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Abstract

Redundancy analysis (RA) is a versatile technique used to predict multivariate cri-
terion variables from multivariate predictor variables. The reduced-rank feature of
RA captures redundant information in the criterion variables in a most parsimo-
nious way. A ridge type of regularization was introduced in RA to deal with the
multicollinearity problem among the predictor variables. The regularized linear RA
was extended to nonlinear RA using a kernel method to enhance the predictability.
The usefulness of the proposed procedures was demonstrated by a Monte Carlo
study and through the analysis of two real data sets.
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1 Introduction

Redundancy analysis (RA; van den Wollenberg, 1967) is often used to in-
vestigate the directional relationship between two sets of variables. Given
multivariate criterion and predictor variables, RA aims to find a subspace
of a prescribed dimensionality in the space of predictor variables that is best
predictive of the criterion variables as a whole. RA is a popular multivariate
data analysis technique in many scientific disciplines, especially in biology and
ecology (Legendre and Legendre, 1998; ter Braak, 1987), psychology (e.g., van
der Leeden, 1990), and econometrics (Reinsel and Velu, 1998). A variant of
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RA is also known as reduced rank regression (Anderson, 1951) and principal
components of instrumental variables (Rao, 1964).

Canonical correlation analysis (CANO) also analyzes the relationships be-
tween two sets of multivariate data. In CANO, however, the two sets of vari-
ables are treated symmetrically with no distinction between criterion and pre-
dictor variables. Furthermore, a high canonical correlation between two sets of
variables does not necessarily imply that the entire sets of variables are highly
correlated. RA, on the other hand, attempts to explain as much variation in
the criterion variables as possible by as few components of predictor variables
as possible. RA thus reflects the relationships between two sets of variables
more faithfully (Lambert, et al., 1988).

In this paper we incorporate a ridge type of regularization into RA. This
is a natural extension of ridge regression originally developed for univariate
regression problems. Let y, X, and b represent a vector of observations on the
criterion variable, a matrix of predictor variables, and a vector of regression
coefficients, respectively. In ridge regression (Hoerl and Kennard, 1970), the
estimate of b (which we call the ridge least squares (RLS) estimate) is obtained
by

b= (X'X + )" X"y, (1)

where A (> 0) is called the ridge parameter. The ridge parameter has the
effect of shrinking the usual least squares (LS) estimate of b toward 0. It is
known (Hoerl and Kennard, 1970) that for a certain range of values of A, the
RLS estimate is, on average, closer to the true population value than the LS
estimate. This effect is more pronounced when the sample size is small and /or
X is ill-conditioned due to high collinearity among the predictor variables.
(See GroB (2003) for an up-to-date account of ridge regression.) Note that the
reduced rank aspect of RA does not correct for multicollinearity in X, and the
regularization is still needed to remedy the situation. In this paper we extend
the basic methodology of ridge regression to RA and illustrate its use. We also
consider a nonlinear extension of RA by a kernel method.

The rest of this paper is organized as follows. In section 2.1 we discuss the
model and the parameter estimation procedure for linear RA. We first briefly
review the LS estimation, and then present a parallel development for the
RLS estimation. We then extend linear RA to a nonlinear RA called kernel
RA (section 2.2). This is followed by a cross validation method for choosing an
“optimal” value of the ridge parameter, and permutation tests for identifying
the best dimensionality in the solution (section 2.3). In section 3 we give
empirical demonstrations of the usefulness of the proposed methods.



2 The Method
2.1 Linear Redundancy Analysis

Let Y be an n (cases) by p (variables) matrix of criterion variables, and let X
be an n by ¢ matrix of predictor variables. We assume that both X and Y are
at least columnwise centered, and that they are further standardized if there
is no common measurement scale across the variables. We write the model for

RA as

Y =XB+E, 2)

where the ¢ by p matrix of regression coefficients B is subject to a rank
restriction,

rank(B) = r < m = rank(X'Y") < min(rank(X), rank(Y")), (3)

and F is an n by p matrix of disturbance terms. Let

6(B) = SS(Y - X B) (4)

be the least squares (LS) criterion, where SS(A) = tr(A’A). We estimate B so
as to minimize ¢(B) subject to the rank restriction (3). To achieve this goal,

we first rewrite ¢(B) as (ten Berge, 1993; see also Takane and Shibayama,
1991):

¢(B) = SS(Y — XB) +SS(B — B)xx, (5)

where SS(A)y = tr(A’MA), and

A

B=(X'X) XY (6)

is a LS estimate of B without rank restriction, where (X'X)~ is a generalized
inverse (g-inverse) of X’X. (While B in (6) is not unique if X is singular, the
decomposition (5) is unique. To obtain a unique estimate of B, we can use the
Moore-Penrose inverse for (X’X)~.) Since the first term on the right hand side
of (5) is unrelated to B, the reduced rank estimate of B can be obtained by
minimizing the second term. This can be done through the generalized singular
value decomposition (GSVD) of B with row metric X'X (Takane and Hunter,
2001; Takane and Shibayama, 1991), which is written as GSVD(B)x:x. ;.



Here GSVD refers to an SVD under nonidentity metrics (Cailliez and Pages,
1976; Greenacre, 1984). This should not be confused with the use of the same
GSVD linear algebra terminology (e.g. Golub and Van Loan, 1989). The latter
refers to a pair of matrix decompositions that in effect obtain the generalized
eigenvalue decomposition of A’A with respect B’B without calculating these
products. Further details can be found in Takane and Hunter (2001, p. 415)
and Takane (2002).

Let

B =UgDgV}, (7)

represent GSVD(B) x'x,1, where Up is the ¢ by m matrix of generalized sin-
gular vectors (such that UpX'XUp = I,,,, where m = rank(B)), Vp is the p
by m matrix of right singular vectors (such that ViVp = I,,,), and Dp is an
order m positive-definite (pd) diagonal matrix of (generalized) singular values
as its diagonal elements in descending order of magnitude. Then, the reduced
rank estimate of B is obtained by retaining only the portions of Ug, Vg, and
Dp pertaining to the r(< m) dominant singular values. Specifically, let Us
and Vi denote the ¢ by r and p by r matrices formed from the first 7 columns
of Ug and Vg, respectively, and let Dy denote the diagonal matrix of order
r formed from the first r rows and r columns of Dg. Then, the reduced rank
estimate of B is obtained by

B = UsDyV, (8)

Quantities typically given in the output from RA are obtained by simple ma-
nipulations of Ug, Vg, and Dg. The matrix of component weights (weights
applied to X to derive redundancy components) is obtained by W = n!/ 2035,
The matrix of redundancy components is obtained by F = XW = n'/2X Ug.
The structure matrix (correlations (or covariances) between X and F') is ob-
tained by n ' X'F = n ' X'XW = n~Y2X'XUg. Finally, the cross loading
matrix (correlations between Y and F) is obtained by n='Y’F = n~'/?VzDp.

We now extend the above method to the ridge LS (RLS) estimation. As in
the LS case, the solution can be derived in closed form. Let

6a(B) = SS(Y — XB) + ASS(B)p,, 9)

denote the RLS criterion, where A is called the ridge parameter, Py, =

X'(XX')~ X is the orthogonal projector onto the row space of X, and SS(B)p,,
= tr(B'Px'B) = tr(B'B) = SS(B). (Without loss of generality, we may as-
sume B is in the row space of X. See the next subsection for details.) The
ridge parameter typically takes a small positive value (Hoerl and Kennard,



1970), which we tentatively assume known. (A way to determine an optimal
value of A will be discussed later.) We minimize the RLS criterion under the
rank restriction (3). To achieve this goal, we first rewrite ¢,(B) as

9A(B) = SS(Y)qx(n) +SS(B(A) = B)xrxsary, (10)
where
B(\) = (X'X + A\Px)) " X'Y (11)

is an RLS estimate of B without rank restriction, and

Qx(A) =1— Px(\), (12)
where
Px(\) = X(X'X + APx/)~ X' (13)

is called a ridge operator (Takane and Yanai, 2006). Since the first term of (10)
is unrelated to B, ¢,(B) can be minimized with respect to B by minimizing
the second term, which is obtained by GSVD(E (A))x'x4apPy,,1- The rest of
the procedure remains essentially the same as in the LS estimation.

A few remarks are in order regarding the above procedure. First of all, de-
composition (10) is analogous to decomposition (5). To see (10), we note
that ¢a(B) = tr(Y'Y — Y'X(X'X + APy)~ XY + V' X(X'X + A\Py/)~X'Y —
9Y'XB + B'(X'X + APx/)B) = tr(Y'Y — 2Y'X B + B'X'X B + AB'B), which
is equal to the expression obtained by expanding ¢,(B) in (9). Note, however,
that Qx () is in general not idempotent, so that the first term in decompo-
sition (10) cannot be written as SS(Qx(A\)Y) = SS(Y — X B())), unlike the
first term in decomposition (5). Secondly, the RLS estimate of B given in (11)
is not unique, unless X’ X is nonsingular. However, the matrix of predictions
X é()\) is unique, and so are the ridge operators. Finally, X’ X + APy reduces
to X’X + A, when X’X is nonsingular. Often, however, (X'X + \[,)~! is
used for (X'X + APx/)~ even when X'X is singular. This can be justified by
noting that (X'X + A[,)~! is a g-inverse of X’X + APx, (Takane and Yanai,
2006).

2.2  Kernel Redundancy Analysis

In linear RA, the space of predictor variables does not go beyond the range
space of X, whether we use the LS or the RLS estimation. In this section



we develop a method of RA that expands the prediction space by nonlinear
transformations of X. Using a ‘“kernel” trick (Scholkopf et al., 1997), this
can be done without explicitly specifying the nonlinear transformations to be
applied to X.

We again take model (2) as a point of departure. As alluded to earlier, we
may assume without loss of generality that B is in the row space of X, that
is, Sp(B) C Sp(X’), where Sp(X’) indicates the range space of X'. (This
can be readily seen as follows: Let B = By + By, where Sp(B;) C Sp(X’)
and Sp(By) C Ker(X), where Ker(X) indicates the null space of X. Then,
XB = XB; + XBy = XBy, so that we can reset B = By without affecting
the matrix of predictions.) This implies that B can be rewritten as B = X'G
for some n by p matrix G. The model (2) can then be rewritten as

Y =XX'G+E. (14)

Matrix X X’ is called a kernel matrix. It is a special kind of kernel matrix called
the covariance kernel. More generally, a kernel matrix is a kind of similarity
matrix among cases in the data set on the predictor variables. Note that
(14) is merely a restatement of (2), and it is no more interesting than the
original model (2). This form of the model will become interesting as we
consider nonlinear transformations of the predictor variables, say, by H(X).
The kernel matrix then becomes H(X)H(X)'. The gist of kernel methods is
that we do not explicitly define H(X) (which presupposes exact knowledge
of the nonlinear transformations to be applied to X'), but instead we directly
define a kernel matrix K (n by n, and non-negative definite (nnd)), which
could have followed from a certain desirable H(X).

We tentatively assume that K is known. (We will discuss a way to define K
shortly.) Then, model (14) can be recast in the form of:

Y = KG+E. (15)

This model, however, can easily be abused, since for any nonsingular matrix
K, we obtain G = K™Y, so that KG = KK~'Y = Y. This means that
observed Y can always be perfectly predicted. In data analysis, however, the
predictability for future observations is more important. To achieve this goal,
we introduce the ridge type of regularization. Let

Un(G) = SS(Y — KG) + \SS(G)x (16)

be the ridge LS criterion for kernel RA. Then, the RLS estimate of G that
minimizes this criterion is given by

G = (K + ). (17)



The matrix of predictions is obtained by KG = K (K + MI)~'Y. An optimal
value of A may be determined by cross validation in a manner similar to the

linear case. The reduced rank estimate of G is obtained by GSVD(G) 211k, 1.

There are a number of possible ways of defining the kernel matrix K (Scholkopf
et al., 1997). We use the Gaussian kernel because it is easy to calculate, it is
guaranteed to be positive-definite (pd), and it is known to work for a wide
range of problems. It is defined as

kij = exp(—dj; /o), (18)

where k;; is the ij" element of K, dZ; = (z; — x;)'(z; — x;) is the squared
Euclidean distance between the " row (]) and the j™ row () of X, and
o is a scaling factor. The negative exponential function turns the squared
distance into similarity. We then double center K to take into account the
fact that Y is centered. This will make K singular. However, K + AI is usually
nonsingular for A > 0, and we may use the Moore-Penrose inverse of K when

A = 0. The prediction of a new case with predictor vector (™’ is obtained by

Y = KOV (19)

where k£ is the kernel vector indicating the similarity between (™’ and the

rows of X calculated in the same way as for the kernel matrix K defined in
(18), and G is the reduced rank estimate of G.

The scale factor ¢ modulates the speed with which similarity should decay as
a function of d?j. An optimal value of ¢ can be chosen in much the same way
as the value of A is chosen. We systematically vary this value and choose the
“best” one by monitoring the prediction error. (See the next subsection).

For pure prediction purposes kernel RA is often superior to linear RA. How-
ever, as a method for “understanding” the data, kernel RA (or kernel methods
in general) has one potential drawback. It is often extremely difficult to iden-
tify the nature of the redundancy components obtained by kernel RA. Matrix
G, which is an n by m matrix of regression coefficients, is usually not directly
interpretable, although some attempts have been made to develop some tech-
niques to facilitate the interpretation (Scholkopf et al., 1997). It is often helpful
to correlate redundancy components obtained by kernel RA with the original
predictor variables (X) and the criterion variables (Y') to understand the na-
ture of the components. (See the food and cancer example in the empirical
demonstrations section.)

There are areas in which interpretation is not as important as prediction. In en-
gineering, for example, solving practical problems is often the most important



concern. Developing a machine for automatic discrimination of handwritten
characters is a case in point. The machine has to be capable of discrimination
whether or not we fully understand the nature of the discrimination. Here,
prediction plays a primary role. Kernel methods have been popularized by
engineers who constantly deal with practical problems (e.g., Herbrich, 2002;
Suykens et al., 2002).

2.8 The Choice of Dimensionality, \, and o

There are three important choices to be made in application of regularized
RA: the choice of dimensionality, the choice of an “optimal” value of the
regularization parameter X\, and the choice of an “optimal” value of ¢ in kernel
RA. We discuss these topics in turn.

We use permutation tests to choose the best dimensionality (the number of
components, r) in the solution. In the permutation tests, rows of X are ran-
domly permuted many times. RA is applied to each permuted X and the
original Y repeatedly to obtain the null distribution of the largest singular
value. If these singular values are smaller than the largest singular value ob-
tained from the original X and Y 100(1 — «)% of times, the first redundancy
component is considered statistically significant at the « level. Alternatively,
we may count the number of times this occurs and calculate the p-value. If the
first component is significant, we eliminate the effect of the first component
from X and apply the same procedure as above to test the significance of
the second component, and so on. We continue this procedure until we find a
nonsignificant component or reach the maximum possible number of compo-
nents. See Legendre and Legendre (1998), ter Braak and Smilauer (1998), and
Takane and Hwang (2002) for more general discussions on the permutation
tests in similar contexts. We may apply the above procedure with different
values of A\ in cases where the best dimensionality depends on the value of \.

We use the J-fold cross validation method (Hastie, et al., 2001) to choose an
optimal value of A\. A similar strategy can also be used to choose the value of
o in kernel RA. In this method, the data at hand are randomly divided into J
subsets. One of the J sets is set aside as test samples, and model parameters
are estimated from the remaining J — 1 subsets (called calibration samples).
These estimates are then applied to the test samples to estimate prediction
errors. This is repeated J times with the test samples changed systematically,
and the prediction errors accumulated over the J sets of test samples.

Let Y9 and X7 represent matrices of criterion variables and predictor
variables, respectively, with the j** subset of cases, Y and X), removed
from the original data sets. We obtain the RLS estimates of reduced rank



regression coefficients based on Y9 and X9 following the procedure de-
scribed in section 2.1. Let B(~J (/\) denote the matrlx of estimated regression
coefficients. We then evaluate

ZSS — XVBEI(N))/88(Y) (20)

with the value of A systematically varied. We choose the value of A associated
with the smallest value of ¢(\). Essentially the same procedure can be used
for choosing an “optimal” value of o in kernel RA (with X (/) replaced by
KD, X0) replaced by K@), and BC7)(\) replaced by GC9(N)).

One cautionary remark is in order, however, when the J-fold cross valida-
tion is used in situations where the space of criterion variables is totally
contained in the predictor space. Such is always the case in kernel RA, and
when n < p in linear RA. If we take J = n, the J-fold cross validation
reduces to the well-known leaving-one-out (LOO) method (or the Jackknife
method). This particular choice of J should be avoided in such situations.
Due to the double centering of the predictor set (X or K), the test sam-
ple in the LOO method is always perfectly predicted based on the remaining
n — 1 cases when A = 0. This inevitably leads to the conclusion that the
non-regularized case always cross-validates best (which is usually not true).
This may be seen from the fact that yV’ = —1/ | Y= g0 = 1/ X(=9),
and BC9) = (X' XN+ XDy (D) where 1,4 is the (n — 1)-component
vector of ones, so that

20 B=i) — 1 XX X x CDry () = G

)

since X () (X (= XN+ X (=) = [, The case of kernel RA is similar.

A bootstrap method (Efron, 1982) is used to assess the reliability of parameter
estimates. In this method, random samples of size n (equal to the size of
the original data set) are repeatedly sampled from the original data set with
replacement. Estimates of parameters are obtained for each bootstrap sample.
We then calculate the means and the variances of the estimates across the
bootstrap samples to estimate biases and standard errors of the estimates
derived from the original data set. Significance tests of estimated coefficients
may also be performed as a by-product of the bootstrap procedure. We simply
count the number of times bootstrap estimates “cross” over zero (if the original
estimate is positive, we count the number of times the bootstrap estimates
turn out to be negative, and vice versa). If the relative frequency of cross-
overs is less than a prescribed value of «, we conclude that the coefficient is
significantly positive (or negative).



3 Empirical Demonstrations

In this section we provide empirical demonstrations of the usefulness of the
proposed methods. The first study investigates the positive effect of regular-
ization using a Monte Carlo technique. The second and third studies pertain
to the analysis of real data sets.

3.1 A Monte Carlo Study

We first demonstrate the better quality of the RLS estimator using a Monte
Carlo technique. The quality of an estimator can be measured by how close
it is on average to its population counterpart. We may use the expected
mean square error (MSE) for this purpose. MSE indicates the average squared
Euclidean distance between population parameters and their estimators. Let 6
and 0 represent vectors of generic population parameters and their estimators,
respectively. Then,

MSE = E[SS(6 — )], (21)

where E takes the expectation. The estimator associated with a smaller value
of MSE is considered as a better estimator. The RLS estimator with a small
positive value of A is often associated with a smaller MSE than its LS coun-
terpart. MSE in (21) can be decomposed into two parts:

MSE = E[SS(# — E(0))] + E[SS(d — E(A))]. (22)

The first term on the right hand side is the squared bias, and the second term
is the variance of the estimator 6. While the LS estimator is an unbiased esti-
mator (and consequently, squared bias = 0), it tends to have a large variance.
The RLS estimator, on the other hand, is biased (albeit usually slightly), while
it has a much smaller variance, resulting in a smaller MSE.

To confirm that the above expectation indeed holds for RA, a small Monte
Carlo study was conducted. First, a population RA model was postulated,
from which many replicated data sets of varying sample sizes (N = 20, 50, 100,
200) were generated. RA was then applied to these data sets to derive the RLS
estimates of regression coefficients with the value of A systematically varied
(A =0,1,5,10,20,50). Average MSE, squared bias, and variance were calcu-
lated in reference to the assumed population values of regression parameters.
In the assumed population model, the number of criterion variables was set to
3, that of predictor variables to 4, and each row of Y was generated according
to y; = B + ¢}, where 2; ~ N(0,%), and €} ~ N(0,0°I,) for j = 1,---, N.
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The diagonal elements of 3 were set to unity, and off-diagonal elements varied
at three levels (0, .5, and .9). The value of 0 was varied at three levels (.5, 1,
and 2). For each data set, elements of B were generated by uniform random
numbers initially. Matrix B was then subjected to GSVD to reduce its rank
to 1 or 2.

Figures 1 and 2 present the main results of the study for a particular com-
bination of settings, namely the medium level of error variance (¢ = 1), the
medium level of correlations among predictor variables (off-diagonal elements
of ¥ = .5), and rank(B) = 2. (Other combinations yielded similar patterns of
results.) Figure 1 shows MSE for regression coefficients in RA as a function
of the sample size (N) and the ridge parameter (). In all cases, MSE is high
at A = 0, it decreases rapidly as soon as A gets larger than 0, but then rises
again gradually. This tendency is clearer for small sample sizes, although it
can still be observed for larger sample sizes. (The effect of regularization looks
negligible for N = 200. However, this is all relative to the case of N = 20.
It looks negligible because the N = 20 case, where the effect is much larger,
is drawn in the same figure.) This means that better estimates of regression
parameters can be obtained by the ridge estimation. Figure 2 breaks down the
MSE for N = 50 into squared bias and variance. The squared bias increases
monotonically as the value of A\ increases, while the variance decreases. The
sum of these two (= MSE) takes a minimum value somewhere in the middle.
These results are consistent with our expectations, as discussed above. Similar
observations have been made in related contexts, univariate regression (Hoerl
and Kennard, 1970), multiple correspondence analysis (Takane and Hwang,
2006), and partial and/or constrained RA (Takane and Jung, 2006).

3.2 Car Attributes and Preferences

The first real data set we analyze comes from a marketing research study
(Lilien and Rangaswamy, 2003, p. 149). Ten different makes of cars were rated
on fifteen attributes: 1. Attractive, 2. Quiet, 3. Unreliable, 4. Poorly Built,
5. Interesting, 6. Sporty, 7. Uncomfortable, 8. Roomy, 9. Easy to Service, 10.
High Prestige, 11. Common, 12. Economical, 13. Successful, 14. Avant-garde,
and 15. Poor Value. These ratings were used as predictor variables. Three
separate ratings were also made on the preference for the same set of cars by
three groups of subjects. These groups represent three distinct segments of
consumers targeted for the promotion of cars and are described as: I. Western
Yuppie, II. Upwardly Mobile Families, and I1I. American Dreamers. Average
preference ratings of the three groups were used as the criterion variables. This
data set clearly involves an extreme case of multicollinearity with the number
of cases smaller than the number of predictor variables.

11
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Fig. 1. Plot of MSE as functions of sample size N and the regiularization parameter
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Fig. 2. Breakdown of MSE into squared bias and variance for N = 50.

Permutation tests were first applied, which consistently indicated one and only
one significant dimension for A > 1. No dimensions were found significant at
A = 0. That at least one dimension is found significant in the regularized case,
while it is not in the non-regularized case, is one indication that more reliable
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estimates tend to be obtained by RLS. The five-fold cross validation method
was then applied, assuming the dimensionality was one. (Since p > n in this
data set, the leaving-one-out method could not be used. The data set was
repartitioned several times to increase the number of validation samples.) The
A = 20 has been found best with the smallest prediction error. (The prediction
error is 1.040 for A = 0, .741 for A = 5, .706 for A = 10, .685 for A = 20, and
709 for A = 50.)

Table 1 compares the LS estimates and the best RLS estimates of redundancy
weights (weights applied to the predictor variables to derive the first redun-
dancy component), and cross loadings (correlations between the redundancy
component and the criterion variables). While this comparison is somewhat
moot, since the first dimension was already found insignificant in the LS case
(A = 0) by the permutation test, it presents an interesting case of what hap-
pens in the LS estimation when the data are very weak. The LS estimates
are much larger in absolute size than the RLS estimates, but they are also
much more variable than the latter. Only one coefficient (for y;) has turned
out to be significant by the LS estimation, whereas many more coeflicients are
significant by the RLS estimation. There are also a number of LS estimates
of the weights whose signs are contrary to our intuition (e.g., x2, 5, s, %10,
x11, and 213). This is due to the extreme case of multicollinearity among the
predictor variables in this data set. However, none of the RLS estimates are
sign reversed.

Since in this data set the linear predictor space already contains the criterion
space (n < p), there is little point of applying kernel RA.

3.3 Food and Cancer Data

The second data set we analyze concerns the prediction of mortality rates by
cancer in lower digestive organs from food variables. Information on mortality
rate by large intestine cancer (y;) and that by rectum cancer (y2) for 47
countries in the world was initially gathered by WHO, and information on
food variables, total amount of calories per day per capita (z1), the amount
of meat supply (x2), the amount of milk consumption (z3) and the amount
of alcohol consumption (x4), was originally collected by FAO for the same 47
countries. The data used in the present analysis were taken from Yanai and
Takagi (1986), who compiled the data in the present form.

We applied both linear and kernel RA to the data. Permutations tests were
first applied with varying values of A\, which unanimously found that the full
rank model (r = 2) was the best. We then applied the 15-fold cross validation
to find an optimal value of . In kernel RA, this was done in combination with

13



Table 1

The LS and RLS estimates of component weights and cross loadings and their
Bootstrap standard error estimates from the car attribute data obtained by linear
RA. (“**” in the table indicates a significance at the 1% level, and “*” at the 5%
level.)

LS RLS
Vari. Estimate Std. Err. Estimate Std. Err.

x1 .836 .425 *115 .035

2 -.382 .233 *.080 .027

x3 -.052 139 *-.082 .037

T4 -.264 151 **_.093 .019

x5 .462 .357 *-.106 .031

Zg -.378 .290 -.028 .053

x7 -.524 .361 *..072 .036

Weights xs -.592 .316 .035 .042
Z9 -.372 210 -.049 .054

10 -.182 .241 *.103 .024

T11 119 .325 *-.098 .034

19 .091 .166 .055 .033

13 -.028 201 *.118 .032

214 .096 .249 .022 .075

15 -.649 .394 -.125 .059

Y1 *913 .324 *.807 .220

Loadings Yo .056 671 .346 423
Y3 .887 454 *.651 .295

the search for an optimal value of 0. Tables 2 and 3 summarize the results. In
Table 2, prediction errors are reported as a function of o varied from .1 to 1
in steps of .1. These values are reported only for the value of A\ at which the
prediction error took the smallest value (A\* in the last column). It was found
that the combination of ¢ = .4 and A = .01 gave the best kernel RA solution.

Table 3 compares the results of linear RA and kernel RA as a function of \.
For kernel RA, the value of o was fixed at its optimal value (.4) in all cases.
Kernel RA yields better (cross validated) predictions than linear RA. The best
overall solution is obtained by kernel RA with A = .01.
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Table 2

Cross validated prediction error as a function of ¢ in kernel RA of Yanai and Takagi’s
data. (“*” indicates an optimal value, and \* indicates the value of X\ at which the
prediction error is smallest for each o.)

o Pred. Err. A"

1 455 0
2 .285 .0001
3 .232 .005
4 *.219 .01
.5 222 .01
.6 .230 .01
.7 .239 .05
.8 .246 .05
9 .254 .05
1 .263 .05

Table 3

Cross validated prediction error as a function of A by linear and kernel RA of Yanai
and Takagi’s data. (“**” indicates the best overall solution, and “*” indicates the
best solution within a method. o = .4 in all cases for kernel RA.)

Analysis A Pred. Err.

0 312

1 *.307

Linear ) .309
10 318

20 .339

50 .396

0 231

.001 .228

Kernel .005 221
(c=.4) .01 219
.05 .243

1 .269

1 411
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Fig. 3. Plot of cross loadings (correlations between redundancy components and Y)
and predictor loadings (correlations between redundancy components and X) with
the redundancy components obtained by kernel RA of Yanai and Takagi’s data.

To understand the nature of the redundancy components in the best kernel so-
lution, they were correlated with the original predictor and criterion variables.
These correlations are analogous to predictor loadings (correlations between
the redundancy components and X'), and cross loadings (correlations between
the redundancy components and Y') in the linear case. Figure 3 displays the
plot of the loadings. The first component is clearly predominant, correlated
positively with all the six observed variables. This component, characterized
by high fat, high calorie foods, is considered to affect both large intestine
and rectum cancers in a similar manner. The second component, on the other
hand, differentiates the two types of cancer. Interestingly, meat (z3) and milk
products (z3) are more closely related to large intestine cancer (y;), while the
total calorie (z1) and alcohol (z4) are more closely related to rectum cancer.
We have also drawn an analogous picture for the linear RA solution. This has
turned out to be strikingly similar to Figure 3. Apparently, nonlinear compo-
nents are only slightly different from the linear ones, although an improvement
in predictability (of .088 in terms of normalized prediction error) is substantial.

4 Concluding Remarks

In this paper we developed and evaluated a simple regularization technique
for redundancy analysis (RA). This is a straightforward extension of the ridge

16



regression originated by Hoerl and Kennard (1970). As in the non-regularized
LS case, the solution could be obtained in closed form for a fixed value of the
ridge parameter A\. An optimal value of A in turn can be selected by a cross
validation procedure. The closed form solution is a big advantage in the cross
validation process. The closed form solution is enabled by the decomposition
(10) of the RLS criterion into the sum of two terms, one of which is unrelated
to unknown parameters. Consequently the entire RLS criterion can be mini-
mized by minimizing the other term, which is achieved by generalized singular
value decomposition (GSVD). We also extended linear RA to kernel RA. The
proposed methods were evaluated by a Monte Carlo study and through the
analysis of two real data sets.

The ridge regression has been extended to multivariate multiple regression
analysis without rank restriction (Haitovsky, 1987). However, these are rather
routine extensions of the univariate case because the multivariate multiple re-
gression is merely a collection of separate univariate regressions without the
rank restriction. Aldrin (2000) proposed a somewhat different technique for
regularized RA. His procedure first estimates the matrix of regression coeffi-
cients without rank restriction by simple (non-regularized) LS, and then ap-
plies SVD to X B to obtain X B = >0ty djuzvl. Then, the m terms in the SVD
of XB are re-weighted by regressing Y onto the set of dju v} (j =1,---,m)’s.
The ridge regression is used in this last phase. This procedure is much more
complicated than ours, although a systematic comparison of the performance
between the two approaches would undoubtedly be interesting.

For further extensions of the proposed methods, we might consider ridge esti-
mation of partial and/or constrained RA. This is already in progress (Takane
and Jung, 2006). We might also consider a more generalized form of ridge
regression that incorporates AL (instead of A\Px/) as the regularization term,
where L is a ¢ by ¢ nonnegative-definite (nnd) matrix such that Sp(L) =
Sp(X’). This generalized form of ridge regression is useful for incorporating
more complicated forms of regularization such as smoothness (Ramsay and
Silverman, 2006).
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