a new method, called generalized structured component analysis
(GSCA) that avoids the major drawback of PLS. As the name suggests, GSCA lies in the tradition
of component analysis. It substitutes components for factors as in PLS. Unlike PLS, however,
GSCA offers a global least squares optimization criterion, which is consistently minimized to
obtain the estimates of model parameters. GSCA is thus equipped with an overall measure of
model fit while fully maintaining all the advantages of PLS (e.g., less restricted distributional
assumptions, no improper solutions, and unique component score estimates). In addition, GSCA
handles more diverse path analyses, compared to PLS. For example, it can easily fit the same
path model to more than one group with optional impositions of across-group constraints, which
PLS cannot accommodate.

The remaining sections of this paper are organized as follows. In section 2, we shall discuss
GSCA in detail. We present the model for GSCA, the estimation procedure of model parameters,
and simple extensions of the model. In section 3, we shall investigate the recovery of parameters
in GSCA through a Monte-Carlo simulation study. In section 4, we shall illustrate the empirical
validity of GSCA with an example, compared with PLS. The final section briefly summarizes
the previous sections and discusses further prospects for GSCA.

2. The Method

2.1. The Model

Let Z denote an N by J matrix of observed variables. Assume that Z is columnwise-
centered and scaled to unit variance. Then, the model for GSCA may be expressed as

ZV = ZWA + E,

� = �A + E, (1)

where � = ZV, and � = ZW. In (1), � is an N by T matrix of all endogenous observed and
composite variables, � is an N by D matrix of all exogenous observed and composite variables,
V is a J by T matrix of component weights associated with the endogenous variables, W is a
J by D matrix of component weights for the exogenous variables, A is a D by T supermatrix
consisting of a matrix of component loadings relating components to their observed variables,
denoted by C, in addition to a matrix of path coefficients between components, denoted by B,
that is, A = [C, B], and E is a matrix of residuals.

To illustrate (1), we present two kinds of exemplary relationships among variables. The first
one is displayed in Figure 1. In Figure 1, square boxes are used to indicate observed variables (zi ,
i = 1, . . . , 8), circles are used to represent components (�1 and �2) or residuals (ei and d), and
straight arrows are used to signify that the variable at the base of an arrow affects the variable at
the head of the arrow. The figure indicates that each of two components is a linear combination or
a weighted composite of four observed variables, that is, �1 = ∑4

i=1 ziwi , and �2 = ∑8
i=5 ziwi ,

where wi is a component weight. The components are specified to affect the observed variables,
that is, zi = �1ci + ei if i ≤ 4, and zi = �2ci + ei otherwise, where ci is a component loading.
It indicates that all observed variables can be regarded as reflective indicators in a sense similar
to PLS since they are influenced by their components rather than factors (Fornell & Cha, 1994).
It is also found that �1 affects �2, that is, �2 = �1b + d, where b is a path coefficient. Let
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FIGURE 1.
A path model with two components.

Z = [z1, z2, z3, z4, z5, z6, z7, z8],
and

E = [e1, e2, e3, e4, e5, e6, e7, e8, d].

This relationship can then be expressed as

Z




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 w5
0 0 0 0 0 1 0 0 w6
0 0 0 0 0 0 1 0 w7
0 0 0 0 0 0 0 1 w8



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= Z




w1 0
w2 0
w3 0
w4 0
0 w5
0 w6
0 w7
0 w8




[
c1 c2 c3 c4 0 0 0 0 b
0 0 0 0 c5 c6 c7 c8 0

]
+ E,

ZV = ZWA + E,

� = �A + E. (2)

In (2), � = [Z, �2], � = [�1, �2], and A = [C, b], where

C =
[

c1 c2 c3 c4 0 0 0 0
0 0 0 0 c5 c6 c7 c8

]
,

and

b =
[

b
0

]
.

We contemplate another, more complicated relationship among variables, presented in Fig-
ure 2. In Figure 2, four components (�1, �2, �3, and �4) are specified, each of which is obtained
as a linear combination of three observed variables. Among them, �1 and �2 do not affect the
observed variables, so that no loadings are involved. Thus, �1 and �2 are associated with forma-
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FIGURE 2.
A path model with four components.
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tive indicators since they are simply formed by their observed variables (Fornell & Cha, 1994).
On the other hand, �3 and �4 are associated with reflective indicators as in the previous example.
Moreover, both �1 and �2 affect �3, which influences �4. Let

Z = [z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12],
and

E = [e7, e8, e9, e10, e11, e12, d1, d2].
Then, the relationship in Figure 2 can be expressed as

Z




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 w7 0
0 1 0 0 0 0 w8 0
0 0 1 0 0 0 w9 0
0 0 0 1 0 0 0 w10
0 0 0 0 1 0 0 w11
0 0 0 0 0 1 0 w12




= Z




w1 0 0 0
w2 0 0 0
w3 0 0 0
0 w4 0 0
0 w5 0 0
0 w6 0 0
0 0 w7 0
0 0 w8 0
0 0 w9 0
0 0 0 w10
0 0 0 w11
0 0 0 w12







0 0 0 0 0 0 b1 0
0 0 0 0 0 0 b2 0
c7 c8 c9 0 0 0 0 b3
0 0 0 c10 c11 c12 0 0


 + E,

ZV = ZWA + E,

� = �A + E. (3)

In (3), � = [z7, z8, z9, z10, z11, z12, �3, �4], � = [�1, �2, �3, �4], and A = [C, B], where

C =




0 0 0 0 0 0
0 0 0 0 0 0
c7 c8 c9 0 0 0
0 0 0 c10 c11 c12


 , and B =




b1 0
b2 0
0 b3
0 0


 .

As shown in the examples, V, W, and A in (1) are structured according to the model spec-
ified. When a component is exogenous as well as endogenous, for example, �2 in (2), V and W
share a column of the same weights for the component. The proposed model deals with compo-
nents or weighted composites of observed variables rather than factors. This is similar to PLS. It
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is straightforward to capture both formative and reflective indicators in the model as seen in (3),
which is also comparable to PLS. All PLS models are composed of two submodels such as the
structural (inner) model between components and the measurement (outer) model between ob-
served variables and components. In PLS, the submodels entail their own optimization criterion
to be minimized separately for parameter estimation. On the other hand, the proposed model
deals with such submodels in a unified algebraic formulation, so that it can construct a single
optimization criterion for parameter estimation, allowing an overall measure of model fit.

2.2. Parameter Estimation

We estimate the unknown parameters V, W, and A in such a way that the sum of squares of
the residuals, E = ZV − ZWA = � − �A, is as small as possible. This amounts to minimizing

f = SS(ZV − ZWA)

= SS(� − �A), (4)

with respect to V, W, and A, where SS(X) = trace(X′X). The components in � and/or � are
subject to normalization for identification purposes, for example, �′

1�1 = 1 in (2).
We cannot solve (4) in an analytic way since V, W, and A can comprise zero or any fixed

elements. Instead, we develop an alternating least squares (ALS) algorithm (de Leeuw, Young,
& Takane, 1976) to minimize (4). In general, ALS can be viewed as a special type of the FP
algorithm where the fixed point is a stationary (accumulation) point of a function to be optimized.
The proposed ALS algorithm consists of two steps: In the first step, A is updated for fixed V and
W. In the second step, V and W are updated for fixed A.

To update A, in the first step, (4) can be re-written as

f = SS(vec(�) − vec(�A))

= SS(vec(�) − (I ⊗ �)vec(A)), (5)

where vec(X) denotes a supervector formed by stacking all columns of X one below another,
and ⊗ denotes a Kronecker product. Let a denote the vector formed by eliminating zero elements
from vec(A). Let � denote the matrix formed by eliminating the columns of I⊗� corresponding
to the zero elements in vec(A). Then, the least squares estimate of a for fixed V and W is obtained
by

â = (�′�)−1�′vec(�). (6)

The updated A is reconstructed from â. It is assumed that �′� is nonsingular. If it is not, we
may use any g-inverse in (6). It is convenient to use the Moore–Penrose inverse to obtain a unique
solution.

The second step updates V and W for fixed A. As seen in (2) and (3), some columns of
parameters are often duplicated over V and W, while other columns are included in either V
or W. Therefore, each column in V and W should be separately updated. To make the problem
simple, suppose for now that we only estimate a single parameter, s, which is shared by V and
W. Let vp and wq denote the pth and qth columns in V and W, respectively (p = 1, . . . , P;
q = 1, . . . , Q). Suppose that vp and wq are common for V and W, so that s = vp = wq . Let
� = WA. Let V(−p) denote V whose pth column is the vector of zeros. Let V∗

(p)
denote V

whose columns are all zero vectors except the pth column. Let �(−q) denote a product matrix
of W whose qth column is the vector of zeros and A whose qth row is the zero vector. Let �∗

(q)

denote a product matrix of W whose columns are all zero vectors except the pth column and A
whose rows are all zero vectors except the qth row. Let e′

p denote a row vector whose elements
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are all zeros except the pth element being unity. Let a′
q denote the qth row of A. To update s,

then, (4) can be re-expressed as

f = SS(Z[V − �])
= SS(Z[(V(−p) + V∗

(p)) − (�(−q) + �∗
(q))])

= SS(Z[(V∗
(p) − �∗

(q)) − (�(−q) − V(−p))])
= SS(Z[s(e′

p − a′
q) − �])

= SS(vec(Zs�′) − vec(Z�))

= SS((� ⊗ Z)s − vec(Z�)), (7)

where �′ = e′
p − a′

q , and � = �(−q) − V(−p).
Let P and Q denote the numbers of columns consisting of unknown parameters in V and

W, respectively. Let U denote the number of common columns in V and W. Let K = P +Q−U .
To update all parameters in V and W, then, (7) can be generalized as

f =
K∑

k=1

SS((� ⊗ Z)sk − vec(Z�)). (8)

In (8), �′ and � are defined as follows:

�′ =



e′
p − a′

q if sk is shared by V and W
e′

p if sk = vp

a′
q if sk = wq

, (9)

and

� =



�(−p) − V(−q) if sk is shared by V and W
� − V(−p) if sk = vp

V − �(−q) if sk = wq

. (10)

Let �k denote the vector formed by eliminating any fixed elements from sk . Let 	 denote the
matrix formed by eliminating the columns of � ⊗ Z corresponding to the fixed elements in sk .
Then, the least squares estimate of �k is obtained by

�̂k = (	′	)−1	′vec(Z�). (11)

The updated sk is recovered from �̂k . In (8), we see that updating sk is dependent on other pa-
rameter estimates in V and W. To assure convergence, therefore, we must immediately replace
the previously estimated parameter column by the newly estimated (and normalized if necessary)
one. When sk is included in both V and W, the updated sk should be substituted for the corre-
sponding columns in V and W. If 	′	 is singular, again, we may use the Moore–Penrose inverse
to obtain a unique solution in (11).

We alternate the two main steps until convergence is reached, that is, until the decrease in
the function value falls below a certain threshold value, say 10−4. A few remarks concerning
the proposed algorithm are in order. First of all, the ALS algorithm monotonically decreases the
value of criterion (4), which is also bounded from below. The algorithm is therefore convergent.
However, it does not guarantee that the convergence point is the global minimum. This so-called
convergence to nonglobal minimum problem may be avoided in two ways (e.g., ten Berge, 1993).
When we choose good (or rational) initial values, the function value is likely to start near the
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global minimum, and it is more likely to obtain the global minimum. In GSCA, we may apply
constrained components analysis (Takane, Kiers, & de Leeuw, 1995) to Z, which can be regarded
as a component-based alternative to confirmatory factor analysis (Kiers, Takane, & ten Berge,
1996). We may then employ the resultant component weights as rational starts for V and W. The
initial values for A are simply obtained by the least squares estimate, given V and W. The second
possible remedy is to repeat the ALS procedure with many random initial starts. The obtained
function values after convergence are compared, and the solution associated with the smallest
one is chosen.

When N is large relative to J , the above algorithm may be made more efficient by the
following procedure. Let Z = QR′ be a portion of the QR decomposition of Z, pertaining to the
column space of Z, where Q is an N by J orthonormal matrix, so that Q′Q = I, and R′ is a J by
J upper-triangular matrix. Then, (4) can be rewritten as follows:

f = SS(QR′V − QR′�)

= SS(Q(R′V − R′�))

= SS(R′V − R′�), (12)

It is computationally more efficient to minimize (12) instead of (4) because the size of R′ is
usually much smaller than Z. Moreover, this procedure allows us to use covariance or correlation
matrices instead of data matrices because Z′Z = RR′, where 1

N Z′Z is a covariance matrix if Z
is columnwise-centered and a correlation matrix if Z is standardized.

In GSCA, the overall fit of a hypothesized model is measured by the total variance of all the
endogenous variables explained by the specified model predictions. This is given by

Fit = 1 − SS(� − �A)

SS(�)
. (13)

This fit index ranges from 0 to 1. The larger the fit value, the more variance of the endogenous
variables is explained by the model. It is a function of the sum of the squared residuals that sum-
marizes the discrepancies between the model and the data. This kind of overall fit measure allows
the evaluation of the adequacy of the whole model (Bollen, 1989, p. 256) and makes it possible
to compare different models. Nonetheless, it is also crucial to examine the local goodness of fit
of individual parameter estimates (Bollen, 1989, p. 281). For example, we may check for the
loadings (equal to the correlations between observed variables and their component) and squared
multiple correlations (equal to the squared loadings) for individual observed variables to evaluate
the adequacy of components. We may also look at the standard errors or confidence intervals of
parameter estimates to examine their reliability. Besides such statistical measures of model fit,
nonstatistical considerations such as model interpretability often play a role in model evaluation,
although they are usually more difficult to justify since they are largely subjective (Browne &
Cudeck, 1993, p. 136).

We may use resampling methods such as the jackknife and the bootstrap methods to calcu-
late standard errors of parameter estimates. In GSCA, the standard errors are estimated by the
bootstrap method (Efron, 1982). The bootstrapped standard errors or confidence intervals can be
used to assess the reliability of the parameter estimates.

We can test a variety of hypotheses on parameters by incorporating linear constraints into the
model. The linear constraints may be specified by either the reparametrization or the null-space
method (Böckenholt & Takane, 1994; Takane, Yanai, & Mayekawa, 1991). The former method
specifies the space spanned by column vectors of a constraint matrix, while the latter specifies its
ortho-complement space. In GSCA, all linear constraints are imposed by the reparametrization
method. For example, let M denote a matrix of linear constraints on a. In the step of (6), we
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incorporate M into a as follows:

a = M
, (14)

for some 
. A least squares estimate of 
 is then given by


̂ = (M′�′�M)−1M′�′vec(�), (15)

which leads to

â = M
̂ = M(M′�′�M)−1M′�′vec(�). (16)

This approach is called the projection method (Seber, 1984, pp. 403–405; Takane, Yanai, &
Mayekawa, 1991). However, it is sometimes easier to specify constraints in the null-space form
(e.g., equality or zero constraints). In such cases, the constraints are first expressed in the null-
space form, and then transformed into the reparametrization form. The transformation is straight-
forward. Let

N′a = 0 (17)

represent the constraints in the null space form. Suppose that the first and the last elements of
a are equal; then, N′ reduces to a vector in which the first element is 1, the last element is
−1, and other elements are zeros. We may reparametrize (17) into the form of (14) by defining
M = I−N(N′N)−N′. This implies that Ker(N′) = Sp(M), where Ker(N′) denotes the null space
of N′, that is, the set of vectors u such that N′u = 0, and Sp(M) denotes the space spanned by
the column vectors of M. Linear constraints on the parameters in V and W can be imposed in a
similar way.

2.3. Extensions of the Generalized Structured Component Analysis Model

The GSCA model may be readily extended in various ways. In particular, here we discuss
how GSCA is extended to handle higher-order components (i.e., components nested within other
components) and multi-group comparisons. It is also shown that the extended models can be
expressed in essentially the same form as (1), so that essentially the same estimation procedure
can be used to fit them.

We first discuss how to handle higher-order components in GSCA. For simplicity, let us
suppose a path model with a second-order component, displayed in Figure 3. In Figure 3, the
first-order component (�1 and �2) are considered as the reflective indicators for the second-order
component (�3). Let

w1 = [ w1 w2 0 0 0 0 ]′, w2 = [ 0 0 w3 w4 0 0 ]′,
w3 = [ 0 0 0 0 w5 w6 ]′, and w4 = [ w7 w8 0 ]′

denote the vectors of weights for �1, �2, �3, and �4, respectively. Let

A =




c1 c2 0 0 0 0 0 0 0
0 0 c3 c4 0 0 0 0 0
0 0 0 0 c5 c6 0 0 0
0 0 0 0 0 0 c7 c8 b


 .
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FIGURE 3.
A path model with a second-order component.

To capture the second-order component relationship, the GSCA model may be specified as fol-
lows.

Z [I6, w1, w2, w3] = Z [w1, w2, w3] [I3, w4] A + E,

ZV = ZW(1)W(2)A + E, (18)

where It is an identity matrix of order t , V = [I6, w1, w2, w3], W(1) = [w1, w2, w3], and W(2) =
[I3, w4]. To include the hth-order component, therefore, the GSCA model may be generally
expressed as

ZV = ZW̃A + E, (19)

where

W̃ =
H∏

h=1

W(h). (20)

In (20), W(h) denotes the matrix consisting of component weights associated with the hth-order
components (h = 1, . . . , H ), and each hth-order component is restricted to be of unit length
for identification. Model (19) is virtually the same form as (1). Hence, essentially the same ALS
algorithm may be used to fit the model: In the second estimation step of the algorithm, each
column in V and W̃ is successively updated.

GSCA also allows multi-group comparison in a simple way, which fits the same path model
to more than one group of cases simultaneously. Suppose that we fit the same model to each of
L groups, that is,

ZlVl = ZlWlAl + El ,

�l = �lAl + El , (21)
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where �l = ZlVl , and �l = ZlWl(l = 1, . . . , L). Here the structures of Wl and Al are identical
across L groups. This can be re-expressed as


�1
...

�L


 =




�1 0
. . .

0 �L







A1
...

AL


 +




E1
...

EL


 ,

�̃ = �̃Ã + Ẽ, (22)

where

�̃ = [
�′

1 · · · �′
L

]′
, �̃ = diag

[
�1 · · · �L

]
,

Ã = [
A′

1 · · · A′
L

]′
, and Ẽ = [

E′
1 · · · E′

L

]′
.

Model (22) is essentially the same as (1), and the same optimization procedure can be used. To
test structural hypotheses concerning the parameters across L groups (e.g., equality among some
parameters across groups), L sets of parameters can be regarded as a single set of parameters
as in a single group, so that the same procedure in section 2.2 can be used. If (22) is applied to
covariance/correlation matrices rather than Zl , we use NlSl , where Sl = 1

Nl
Z′

lZl is the covariance
or correlation matrix of Zl , and Nl is the sample size of the lth group. We may also easily compare
the means of the components in �l across groups. In this case, however, the unstandardized data
should be analyzed instead of the standardized data since the means are a priori eliminated in the
standardized data. PLS is unable to deal with multi-group comparison in the same way as GSCA
is, since it requires a single formulation of the models for L groups as in (22). PLS can only fit
the same model to L groups separately, so that it is not feasible to examine any hypotheses on
parameters across groups.

We wrote a MATLAB program to implement the parameter estimation procedures for
GSCA and its extensions. The MATLAB program was used for a simulation study and an actual
data analysis, which are discussed in the following sections.

3. Recovery of Parameters in Small Samples

We performed a Monte-Carlo simulation to investigate how well GSCA recovered param-
eters in small samples. For the simulation study, we employed the path model of (2), and chose
the parameter values of the model as follows: All component weights, w’s, were equal to 0.3, all
component loadings, c’s, were 0.8, and the path coefficient, b, was equal to 0.3. These popula-
tion values were largely chosen from previous studies. They also seem to be satisfactory in terms
of practical guidance for simulation studies on path analysis with latent variables (e.g., Paxton,
Curran, Bollen, Kirby, & Chen, 2001): For example, a standardized regression coefficient is rec-
ommended to be larger than .10. We also pre-specified the elements of the covariance matrix of
E, denoted by �E , as follows:

�E =




1
0.3 1
0.3 0.3 1
0.3 0.3 0.3 1
0.1 0.1 0.1 0.1 1
0.1 0.1 0.1 0.1 0.3 1
0.1 0.1 0.1 0.1 0.3 0.3 1
0.1 0.1 0.1 0.1 0.3 0.3 0.3 1
0 0 0 0 0 0 0 0 1




.
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TABLE 1.
The congruence coefficients between parameters and
estimates obtained from different sample sizes (1,000
replications per sample size).

Mean S.D. Min Max

N = 10 0.908 0.103 0.432 0.997
N = 30 0.971 0.034 0.541 0.997
N = 50 0.981 0.013 0.848 0.997
N = 75 0.984 0.009 0.907 0.996
N = 100 0.986 0.007 0.940 0.996
N = 200 0.988 0.004 0.968 0.995

That is, the correlations between the residuals associated with the same component were
equal to 0.3, the correlations between the residuals across different components were equal
to 0.1, and the correlations between d and other residuals were equal to zero. These popula-
tion covariances were also selected on the basis of estimates obtained from previous studies
with the same model. Furthermore, we assumed that E ∼ N(0, �E ). This led to Z ∼ N (0,
(��′)−1��E �′(��′)−1), where � = V − WA, since (1) can be re-expressed as Z� = E. Let
�Z = (��′)−1��E �′(��′)−1, and let RR′ = �Z . Let Y denote an N by T matrix whose
columns were generated from N (0, 1). Then Z could be generated from YR.

In the Monte-Carlo simulation, sample sizes of Z varied as follows: 10, 30, 50, 75, 100,
and 200 observations. For each sample size, 1,000 replications were obtained. We used the true
parameter values as the initial values for the ALS estimation in each replication so as to speed
up convergence and to increase the possibility of convergence to the global minimum. We calcu-
lated the congruence coefficient (Tucker, 1951) between parameters and estimates as a recovery
measure, which is defined as follows: Let 
 and � denote the vectors of the true parameters and
the estimates from a single replication, respectively. Then, the congruence coefficient is given by

 ′�/

√

 ′


√
�′�.

Table 1 provides the descriptive statistics of the recovery measure obtained from different
sample sizes. GSCA converged in all cases. As seen in the table, even when the sample size is
10, the mean congruence coefficient between parameters and estimates (.908) is greater than .90,
which is a conventional rule of thumb criterion as an acceptable degree of similarity (Mulaik,
1972). Therefore, the simulation results suggest that GSCA performs acceptably well in small
samples in terms of recovery of parameters. In this study, indeed, 50 observations are likely to
recover parameters sufficiently well since even the minimum congruence coefficient is close to
.90 and also the mean congruence coefficient seems to increase slowly beyond the sample size.

4. Application: The Organizational Identification Data

The present example is part of the organizational identification data used in Bergami and
Bagozzi (2000). It consists of a sample of 305 employees (male = 157 and female = 148) from
the electronics division of a large conglomerate in South Korea. From the data, we used 21 items
associated with four components, such as organization prestige, organizational identification, af-
fective commitment (joy), and affective commitment (love). The 21 items are presented in the
Appendix. According to Bergami and Bagozzi (2000), organization prestige represents the per-
ception of a member of the organization that their significant others (relatives, friends, and so
on) believe that the organization is well-approved. Organizational identification is “a form of
social identification whereby a person comes to view him- or herself as a member of a particu-
lar organization” (Bergami & Bagozzi, 2000, p. 557). Affective commitment (joy) and affective
commitment (love) indicate two distinct types of emotional attachment to the organization: the
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former (joy) is “happiness arising from the organization” (Bergami & Bagozzi, 2000, p. 560),
and the latter (love) is “emotional attraction or affection towards the organization” (Bergami &
Bagozzi, 2000, p. 560). We assumed a path model with the components, in which organization
prestige was defined as a linear combination of eight items (org pre1–org pre8), organizational
identification was as a linear combination of the six items proposed by Mael (1988) (org ident1–
org ident6), and affective commitment (joy) and affective commitment (love) as linear combina-
tions of four items (ac joy1–ac joy4) and three items (ac love1–ac love3), respectively, among
the seven items for affective commitment, developed by Allen and Meyer (1990). Based on the
findings in Bergami and Bagozzi (2000), we further assumed that organization prestige had an
effect on organizational identification, and organizational identification had influences on both
affective commitment (joy) and affective commitment (love). The specified model is presented
in Figure 4.

To make the figure more concise, we present only component loadings (c1 to c21) and path
coefficients (b1, b2, and b3) here. The component weights, denoted by w1 to w21, were also
specified in the same order as the component loadings.

We applied GSCA to fit the specified model simultaneously to male and female groups in
order to examine the differences in parameter estimates between the groups. We also applied
PLS-Graph 3.0 (Chin, 2001), to the same data for the comparison of performance with GSCA.
PLS-Graph was applied to fit each of the groups separately since PLS cannot make a single
formulation for simultaneous analysis of the two groups such as (22). In both GSCA and PLS-
Graph, we calculated the bootstrapped standard errors of all parameter estimates based on 100
bootstrap samples.

 org_pre1  

  org_ident1  

organizational
identification

  organizational 
prestige  

affective 
commitment (joy)  

affective 
  commitment (love) 

   c 9 

b3
 

b1 

  org_ident2    org_ident3    org_ident4    org_ident5    org_ident6  

c10    c 11 c12 c13 c14 

 org_pre2  

 org_pre3  

 org_pre4  

 org_pre5  

 org_pre6  

 org_pre7  

 org_pre8  

 ac_joy1  

 ac_joy2  

 ac_joy3  

 ac_joy4  

 ac _love1  

c18 

c17  

 ac_love2  

 ac_love3  

  c 19 

 b2 

c1 

    c 8 

    c 6 

    c 7 

c2 

c3 

c4 

  c 5 

c20 

c21 

  c 15 

   c 16 

FIGURE 4.
The specified path model with components for the organizational identification data.
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TABLE 2.
The component weight estimates and their standard errors in the parenthesis obtained from the unconstrained and
constrained multi-group comparison analyses for the organizational identification data.

GSCA PLS-Graph

Unconstrained Constrained Unconstrained

Male Female Male Female Male Female

w1 .16 (.01) .15 (.01) .16 (.01) .15 (.01) .13 (.03) .16 (.04)
w2 .16 (.01) .16 (.01) .16 (.01) .17 (.01) .16 (.03) .16 (.03)
w3 .14 (.01) .15 (.01) .14 (.01) .16 (.01) .22 (.06) .12 (.03)
w4 .16 (.01) .16 (.01) .16 (.01) .16 (.01) .11 (.04) .14 (.02)
w5 .16 (.01) .16 (.01) .16 (.01) .15 (.01) .13 (.04) .17 (.03)
w6 .17 (.01) .16 (.01) .17 (.01) .16 (.01) .17 (.04) .19 (.03)
w7 .15 (.01) .15 (.01) .15 (.01) .15 (.01) .17 (.03) .15 (.03)
w8 .17 (.01) .15 (.01) .17 (.01) .15 (.01) .16 (.01) .13 (.03)
w9 .22 (.01) .24 (.02) .22 (.01) .24 (.02) .21 (.01) .24 (.04)
w10 .21 (.01) .23 (.01) .21 (.01) .23 (.02) .20 (.02) .21 (.04)
w11 .17 (.01) .21 (.01) .17 (.01) .21 (.01) .17 (.02) .22 (.04)
w12 .23 (.01) .23 (.02) .23 (.01) .23 (.02) .26 (.02) .24 (.04)
w13 .22 (.01) .24 (.01) .22 (.01) .24 (.01) .23 (.02) .27 (.03)
w14 .20 (.01) .25 (.02) .20 (.01) .25 (.02) .18 (.02) .21 (.03)
w15 .31 (.01) .33 (.03) .31 (.01) .33 (.03) .31 (.03) .22 (.06)
w16 .31 (.01) .39 (.02) .31 (.02) .39 (.02) .29 (.03) .40 (.05)
w17 .34 (.02) .35 (.02) .34 (.02) .35 (.02) .35 (.03) .38 (.06)
w18 .30 (.02) .28 (.03) .30 (.02) .28 (.03) .32 (.03) .34 (.06)
w19 .44 (.02) .48 (.04) .44 (.02) .48 (.04) .40 (.05) .44 (.12)
w20 .40 (.02) .43 (.06) .40 (.02) .43 (.07) .36 (.08) .19 (.13)
w21 .41 (.02) .47 (.05) .42 (.02) .47 (.05) .48 (.07) .65 (.12)

GSCA provides that the overall goodness of fit of the specified model is equal to .60, indicat-
ing that about 60% of the total variance of all endogenous variables in both groups is accounted
for by the specified model. The component weights and their bootstrapped standard errors esti-
mated from GSCA and PLS-Graph are given in Table 2 (see the unconstrained solutions).

It is found that the standard errors of the estimates obtained from PLS-Graph seem to be
bigger than those from GSCA. In PLS-Graph, the component weight estimate for ac love2 in the
female group (w20 = .19) appears to be much smaller (and nonsignificant) compared to those for
ac love1 (w19 = .44) and ac love3 (w21 = .65). This seems to be inconsistent with the fact that
the correlations among the three observed variables are similar, that is, corr(ac love1, ac love2)
= .27, corr(ac love1, ac love3) = .32, and corr(ac love2, ac love3) = .26. On the other hand,
the component weight estimates for the same variables look similar to one another and are all
significant in GSCA. Despite these differences between the methods, overall, they provide quite
similar component weight estimates for the two groups. In general, the weight estimates for each
component are similar to one another and significant in both groups, indicating that all of them
contribute equally well to determining their components.

The component loadings and their bootstrapped standard errors estimated from GSCA and
PLS-Graph are given in Table 3 (see the unconstrained solutions). Again, both methods provide
quite similar loading estimates overall, although the loading estimate for ac love2 in the female
group (c20 = .49) looks smaller than those for ac love1 (c19 = .75) and ac love3 (c21 = .85)
in PLS-Graph. In both male and female groups, the loading estimates of all components are
high and significant. Also, the squared multiple correlations (corresponding to the squared load-



Integre Tech. Pub. Co., Inc. Psychometrika August 13, 2004 1:30 p.m. hwang-takane Page 95

HEUNGSUN HWANG AND YOSHIO TAKANE 95

TABLE 3.
The component loading estimates and their standard errors in the parenthesis obtained from the unconstrained
and constrained multi-group comparison analyses for the organizational identification data.

GSCA PLS-Graph

Unconstrained Constrained Unconstrained

Male Female Male Female Male Female

c1 .80 (.04) .77 (.03) .80 (.04) .76 (.03) .78 (.05) .77 (.04)
c2 .78 (.04) .86 (.02) .79 (.04) .85 (.02) .79 (.04) .85 (.02)
c3 .71 (.05) .81 (.03) .72 (.05) .81 (.03) .76 (.04) .79 (.04)
c4 .80 (.06) .82 (.04) .79 (.06) .81 (.03) .77 (.08) .82 (.04)
c5 .80 (.04) .82 (.04) .79 (.04) .80 (.04) .77 (.06) .82 (.04)
c6 .84 (.04) .84 (.04) .84 (.03) .84 (.04) .85 (.04) .85 (.04)
c7 .76 (.05) .78 (.03) .76 (.04) .79 (.03) .79 (.04) .78 (.05)
c8 .84 (.03) .78 (.05) .83 (.04) .77 (.05) .82 (.05) .77 (.07)
c9 .84 (.03) .74 (.04) .84 (.03) .73 (.04) .84 (.04) .72 (.04)
c10 .80 (.03) .71 (.05) .80 (.03) .71 (.05) .79 (.04) .70 (.06)
c11 .63 (.05) .64 (.05) .62 (.06) .64 (.05) .64 (.06) .65 (.05)
c12 .86 (.02) .72 (.06) .86 (.02) .71 (.07) .87 (.02) .74 (.07)
c13 .84 (.03) .73 (.05) .84 (.03) .73 (.05) .85 (.03) .75 (.04)
c14 .77 (.04) .76 (.05) .77 (.04) .76 (.05) .76 (.05) .74 (.06)
c15 .78 (.04) .72 (.05) .79 (.04) .72 (.05) .79 (.05) .64 (.08)
c16 .77 (.03) .83 (.03) .77 (.04) .84 (.03) .77 (.04) .83 (.04)
c17 .85 (.02) .75 (.05) .84 (.03) .75 (.04) .85 (.02) .78 (.05)
c18 .76 (.04) .60 (.08) .76 (.04) .60 (.08) .77 (.04) .64 (.07)
c19 .84 (.03) .75 (.05) .84 (.03) .75 (.05) .83 (.05) .75 (.11)
c20 .77 (.04) .67 (.10) .76 (.05) .67 (.11) .75 (.08) .49 (.16)
c21 .79 (.04) .74 (.07) .80 (.04) .74 (.06) .83 (.04) .85 (.07)

TABLE 4.
The path coefficient estimates and their standard errors in the parenthesis obtained from the unconstrained and
constrained multi-group comparison analyses for the organizational identification data.

GSCA PLS-Graph

Unconstrained Constrained Unconstrained

Male Female Male Female Male Female

b1 .37 (.09) .35 (.07) .36 (.06) .36 (.06) .40 (.08) .35 (.05)
b2 .70 (.04) .46 (.05) .69 (.05) .46 (.05) .71 (.04) .48 (.06)
b3 −.45(.09) −.31(.07) −.45(.08) −.31(.08) −.46(.08) −.36(.06)

ings) of the observed variables all turn out to be significant. These indicate that the components
seem to be well constructed to account for the large portion of the variances of the observed
variables.

Table 4 shows the path coefficient estimates for both groups obtained from GSCA and PLS-
Graph (also see the unconstrained solutions). Both methods provide quite similar path coefficient
estimates for the male and female groups, leading to essentially the same interpretations. In both
groups, organizational prestige has a significant and positive effect on organizational identifica-
tion. It suggests that the more both male and female employees perceive that important others
believe that their organization is well-regarded, the more they perceive themselves as a mem-
ber of the organization. In addition, organizational identification has a positive and significant
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influence on affective commitment (joy) whereas a negative and significant effect on affective
commitment (love) in both groups (note that the items on affective commitment (love) are de-
scribed in a negative way). It suggests that in both groups the employees with high levels of
organizational identification show high levels of the two types of emotional attachment to the
organization.

It is shown from GSCA that the degree of the impact of organization prestige on orga-
nizational identification is similar in male (.37) and female (.35) groups. We thus decided to
further hypothesize that the effect of organization prestige on organizational identification was
equivalent across the two groups. This assumption was incorporated by imposing across-group
equality constraints. As mentioned in section 2.3, PLS is unable to accommodate such a con-
strained multi-group comparison. Thus, we only applied GSCA for the constrained simultaneous
analysis of the groups.

The component weight and loading estimates of the observed variables obtained from the
constrained case are also given in Tables 2 and 3, respectively (see the constrained solutions in
GSCA). All of the estimates are virtually identical to those from the unconstrained analysis. The
path coefficient estimates from the constrained case are presented in Table 4 (also see the con-
strained solutions in GSCA). Due to imposing the equality constraints, the effect of organization
prestige on organizational identification turns out to be identical across the two groups (.36). The
other path coefficient estimates from the constrained case are almost identical to those from the
unconstrained case. The overall goodness of fit of the constrained model is .60, which is essen-
tially the same fit as that obtained from the unconstrained analysis. Therefore, it may be safe to
say that our hypothesis regarding the parameters across the groups is reasonable. The constrained
analysis yields simpler interpretations of the solutions, reducing the number of parameters to be
estimated.

5. Concluding Remarks

In this paper, we proposed an alternative method, GSCA, to PLS for path analysis with
components. GSCA can handle the relationships among components and observed variables in a
unified algebraic framework. It leads to a well-defined least squares criterion to estimate model
parameters, thus allowing an overall model fit measure. A straightforward estimation algorithm is
developed to optimize the overall fitting criterion. According to our experience with simulation
and actual data, the algorithm seems to be efficient. It converges fast, and seems to be hardly
afflicted by the nonglobal minimum problem.

It was observed that GSCA offered quite similar results to those obtained from PLS, while
providing additional advantages such as an overall model fit measure and multi-group compar-
isons with across-group constraints. It suggests that GSCA may be a suitable alternative to PLS.
However, further studies are necessary for more careful comparisons between the methods. In
particular, it may be useful to conduct a simulation study on the performance of the methods,
considering a variety of experimental conditions such as sample size, model complexity, and so
forth.

Several component analysis methods with a global optimization procedure have been pro-
posed to fit path models with components (e.g., Hwang & Takane, 2002; Takane et al., 1995).
However, they are limited to a particular type of relationship only. For example, they cannot
fit path models with endogenous components. McDonald (1996) proposed a fairly comprehen-
sive alternative method to PLS. Nonetheless, his method was developed from the perspective
of covariance structure analysis (Bock & Bargmann, 1966; Jöreskog, 1970), so that it typically
assumes reflective indicators and suffers from the problem of factor score indeterminacy. On
the other hand, GSCA can deal with both formative and reflective indicators in a straightforward
way and also is free from the factor score indeterminacy problem. Furthermore, GSCA subsumes
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existing standard multivariate techniques as special cases, for example, (multivariate) regression
analysis, ANOVA, discriminant analysis, canonical correlation analysis, and (constrained) prin-
cipal components analysis. This flexibility of GSCA broadens its capacity.

A number of topics may be considered to further enhance the capability of GSCA. For ex-
ample, all observed variables are so far assumed to be continuous or numerical. However, GSCA
may be extended to deal with categorical variables through certain data transformations. In par-
ticular, the optimal scaling approach (e.g., Young, 1981) seems to be attractive in the context
of the method since it may be readily subjected to the ALS estimation procedure. It may also
be important to handle missing observations, which frequently appear in large data sets. A least
squares imputation approach (e.g., Gabriel & Zamir, 1979) seems to be applicable for GSCA
since it can easily be made compatible with the ALS estimation procedure. The least squares im-
putation approach may be further combined with the bootstrap, yielding a nonparametric multiple
imputation method that takes into account a possibility of the uncertainty related to estimation
of missing observations (e.g., Efron, 1994). This nonparametric multiple imputation approach is
more consistent with GSCA, which is basically a distribution-free technique, rather than certain
parametric multiple imputation methods such as data augmentation (Schafer, 1997). In addition,
it is necessary to study robust estimation since GSCA may not be robust against outliers as far as
it is based on solving a simple (unweighted) least squares criterion, which amounts to minimiz-
ing the sum of the “squared” residuals. Griep, Walkeling, Vankeerberghen, and Massart (1995)
reported that the iteratively reweighted least squares (IRLS) method (Beaton & Tukey, 1974)
performed better at least for the low dimensional PLS than other robust estimation methods.
Therefore, IRLS may be a good candidate to handle outliers in GSCA that usually assumes a sin-
gle component from a set of observed variables. Future research is needed to study the feasibility
of these extensions.

Appendix

The 21 Items Obtained from the Organizational Identification Data
in Bergami and Bagozzi (2000).

For each of the following items, please indicate how much you agree or disagree. Use the
following 5-point scale: 1: strongly disagree; 2: disagree; 3: neither disagree or agree; 4: agree;
5: strongly agree.

Organization prestige

org pre1: My relatives and people close or important to me believe that [Company X] is a
well-known company.

org pre2: My relatives and people close or important to me believe that [Company X] is a
highly respected company.

org pre3: My relatives and people close or important to me believe that [Company X] is an
admired company.

org pre4: My relatives and people close or important to me believe that [Company X] is a
prestigious company.

org pre5: People in general think that [Company X] is a well-known company.

org pre6: People in general think that [Company X] is a highly respected company.

org pre7: People in general think that [Company X] is an admired company.

org pre8: People in general think that [Company X] is a prestigious company.
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Organizational identification

org ident1: When someone criticizes [Company X] it feels like a personal insult.

org ident2: I am very interested in what others think about [Company X].

org ident3: When I talk about [Company X], I usually say “we” rather than “they”.

org ident4: [Company X’s] successes are my successes.

org ident5: When someone praises [Company X] it feels like a personal compliment.

org ident6: If a story in the media criticized [Company X], I would feel embarrassed.

Affective commitment (joy)

ac joy1: I would be very happy to spend the rest of my career with [Company X].

ac joy2: I enjoy discussing [Company X] with people outside of it.

ac joy3: I really feel the problems of [Company X] are my own.

ac joy4: [Company X] has a great deal of personal meaning for me.

Affective commitment (love)

ac love1: I do not feel like part of a family at [Company X].

ac love2: I do not feel emotionally attached to [Company X].

ac love3: I do not feel a strong sense of belonging to [Company X].
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Systems under Indirect Observations II (pp. 55–74). Amsterdam: North-Holland.
Browne, M. W., & Cudeck, R. (1993). Alternative ways to assessing model fit. In K. A. Bollen & J. S. Long (Eds.),

Testing Structural Equation Models (pp. 136–162). Newbury Park, CA: Sage Publications.
Chin, W. W. (2001). PLS-Graph User’s Guide Version 3.0. Soft Modeling Inc.
Coolen, H., & de Leeuw, J. (1987). Least squares path analysis with optimal scaling, Paper presented at the Fifth Inter-

national Symposium of Data Analysis and Informatics. Versailles, France.
de Leeuw, J., Young, F. W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares

method with optimal scaling features. Psychometrika, 41, 471–503.
Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia: SIAM.
Efron, B. (1994). Missing data, imputation, and the bootstrap. Journal of the American Statistical Association, 89, 463–

475.
Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice

theory. Journal of Marketing Research, 19, 440–452.
Fornell, C., & Cha, J. (1994). Partial least squares. In R. P. Bagozzi (Ed.), Advanced Methods of Marketing Research

(pp. 52–78). Oxford: Blackwell.
Gabriel, K. R., & Zamir, S. (1979). Low rank approximation of matrices by least squares with any choice of weights.

Technometrics, 21, 489–498.
Griep, M. I., Wakeling, I. N., Vankeerberghen, P., & Massart, D. L. (1995). Comparison of semirobust and robust partial

least squares procedures. Chemometrics and Intelligent Laboratory Systems, 29, 37–50.
Hanafi, M., & Qannari, E. M. (2002). An alternative algorithm to the PLS B problem. Paper submitted for publication.
Hwang, H., & Takane, Y. (2002). Structural equation modeling by extended redundancy analysis. In S. Nishisato, Y. Baba,

H. Bozdogan, and K. Kanefuji (Eds.), Measurement and Multivariate Analysis (pp. 115–124). Tokyo: Springer
Verlag.



Integre Tech. Pub. Co., Inc. Psychometrika August 13, 2004 1:30 p.m. hwang-takane Page 99

HEUNGSUN HWANG AND YOSHIO TAKANE 99
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