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Abstract 

Quinlan et al. (this issue) use Latent Class Analysis (LCA) to criticize a connectionist 

model of development on the balance-scale task, arguing that LCA shows that this model 

fails to capture a torque rule and exhibits rules that children do not. In this rejoinder we 

focus on the latter problem, noting the tendency of LCA to find small, unreliable, and 

difficult-to-interpret classes. This tendency is documented in network and synthetic 

simulations and in psychological research, and statistical reasons for finding such 

unreliable classes are discussed. We recommend that LCA should be used with care, and 

argue that its small and unreliable classes should be discounted. Further, we note that a 

preoccupation with diagnosing rules ignores important phenomena that rules do not 

account for. Finally, we conjecture that simple extensions of the network model should 

be able to achieve torque-rule performance.  
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A fundamental debate in cognitive science concerns the best theoretical account of 

knowledge representation, processing, and acquisition. Two main computational 

contenders have been the classic symbolic-rule account and the neurally-inspired 

connectionist account. The classic view is that knowledge is represented in rules whose 

propositions refer to objects and events, that processing occurs as rules are selected and 

fired thus generating new symbolic propositions, and that knowledge is acquired by 

learning these symbolic rules. In many connectionist accounts, active knowledge is 

represented in fluctuating unit activations and long-term knowledge is represented as 

connections between units, processing occurs as activations are passed from one layer of 

units to another, and knowledge acquisition results from adjustment of connection 

weights. The symbolic view is sometimes referred to as rule use, and the connectionist 

view as rule following, to the extent that the environment affords regularities that a neural 

network can absorb.1  

The use vs. following debate was joined by Quinlan, van der Maas, Jansen, Booij, 

and Rendell (this issue) in their critique of cascade-correlation connectionist models of 

development on the balance-scale task, one of the most frequently modeled tasks in 

developmental psychology. It is generally beneficial for a computational model to be 

examined from different perspectives than that of the original modelers. But if problems 

with a model are found, by either the original or secondary modelers, this need not trigger 

abandonment of the model. It is often more appropriate to determine whether problems 

can be fixed, particularly if the model offers useful insights, as cascade-correlation has on 

several phenomena including conservation (Shultz, 1998, 2006), seriation (Mareschal & 

Shultz, 1999), transitive inference (Shultz & Vogel, 2004), integration of cues for moving 
                                                 
1 A neural network functions the same whether the training environment is regular or not. But if the 
environment is regular enough to be described in rules, then a neural network might learn to behave as if it 
was following those rules, even though the rules are not explicitly represented as such within the network. 
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objects (Buckingham & Shultz, 2000), pronoun acquisition (Oshima-Takane, Takane, & 

Shultz, 1999; Shultz, Buckingham, & Oshima-Takane, 1994), shift learning (Sirois & 

Shultz, 1998), learning of word stress (Shultz & Gerken, 2005), and habituation of infant 

attention to auditory (Shultz & Bale, 2001) and visual (Shultz & Cohen, 2004) 

information, in addition to balance-scale acquisition (Shultz, Mareschal, & Schmidt, 

1994).  

In this rejoinder, we review available rule-detection methods for the balance scale, 

document and discuss the tendency of LCA methods to find small unreliable classes, 

underscore important balance-scale phenomena that rules cannot capture, and speculate 

about what might be required for neural networks to cover a torque rule.  

Rule Detection for the Balance Scale 

Quinlan et al.’s critique relies on their use of a particular method for detecting rules 

known as Latent Class Analysis (LCA). We begin with a brief comparative review of the 

principal methods for detecting balance-scale rules. The classic Rule-assessment Method 

(RAM) examines patterns of performance across six problem types (Siegler & Chen, 

2002). Use of rule 1 (weight information) is indicated by a pattern of correct performance 

on balance, weight, and conflict-weight problems and incorrect performance on distance, 

conflict-distance, and conflict-balance problems. Rule 2 (weight information, but use of 

distance when the weights are equal across the two sides) is characterized by the same 

pattern as rule 1, but with additionally correct performance on distance problems. In rule 

3, weight and distance information are both used, yielding correct performance on simple 

problems, but confusion on conflict problems. Although Siegler suggested that rule-3 

users guess on conflict problems, others have emphasized use of other rules, such as 

addition, in which the side with the larger sum of weight and distance is predicted to 
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descend (Boom, Hoijtink, & Kunnen, 2001; Ferretti & Butterfield, 1986; Jansen & van 

der Maas, 1997, 2002; Normandeau, Larivee, Roulin, & Longeot, 1989). Rule 4 is 

characterized by successful performance on all six problem types. Because these four 

rules tend to develop in order of their numerical designation, they are often taken as 

evidence that a child is in a particular stage of development. 

To accommodate error variance in human performance, RAM researchers tolerate up 

to 20% deviant responses from these performance patterns. By this criterion, the cascade-

correlation model criticized by Quinlan et al. (this issue) progresses through all four 

stages when trained on randomly-selected problems with a large bias in favor of equal-

distance problems (Shultz, Mareschal et al., 1994).  

More recently, several researchers have argued that LCA is a methodologically 

sounder way to detect rules  (Boom et al., 2001; Jansen & van der Maas, 1997, 2002). In 

exploratory LCA, estimated parameters of a statistically-fitting model differ across latent 

classes, typically designating homogeneous groups of participants that differ from other 

groups (McCutcheon, 1987). Individuals can be sorted into the latent classes based on 

membership probabilities estimated from the model.  

Because LCA requires large numbers of participants and does better with small 

numbers of problems, non-diagnostic problems such as balance and weight problems are 

often omitted from the test set. Also, in recent research, there is often a systematic 

attempt to distinguish the addition rule from the torque rule by including among the 

conflict test problems some that can be solved by either addition or torque and others that 

can only be solved by torque. Torque is a rotational force applied to a lever, multiplied by 

its distance from the lever's fulcrum. Whereas the addition rule compares weight and 

distance sums, the torque rule compares their products.  
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RAM is favored for its transparency, ease of use with relatively small numbers of 

participants, convergence with other measures such as verbalization, stability over 

repeated measurements, prediction of which problems will best promote learning, and 

consistency across a wide variety of problems including conservation, fullness, shadow 

projection, and concepts of velocity, time, and distance (Siegler & Chen, 2002). RAM 

has been criticized for using arbitrary scoring criteria (e.g., 20% tolerance), lack of 

statistical rigor, and inability to assess rules beyond those emphasized by the theoretical 

analysis of integrating two dimensions of information (Jansen & van der Maas, 2002). 

This standard theoretical analysis involves a characterization of rule-based stages (Siegler 

& Chen, 2002). Children are assumed to start with one dimension, begin to include the 

other dimension when the first one fails to differentiate cases, eventually use both 

dimensions but become confused when they conflict, and finally integrate the two 

dimensions correctly. Although it is unclear how the addition rule could be derived from 

this stage analysis, it has been noted as a strategy by researchers using RAM (Ferretti, 

Butterfield, Cahn, & Kerkman, 1985; Normandeau et al., 1989). 

LCA is favored for providing a statistical fit between a model and psychological data, 

avoiding arbitrary scoring criteria, allowing falsification of hypothesized rules, and 

discovery of new rules (Jansen & van der Maas, 1997, 2002). Siegler and Chen (2002) 

countered that only the issue of statistical fit uniquely favors LCA because RAM also 

allows for rule falsification and discovery, and choice of a significance level in LCA is no 

less arbitrary than a tolerance level in RAM. LCA was further criticized for not providing 

stable assessments of rule use over short time periods and for requiring several orders of 

magnitude more subjects than RAM (Siegler & Chen, 2002); it is difficult to find an LCA 

study of the balance scale with fewer than about 500 participants. These two diagnostic 
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techniques each have their advantages and disadvantages and it is difficult to decide 

between them merely by applying them to (usually) different datasets.   

A Problem with LCA: Small, Unreliable Classes 

An apparent difficulty with using LCA to diagnose rules and stages, whether in 

children or in computational models, is its tendency to discover small, unreliable classes 

that are subject to varying interpretations. For example, independent LCA studies of 

human balance-scale performance (Boom et al., 2001; Jansen & van der Maas, 1997, 

2002; Quinlan et al., this issue) produce small, leftover classes with mutually inconsistent 

interpretations. Boom et al. (2001) found classes suggestive of Siegler’s rules 1, 2, 3, 4, 

the addition rule, and several infrequent uninterpretable classes. Jansen and van der Maas 

(1997) found classes for Siegler’s rules 1 and 2, the addition rule, and a no-balance rule 

predicting that the scale would not balance, which was said to be difficult to interpret. 

Jansen and van der Maas (2002) reported classes consistent with Siegler’s rules 1-4, 

addition, a smallest-distance-down rule, a distance-and-guessing-when-weights-are-

unequal rule, a rule that seemed to combine rule 3 with the addition rule, and additional 

difficult-to-interpret classes. It was the smaller classes that tended to be the most difficult 

to replicate across these human studies.  

The LCAs of computer simulations reported by Quinlan et al. (this issue) likewise 

discovered small, unreliable classes. Their combined, multi-group LCA obscures 

differences in results between their two simulations, which might otherwise be regarded 

as replications despite some procedural differences. In the combined analysis, conditional 

probabilities (of falling into a particular response pattern given membership in a 

particular latent class) were restricted to be equal between the two datasets, whereas 

unconditional probabilities (of being in a particular latent class) were estimated 
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separately for each of the two simulations. These restrictions on conditional probabilities 

seem unwarranted given that the two datasets yielded different numbers of classes and 

different unconditional probabilities for these classes. Restricting conditional 

probabilities to be identical across the datasets artificially makes them identical even 

when they are not. With this kind of combined analysis, it is difficult to fully assess 

reliability of classes between the two simulations. But the fact that the two simulations, 

when analyzed separately, produced different numbers of classes suggests that some of 

those classes were not reliable across the simulations.  

The point is that LCA seems to regularly produce problematic rule candidates when 

used in a conventional model-fitting manner. The problem with these extra classes is not 

difficulty of interpretation; humans and artificial neural networks often produce behavior 

that is difficult to interpret in terms of rules. The real problem with extra LCA classes is 

that they are small and inconsistent, suggesting that they might be random and 

meaningless.  

Unless and until LCA techniques are improved, researchers using LCA to detect rules 

should run enough replications to distinguish systematic performance from random 

variation. Quinlan et al.’s (this issue) two studies are insufficient for this purpose, not 

only by being too few but also because replication differences were obscured by 

artificially restricting conditional probabilities to be identical.  

Some of the rules identified in simulations by Quinlan et al. (this issue) have latent 

class probabilities that are quite small, and these small classes are typically difficult to 

interpret. Quinlan et al. interpreted these small classes as rule mixtures, side preferences, 

or balance preferences. For example, their always-balance rule had unconditional 

probabilities of only .03 in the Amsterdam simulation and .00 in the York simulation. 
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Likewise, their right-side-bias rule had unconditional probabilities of .02 in each 

simulation. Rule mixtures also showed very small unconditional probabilities in one 

simulation or the other.  

In this context, one might invoke Boom et al.’s (2001) distinction between classes 

and strategies. Classes refer to a set of response patterns that are statistically similar, as 

revealed by LCA. Strategies (or rules) refer to an interpreted procedure that might 

generate a statistical class. We agree with Boom et al. that classes that cannot be readily 

interpreted as being produced by sensible rules should not be treated as rules. They are 

merely statistical groupings that do not fit a rule interpretation.  

The only balance-scale rules to be reliably diagnosed by LCA in humans are rules 1, 

2, 4, and addition (Boom et al., 2001; Jansen & van der Maas, 1997, 2002). Ignoring the 

small and difficult-to-interpret latent classes just noted, it is interesting that Quinlan et al. 

(this issue) found LCA evidence for rules 1, 2, and addition in cascade-correlation 

networks. Apart from rule 4, these are the same rules consistently found with children 

using LCA.2 Abstracting results across studies thus suggests that problems with 

constructivist connectionist models of the balance scale are few and might be fixable, if 

these networks could achieve rule 4, an issue we return to later.  

LCA of Synthetic Data 

To see if these trends hold with LCA more generally, we generated synthetic data 

from ideal addition and torque rules for four hypothetical conflict problems, two of which 

could be solved by either addition or torque comparisons and two of which could only be 

solved by comparison of torques. The transition from addition to torque rules is the 

transition disputed by Quinlan et al. (this issue) for cascade-correlation networks. To 
                                                 
2 An earlier study (Jansen & van der Maas, 1997) reported that LCA found no human-like rules in a back-
propagation connectionist model of the balance scale (McClelland, 1989). In contrast, RAM techniques 
revealed this model’s progression through the first three rules, but no stable rule 4.  
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allow comparisons with psychological and network data, we generated data for 500 

synthetic cases, in three steps. First we put 215 cases in the frequency column of those 

response patterns representing an addition rule (correct on two addition problems, wrong 

on two torque problems) and a torque rule (correct on all four problems). Then we 

distributed the remaining 70 cases randomly, in a uniform distribution, across all 16 

response patterns, equivalent to assuming a 3-class LCA model. We replicated this 

procedure ten times, with different random selections in each replication.   

For each of the ten replications, frequencies of response patterns were subjected to 

exploratory LCA with the LEM program (Vermunt, 1997), using default parameter 

settings throughout. Model fit was evaluated with the Cressie-Read statistic, a 

generalization of various chi-square statistics (Cressie & Read, 1984). Following LCA 

conventions, we started with a 1-class model and incremented classes by 1 until we 

obtained a nonsignificant Cressie-Read value (indicating that the model fit the data) or 

ran out of degrees of freedom, whichever came first.  

For eight of the ten replications, LCA of frequency data led to rejection of 1- and 2-

class models and acceptance of a 3-class model. In the other two replications, a three-

class model was also rejected. There were insufficient degrees of freedom to proceed 

beyond three classes. The conditional probabilities of being correct for the 3-class model 

are plotted in Figure 1 for replication 5 and in Figure 2 for replication 4. The patterns for 

torque and addition classes were clear and essentially identical across all ten replications. 

But patterns for the small, third classes were difficult to label and inconsistent across 

replications, as portrayed in these Figures. Thus, detection of the torque and addition 

rules was clear and reliable with LCA, but not so for the small third class. Even though 
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this third class was generated by random processes, LCA often gave it a sharply non-

random appearance through its fitting of conditional probability parameters.   

Given that LCA consistently yields unreliable small balance-scale classes in humans, 

neural networks, and synthetic data, we sought to better understand this tendency by 

considering the statistical properties of LCA.   

Statistical Sources of LCA Problems 

Some of the problems with LCA can be traced to the LCA model and the frequency 

data used as input. Maximum Likelihood Estimation (MLE) is the common method for 

parameter estimation in LCA, partly because MLE provides several statistical 

advantages. However, these advantages obtain only when all of the following conditions 

are satisfied: 1) the fitted model is correct, 2) the sample size is sufficiently large, and 3) 

other regularity conditions are met. We discuss each of these conditions in turn and then 

an epistemological problem.  

An LCA model consists of two parts, one statistical and the other parametric. The 

statistical part assumes independent trials and a multinomial probability distribution of 

multiple possible response patterns, only one of which occurs in each trial. The 

parametric part assumes that there are several homogeneous groups in a heterogeneous 

population, with each group member responding to a set of items independently of other 

items (the Local Independence assumption – LI). Each group (latent class) is 

characterized by its size and a set of conditional probabilities of responses to particular 

items. To satisfy the LI assumption, a large number of latent classes typically must be 

assumed, but this tends to produce latent classes that are difficult to interpret 

(Bartholomew, 1987; Hagenaars, 1990; Qu, Tan, & Kutner, 1996).  
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The benefits of MLE emerge only with a sufficiently large sample. However, what 

constitutes a large sample is controversial (Hagenaars, 1990; Wickens, 1989). There are 

2n possible response patterns when there are n dichotomous items, and reliably estimating 

the probabilities of these response patterns requires a large number of trials (subjects). 

There should be at least one, but preferably five or more cases in each response pattern. 

This condition may be difficult to satisfy in practice, particularly when some response 

patterns rarely occur, which is sure to happen with exponential increases in number of 

response patterns. This problem is under active consideration (Bartholomew & Leung, 

2002; Hoijtink, 1998; Reiser & Lin, 1999), but there is currently no commonly-accepted 

solution.  

One of the regularity conditions for the standard asymptotic properties of MLE is that 

LCA parameters must reside in the interior of the parameter space. Ironically however, it 

is often the case that important parameter values (e.g., crisp rules) are actually on the 

boundaries of the parameter space with conditional probabilities of 0 or 1, as exemplified 

throughout LCA research on the balance scale. Although there are some attempts to 

extend asymptotic theory to cover cases in which estimates are subject to inequality 

constraints (Dijkstra, 1992; Shapiro, 1985, 1988), the theory then becomes more 

complicated, and this has not yet been sufficiently digested into the LCA literature or 

software. The only known practical solutions are resampling methods, such as the 

parametric bootstrap (Aitkin, Anderson, & Hinde, 1981; Langeheine, Pannekoek, & van 

de Pol, 1996).   

Moreover, even when all three conditions are met, there is an unresolved 

epistemological issue, namely that there is no statistical method to determine the correct 

number of latent classes. One may argue that goodness-of-fit tests can determine the 
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number of significant latent classes. However, such tests are not designed to do this – 

they are instead designed to determine how many latent classes are needed to satisfy the 

LI assumption. The number of latent classes naturally increases as the sample size 

increases, because with a large sample even a small departure of the model from the data 

becomes significant, and in order to get a satisfactory fit, the number of latent classes has 

to be increased. With number of latent classes directly dependent on sample size, there is 

no correct number of latent classes in LCA. The number of latent classes to extract can 

also depend on the purpose of the analysis. Some researchers want most of the variability 

in the data explained by a model (say, 99%), whereas others are satisfied with only 80%. 

The former retain all the latent classes, while the latter keep only the high-frequency 

classes.  

These are the same reasons why the statistical approach to factor analysis, a related 

technique for finding latent structure, has never found the correct number of common 

factors defining human intelligence and other characteristics. When the sample size is 

large, nominally small correlations become significantly different from zero, and a large 

number of factors are required to explain the correlations. Researchers seeking a simpler, 

more unified picture of intelligence may opt for smaller samples, whereas those 

convinced of the complexity of intelligence can support their position with larger 

samples. Unless and until such statistical problems are solved, our recommendation is to 

confine interpretation of latent classes to those that replicate across studies.   

A Balance-scale Phenomenon that Rules Do Not Cover: The Torque-difference Effect 

 Although not as well known as progression through stages, there is another replicated 

phenomenon in the balance-scale literature known as the torque-difference effect. Torque 

difference on the balance-scale problem is the absolute difference between the torque on 
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one side of the scale and that on the other side. The larger this absolute difference, the 

easier the problem is for children to solve (Ferretti & Butterfield, 1986; Ferretti et al., 

1985). This phenomenon has been noted at every stage of balance-scale development in 

children and in both binary-coded back-propagation (Schmidt & Shultz, 1991) and real-

number-coded cascade-correlation (Shultz, Mareschal et al., 1994) network models.  

The torque-difference effect occurs naturally in neural networks because they are 

sensitive to the actual amounts of input signals, and clearer left-right input differences 

from one side of the scale to the other lead to clearer representations and decisions down 

stream (Shultz, 2003). This effect is immune to crisp symbolic rules because such rules 

care only about the direction of differences, not their actual amounts. For example, a 

symbolic rule characteristic of Stage 1 would specify the side with the larger weight will 

descend, regardless of how much larger it is. The torque-difference effect is generally 

considered to be a perceptual effect in that it is based on intuitions about how a balance 

scale looks on each side. People informally report that they picked one side to descend 

because it looked like it would. There are many such perceptual effects in the cognitive 

developmental literature (Shultz, 2003) – they are the rule rather than the exception!  

One of the unfortunate aspects of a preoccupation with rule diagnosis is the relative 

neglect of such perceptual effects. Such neglect is natural for rule-assessment and LCA 

researchers because crisp rules cannot detect these perceptual effects. This relative 

neglect encompasses not only an inability to detect perceptual phenomena but also the 

design of balance-scale problems with relatively restricted ranges of torque difference. In 

contrast, those willing to look for the torque-difference effect ensure that the training and 

test sets include problems representative of a wide range of torque differences (Shultz, 

Mareschal et al., 1994). A more complete evaluation of balance-scale psychology and 
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models requires coverage of both rule-like consistencies and perceptual effects. One of 

the apparent virtues of connectionist models has been the integration of such cognitive 

and perceptual phenomena within a single computational system. 

  Quinlan et al. (this issue) approvingly cite a symbolic rule-based (ACT-R) model of 

the balance scale for covering the torque-difference effect (van Rijn, van Someren, & van 

der Maas, 2003). However, closer examination reveals that this model shows a torque-

difference effect only with respect to differences in distance but not differences in weight, 

and it shows this only in the vicinity of stage transitions, not throughout development as 

children apparently do. Because of these limitations in this ACT-R model, the torque-

difference effect remains uniquely covered by connectionist models.  

Simulating Rule 4 in Balance Scale Development 

Another important but contentious main point made by Quinlan et al. (this issue) is 

that connectionist models of balance-scale development do not capture rule 4 

performance, which on some theoretical accounts (Siegler & Chen, 2002) involves 

computation and comparison of torques. Quinlan et al. (this issue) correctly point out 

that, because many conflict problems can be solved by adding (rather than multiplying) 

weight and distance, documentation of a torque rule needs to be supported by success on 

problems that cannot also be solved by addition. This distinction is a valuable 

contribution of their and other LCA papers (Boom et al., 2001). It is a distinction that 

could, and probably should, be added to RAM techniques. Indeed the basic idea of 

including problems that distinguish between rules is consistent with RAM assumptions.  

With five pegs and five weights, the problem size used in cascade-correlation 

simulations of the balance scale (Shultz, Mareschal et al., 1994), there are 625 total 

problems, of which just 200 are relatively difficult conflict problems. Only 52 of these 
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conflict problems (dubbed torque problems) actually require a torque rule for correct 

solution because the other 148 conflict problems (dubbed addition problems) can be 

solved correctly by adding distance and weight on each side and comparing these sums.  

Until recently, addition was  routinely ignored in both symbolic (Langley, 1987; 

Newell, 1990; Schmidt & Ling, 1996) and connectionist (McClelland, 1989; Shultz, 

Mareschal et al., 1994) simulations of balance-scale performance, with no attempt to 

distinguish addition from a torque rule by including both torque and addition problems in 

the training and test sets. Thus it is not surprising that LCA methods failed to find 

evidence of a torque rule, distinct from an addition rule, in replications of older 

connectionist models (Jansen & van der Maas, 1997).  

Quinlan et al. (this issue) conclude that such connectionist models may not be able to 

learn a true torque rule. This assessment may be too pessimistic because the notion of 

torque as a product of number of weights and distance from the fulcrum is a rather simple 

multiplicative function, even if it has to be computed on both sides of the fulcrum and the 

larger torque selected as marking the descending side of the scale. An obvious way to see 

if networks can learn to compute and compare torques would be to add more torque 

problems to the training set. Extensive training for up to 1000 epochs with a highly 

biased training set, as Quinlan et al. (this issue) tried, does not seem to be an effective 

way of testing this capacity because the relatively few torque problems that get into the 

training set are swamped by the much larger number of problems that can correctly be 

solved by addition or even simpler rules involving weight or distance.  

Although we are unable to present new balance-scale simulations in this brief 

rejoinder, we conjecture that constructive networks could learn a torque rule in either of 

two ways: by prolonged training with sufficient numbers of torque problems, or by being 
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taught an explicit torque rule as often happens in secondary-school science courses. The 

former method could conceivably be implemented in ordinary cascade-correlation 

networks, the later by newer, knowledge-based technology that permits recruitment of 

previously learned networks or injected functions as well as single hidden units (Shultz & 

Rivest, 2001; Thivierge, Dandurand, & Shultz, 2004).  

Rule Following and Rule Use  

As noted at the start, an important theoretical distinction is between following and 

using rules. A symbolic rule-based account of cognition posits that people actually use 

rules to represent and manipulate knowledge, whereas connectionism assumes that 

people can behave as though they were following rules because they have learned 

regularities afforded by the environment. There is also promising work on integrating the 

two methods, such as with a lower-level connectionist system coupled to a higher level 

rule system, sometimes also implemented in connectionist fashion (Sun, Slusarz, & 

Terry, 2005).  

Given the relatively new emphasis on distinguishing addition from torque rules at 

stages 3 and 4, there is not yet a complete connectionist model of balance-scale 

development. But it may be premature to conclude that such a model is out of the 

question. It could be a formidable challenge to navigate through all four stages and still 

terminate with performance that gets nearly all problems correct without using addition, 

but it is surely worth a try.  
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Figure 1. LCA probabilities of being correct on four synthetic balance-scale test 

problems; replication 5.  
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Figure 2. LCA probabilities of being correct on four synthetic balance-scale test 

problems; replication 4.  
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Dear Gerry, 
 
Thanks again for inviting us to submit this rejoinder as well as making various 
suggestions for revision.  
 
We left out the new balance-scale simulations as you requested and clarified the 
reviewer's issues about conditional and unconditional probabilities.  
  
Best regards,  
Tom 

Manuscript




