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For the partitioned linear model � = �y� X1�1 + X2�2� �
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1. Introduction

Throughout this article, �m×n stands for the collection of all m× n real matrices,
and the symbols A′� r�A�, and ��A� stand for the transpose, rank, and range
(column space) of a matrix A, respectively. A pair of matrices A ∈ �m×n and
B∈�m×p are said to be orthogonal with respect to a non-negative definite matrix
V ∈ �m×m, or V-orthogonal, if A′VB = 0. For a matrix A ∈ �m×n, the Moore–
Penrose inverse of A, denoted by A+, is defined to be the unique solution X ∈ �n×m

to the four Penrose equations:

(i) AXA = A� (ii) XAX = X� (iii) �AX�′ = AX� (iv) �XA�′ = XA�

A matrix X ∈ �n×m is called a g-inverse of A, denoted by A−, if it satisfies (i); called
an outer inverse of A if it satisfies (ii). Further, let PA, EA, and FA stand for the
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56 Tian and Takane

three orthogonal projectors PA = AA+�EA = I − PA = I − AA+, and FA = I − PA′ =
I − A+A.

Suppose we are given a partitioned linear model

y = X1�1 + X2�2 + 	� E�	� = 0� Cov�	� = �2�� (1.1)

where X1 ∈ �n×p1 and X2 ∈ �n×p2 are two known matrices of arbitrary rank with
p1 + p2 = p� y ∈ �n×1 is an observable random vector, �1 ∈ �p1×1 and �2 ∈ �p2×1

are two vectors of unknown parameters to be estimated, � ∈ �n×n is a known
nonnegative definite matrix of arbitrary rank, and �2 is an unknown positive
parameter. If � is a singular matrix, (1.1) is also said to be a singular linear model.

The model in (1.1) is often written as a triplet:

� = {
y� X�� �2�

} = {
y� X1�1 + X2�2� �

2�
}
� (1.2)

where X = 
X1� X2� and � = 
�′
1� �

′
2�

′. Of particular interest in the investigation of a
partitioned model is relationships between the partitioned model (full model) and its
various small or reduced models. This subject was widely investigated from various
aspects, see, e.g., Bhimasankaram and Saharay (1997), Chu et al. (2004), Groß and
Puntanen (2000), Nurhonen and Puntanen (1992), Werner and Yapar (1995, 1996),
and Zhang et al. (2004). For the full model in (1.2), the two small linear models are
given by

�1 = �y� X1�1� �
2�� and �2 = �y� X2�2� �

2��� (1.3)

It is well known that if X has full column rank, then the ordinary least-squares
estimator (OLSE) of X� under (1.2) can be written as OLSE��X�� = X�X′X�−1X′y.
If the two submatrices X1 and X2 in X are orthogonal, that is, X′

1X2 = 0, then
X�X′X�−1X′ can directly be written as the sum

X�X′X�−1X′ = X1�X
′
1X1�

−1X′
1 + X2�X

′
2X2�

−1X′
2� (1.4)

Correspondingly, the OLSE��X�� can be decomposed as

OLSE��X�� = X1�X
′
1X1�

−1X′
1y + X2�X

′
2X2�

−1X′
2y

= OLSE�1
�X1�1�+OLSE�2

�X2�2�� (1.5)

This equality implies that the OLSE of X� under � can be written the sum of the
two OLSEs under the two small models in (1.3) if X′

1X2 = 0. This simple property
prompts us to consider decompositions of some other estimators under � as sums
of estimators under the two small models in (1.3). The main purpose of the present
article is to extend the equality in (1.5) to weighted least-squares estimators of X�
under (1.2).

Let V ∈ �n×n be a non-negative definite matrix, i.e., V can be written as V=ZZ′

for some matrix Z. The seminorm of a vector x ∈ �n×1 induced by the weight matrix
V is defined by �x�V = �x′Vx�1/2. The weighted least-squares estimator (WLSE) of
� under � in (1.2) is defined to be

�̃ = argmin
�

�y − X��2V� (1.6)
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The normal matrix equation corresponding to (1.6) is X′VX� = X′Vy. This equation
is always consistent. Solving this equation gives the following well-known result.

Lemma 1.1. The general expression of the WLSE of � under � is

�̃ = �X′VX�+X′Vy + 
Ip − �VX�+�VX��v = �X′VX�+X′Vy + FVXu� (1.7)

where u ∈ �p×1 is arbitrary.

For y �= 0, let u = Uy in (1.7), where U ∈ �p×n is arbitrary. Then (1.7) can
be rewritten as the following homogeneous form �̃ = 
�X′VX�+X′V + FVXU�y.
Correspondingly, the WLSE of X� under � is defined to be

WLSE��X�� �= X�̃ = 
X�X′VX�+X′V + XFVXU�y� (1.8)

Further, let PXV and PX�V denote

PXV = X�X′VX�+X′V� PX�V = X�X′VX�+X′V + XFVXU = PXV + XFVXU� (1.9)

both of which are called projectors into ��X� with respect to the seminorm � · �V,
see Rao and Mitra (1971a,b) and Mitra and Rao (1974). In what follows, we take
the homogeneous estimator in (1.8) as the general expression of WLSEs of X� under
�. In addition, we use �WLSE��X��� to denote the collection of all WLSE��X���

It can be seen from (1.7) and (1.8) that for a given weight matrix V, the two
estimators �̃ and X�̃ are not necessarily unbiased for � and X� under �. However,
it is easy to show that for any given weight matrix V, there exists a matrix U such
that WLSE��X�� in (1.8) is unbiased for X�.

According to (1.8), the WLSEs of X1�1 and X2�2 under the two small models
in (1.3) can be written as

WLSE�1
�X1�1� = PX1�V

y� WLSE�2
�X2�2� = PX2�V

y� (1.10)

where

PXi �V
= PXiV

+ XiFVXi
Ui = Xi�X

′
iVXi�

+X′
iV + XiFVXi

Ui� i = 1� 2�

and U1 ∈ �p1×n and U2 ∈ �p2×n are arbitrary.
Because there are arbitrary matrices U�U1, and U2 in (1.8) and (1.10), it

is possible to take U�U1, and U2 such that the WLSEs have some prescribed
properties, such as, unbiasedness, minimum norm, minimum covariance, etc.
In statistical applications, the weight matrix V is often taken as V = �− or
V= �XTX′ + ��−, where T is a non-negative definite matrix such that r�XTX′ +
� � = r
X� ��. In particular, if � is positive definite and X has full column rank,
then

WLSE��X�� = X�X′�−1X�−1X′�−1y (1.11)

is the well-known unique best unbiased linear estimator (BLUE) of X� under �.
Notice that the WLSEs in (1.8) and (1.10) are not necessarily unique. Extensions

of (1.5) to the WLSEs under ���1, and �2 have the following three cases:
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(I) WLSE��X�� = WLSE�1
�X1�1�+WLSE�2

�X2�2� holds for someWLSE��X��,
WLSE�1

�X1�1�, and WLSE�2
�X2�2�

(II) �WLSE�1
�X1�1�+WLSE�2

�X2�2�� ⊆ �WLSE��X���
(III) �WLSE�1

�X1�1�+WLSE�2
�X2�2�� = �WLSE��X���.

In Sec. 2, we give a variety of necessary and sufficient conditions for the three
assertions to hold. As consequences, we give a group of necessary and sufficient
conditions for the BLUE in (1.11) to be the sum of two WLSEs under �1 and �2

in (1.10). The proofs of main results are given in Appendix.
Because the WLSEs in (1.8) and (1.10) are matrix pencils consisting of Moore–

Penrose inverses and arbitrary matrices, we need to use the following rank formulas
for partitioned matrices due to Marsaglia and Styan (1974) to simplify various
matrix operations related to the WLSEs.

Lemma 1.2. Let A ∈ �m×n�B ∈ �m×k and C ∈ �l×n� Then

r
A� B� = r�A�+ r�EAB� = r�B�+ r�EBA�� (1.12)

r

[
A
C

]
= r�A�+ r�CFA� = r�C�+ r�AFC�� (1.13)

It is easy to see r�B− AA+B� ≥ r�B�− r�AA+B� = r�B�− r�A′B�� Therefore, it
follows from (1.12) that

r
A� B� ≥ r�A�+ r�B�− r�A′B�� (1.14)

Moreover, we can find by (1.12) the following two results:

��B� ⊆ ��A� ⇔ AA+B = B ⇔ r
A� B� = r�A�� (1.15)

��A1� = ��A2� and ��B1� = ��B2� ⇒ r
A1� B1� = r
A2� B2�� (1.16)

Lemma 1.3. Let A ∈ �m×n� and let Z1� Z2� Z3 ∈ �n×m be three outer inverses of
A� i.e., ZiAZi = Zi� i = 1� 2� 3. Also suppose ��Zi� ⊆ ��Z1� and ��Z′

i� ⊆ ��Z′
1�,

i= 2� 3. Then

r�Z1 − Z2 − Z3� = r�Z1�− r�Z2�− r�Z3�+ r�Z2AZ3�+ r�Z3AZ2�� (1.17)

The following results are shown in Tian (2002) and Tian and Cheng (2003).

Lemma 1.4. Let A ∈ �m×n�B ∈ �m×k and C ∈ �l×n be given. Then

max
Z∈�k×l

r�A − BZC� = min
{
r
A� B �� r

[
A
C

]}
� (1.18)

min
Z∈�k×l

r�A − BZC� = r
A� B�+ r

[
A
C

]
− r

[
A B
C 0

]
� (1.19)

In particular,

BZC = A is consistent ⇔ r
A� B� = r�B� and r

[
A
C

]
= r�C�� (1.20)
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2. Sum Decompositions of WLSEs

In order to characterize the sum decompositions of the WLSEs described in Sec. 1,
we assume in what follows that the model � in (1.2) is correct. In this case, the two
small models �1 and �2 in (1.3) are in fact two misspecified models of �. It is easy
to show that if � in (1.2) is correct, then

y ∈ �
X� �� (2.1)

holds with probability 1, see Rao (1971, 1973). Hence, (2.1) should be taken
into account when investigating various properties of estimators under � in (1.2).
A linear model is said to be consistent if it satisfies (2.1). In this case, a pair of linear
estimators L1y and L2y are said to be equal with probability 1 under the consistent
model � if

�L1 − L2�
X� �� = 0� (2.2)

If the model � in (1.2) is correct, then it is consistent, too. However, the
consistency of a model does not imply that it is correct. In fact, if � is positive
definite, then the correct model � in (1.2), as well as the two small (misspecified)
models �1 and �2 in (1.3) are always consistent. If r
X� �� < n, the consistency of
� in (1.2) does not guarantee the consistency of the two models in (1.3). Because
�1 and �2 are two misspecified models of �, we cannot assume that y ∈ �
X1� ��
and y ∈ �
X2� ��. Instead, we assume that the vector y in WLSE�1

�X1�1� and
WLSE�2

�X2�2� only satisfies (2.1).
Two main results of the present article on sum decomposition of WLSE��X��

are given below.

Theorem 2.1. Let WLSE��X��� WLSE�1
�X1�1�, and WLSE�2

�X2�2� be as given in
(1.8) and (1.10). Then the following statements are equivalent:

(a) There exist WLSE��X���WLSE�1
�X1�1�, and WLSE�2

�X2�2� such that

WLSE��X�� = WLSE�1
�X1�1�+WLSE�2

�X2�2� (2.3)

holds with probability 1.
(b) The set inclusion �WLSE�1

�X1�1�+WLSE�2
�X2�2�� ⊆ �WLSE��X��� holds

with probability 1.
(c) VPXV = VPX1V

+ VPX2V
�

(d) X′
1VX2 = 0, i.e., X1 and X2 are V-orthogonal.

Theorem 2.2. Let WLSE��X��� WLSE�1
�X1�1�, and WLSE�2

�X2�2� be as given in
(1.8) and (1.10). Then the following statements are equivalent:

(a) The set inclusion �WLSE��X��� ⊆ �WLSE�1
�X1�1�+WLSE�2

�X2�2�� holds
with probability 1.

(b) r�X�+ 2r�X′
1VX2� = r�N�� where N =

[
X1 X2
VX1 0
0 VX2

]
.

Combining Theorems 2.1 and 2.2 gives the following result.
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Theorem 2.3. Let WLSE��X��� WLSE�1
�X1�1� and WLSE�2

�X2�2� be as given in
(1.8) and (1.10). Then the following statements are equivalent:

(a) The set equality �WLSE��X��� = �WLSE�1
�X1�1�+WLSE�2

�X2�2�� holds with
probability 1.

(b) X′
1VX2 = 0 and �

[
X′
1V 0
0 X′

2V

]
⊆ �

[
X′
1

X′
2

]
�

The results in Theorem 2.1 (a), (b), and (c) can be regarded as extensions of
(1.4) and (1.5), while X′

1VX2 = 0 is an extension of the orthogonal equality X′
1X2 = 0.

Under the conditions in the previous theorems, the sum decompositions can be used
to reduce the computation of WLSE��X�� and to derive statistical properties of
WLSE��X��.

Because � in (1.2) is a general linear model and the matrix � occurs in
(2.2), it is somehow surprising that the necessary and sufficient conditions for the
sum decompositions of WLSE��X�� in Theorems 2.1, 2.2, and 2.3 only consist
of the model matrix X and the weight matrix V. It should be pointed out that
the equality in (2.3) does not imply that WLSE�1

�X1�1� and WLSE�2
�X2�2� are

uncorrelated. In fact, it is easy to derive from (1.10) that the correlation matrix
between WLSE�1

�X1�1� and WLSE�2
�X2�2� is

Cov�WLSE�1
�X1�1�� WLSE�2

�X2�2�� = �2PX1�V
�P′

X2�V
� (2.4)

This is a quadratic form with respect to the two arbitrary matrices U1 and U2 in
PX1�V

and PX2�V
. Also note that the covariance matrix �2� occurs in (2.4), so that it

is a challenging problem to give necessary and sufficient conditions for (2.4) to be
null.

Concerning the uniqueness of the estimators in (1.8) and (1.10), as well as the
sum decomposition of WLSE��X�� when it is unique, we have the following two
theorems.

Theorem 2.4. Let WLSE��X��� WLSE�1
�X1�1�, and WLSE�2

�X2�2� be as given in
(1.8) and (1.10). Then:

(a) WLSE��X�� is unique if and only if r�VX� = r�X�� i.e., ��X′V� = ��X′�� In this
case, the unique WLSE��X�� = PXVy = X�X′VX�+X′Vy is unbiased for X��

(b) WLSE�1
�X1�1� and WLSE�2

�X2�2� are unique if and only if r�VX1� = r�X1� and
r�VX2� = r�X2� hold, respectively.

Theorem 2.5. Suppose that WLSE��X�� in (1.8) is unique. Then:

(a) Both WLSE�1
�X1�1� and WLSE�2

�X2�2� in (1.10) are unique.
(b) Cov�WLSE�1

�X1�1�� WLSE�2
�X2�2�� = �2X1�X

′
1VX1�

+X′
1V�VX2�X

′
2VX2�

+X′
2�

(c) Cov�WLSE�1
�X1�1�� WLSE�2

�X2�2�� = 0 if and only if X′
1V�VX2 = 0�

(d) The sum decomposition WLSE��X�� = WLSE�1
�X1�1�+WLSE�2

�X2�2� holds
with probability 1 if and only if PXV = PX1V

+ PX2V
� or equivalently, X′

1VX2 = 0�

As mentioned in Sec. 1, the weight matrix V in (1.6) is often taken as V = �−

or V = �XTX′ + ��− with r�XTX′ + �� = r
X� ��. In this case, the previous results
can be simplified further. In particular, if � is positive definite and r�X� = p in (1.2),
and the weight matrix V is taken as V = �−1 in (1.8) and (1.10), then we have the
following consequences.
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Lemma 2.1. Suppose � is positive definite and r�X� = p in (1.2), and let V = �−1 in
(1.8) and (1.10). Then:

(a) The unique BLUE of X� under � is

BLUE��X�� = X�X′�−1X�−1X′�−1y (2.5)

with E
BLUE��X��� = X� and Cov
BLUE��X��� = �2X�X′�−1X�−1X′.
(b) The unique WLSEs of Xi�i under �i are

WLSE�i
�Xi�i� = Xi�X

′
i�

−1Xi�
−1X′

i�
−1y� i = 1� 2 (2.6)

with

E
WLSE�1
�X1�1�� = X1�1 + X1�X

′
1�

−1X1�
−1X′

1�
−1X2�2� (2.7)

E
WLSE�2
�X2�2�� = X2�2 + X2�X

′
2�

−1X2�
−1X′

2�
−1X1�1� (2.8)

Cov
WLSE�i
�Xi�i�� = �2Xi�X

′
i�

−1Xi�
−1X′

i� i = 1� 2� (2.9)

(c) The covariance matrix between WLSE�1
�X1�1� and WLSE�2

�X2�2� is

Cov�WLSE�1
�X1�1�� WLSE�2

�X2�2��

= �2X1�X
′
1�

−1X1�
−1X′

1�
−1X2�X

′
2�

−1X2�
−1X′

2� (2.10)

Applying Theorems 2.1 and 2.4 to (2.5)–(2.10) gives the following result.

Corollary 2.1. Let BLUE��X�� and WLSE�i
�Xi�i� be as given in (2.5) and (2.6).

Then the following statements are equivalent:

(a) BLUE��X�� = WLSE�1
�X1�1�+WLSE�2

�X2�2��
(b) E
WLSE�i

�Xi�i�� = Xi�i� i = 1� 2�
(c) Cov�WLSE�1

�X1�1�� WLSE�2
�X2�2�� = 0�

(d) Cov
BLUE��X��� = Cov
WLSE�1
�X1�1��+ Cov
WLSE�2

�X2�2��.
(e) X′

1�
−1X2 = 0�

Finally, we give two results on relationships between WLSE��X�� and
WLSE�1

�X1�1�.

Theorem 2.6. Let WLSE��X�� and WLSE�1
�X1�1� be as given in (1.8) and (1.10).

Then the following statements are equivalent:

(a) There exist WLSE��X�� and WLSE�1
�X1�1� such that the equality

WLSE��X�� = WLSE�1
�X1�1� (2.11)

holds with probability 1.
(b) The set inclusion �WLSE�1

�X1�1�� ⊆ �WLSE��X��� holds with probability 1.
(c) VPXV = VPX1V

�
(d) ��VX2� ⊆ ��VX1��

The following result is a direct consequence of Theorem 2.6.
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Corollary 2.2. Suppose WLSE��X�� in (1.8) is unique� Then the equality
WLSE��X�� = WLSE�1

�X1�1� holds with probability 1 if and only if ��X2� ⊆
��X1��

Remark 2.1. In this article, we have obtained a variety of necessary and sufficient
conditions for WLSEs of X� under (1.2) to be sums of WLSEs under (1.3). Under
these conditions, it is expected that the sum decompositions can be used to derive
some valuable statistical properties of WLSEs and BLUEs of X� under (1.2).

The results in this article can also be extended to some more general settings.
Two future research topics on sum decompositions of WLSEs under partitioned
linear models are given below:

(a) For the general partitioned linear model

� = {
y� X1�1 + · · · + Xk�k� �

2�
}

and its k small models �i = �y� Xi�i� �
2��� i = 1� � � � � k� establish necessary and

sufficient conditions for the sum decomposition

WLSE��X1�1 + · · · + Xk�k� = WLSE�1
�X1�1�+ · · · +WLSE�k

�Xk�k�

to hold.

(b) Suppose K = 
K1� K2� ∈ �q×�p1+p2� is given and K� = K1�1 + K2�2 is
estimable under � in (1.2), i.e., ��K′� ⊆ ��X′�. Then establish necessary and
sufficient conditions for the sum decomposition

WLSE��K�� = WLSE�1
�K1�1�+WLSE�2

�K2�2�

to hold.

Appendix

Recall that the rank of a matrix is defined to the dimension of the row or column
space of the matrix. Also recall that A = 0 if and only if r�A� = 0. From this simple
fact we see that two matrices A and B of the same size are equal if and only if
r�A−B� = 0; two sets S1 and S2 consisting of matrices of the same size have a
common matrix if and only if

min
A∈S1�B∈S2

r�A − B� = 0

the set inclusion S1 ⊆ S2 if and only if

max
A∈S1

min
B∈S2

r�A − B� = 0�

If A − B can be written as a linear matrix expression with some arbitrary matrices,
then we can find the extremal ranks of this expression by (1.18) and (1.19), and
use the extremal ranks to characterize relations between the two sets S1 and S2.
This method is available for studying various matrix expressions involving arbitrary
matrices. In Puntanen et al. (2005), Qian and Tian (2006), and Tian and Wiens
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(2006), the matrix rank method is widely used to characterize a variety of equalities
for estimators under �. In the Appendix, we also use the method to prove the results
in Sec. 2.

Proof of Lemma 1.3. Notice that the rank of a matrix is invariant under elementary
block matrix operations. Hence, it is easy to find by elementary block matrix
operations that

r



−Z1 0 0 Z1

0 Z2 0 Z2

0 0 Z3 Z3

Z1 Z2 Z3 0


 = r



−Z1 0 0 0
0 Z2 0 0
0 0 Z3 0
0 0 0 Z1 − Z2 − Z3




= r�Z1 − Z2 − Z3�+ r�Z1�+ r�Z2�+ r�Z3�� (3.1)

Under the given conditions in Lemma 1.3, we also find by elementary block matrix
operations that

r



−Z1 0 0 Z1

0 Z2 0 Z2

0 0 Z3 Z3

Z1 Z2 Z3 0


 = r




0 Z1AZ2 Z1AZ3 Z1

0 Z2 0 Z2

0 0 Z3 Z3

Z1 0 0 0




= r




0 0 0 Z1

0 0 −Z2AZ3 0
0 −Z3AZ2 0 0
Z1 0 0 0




= 2r�Z1�+ r�Z2AZ3�+ r�Z3AZ2�� (3.2)

Combining (3.1) and (3.2) results in (1.17). �

Proof of Theorem 2.1. We first show that the following two results

�
X1FVX1
� X2FVX2

� ⊆ ��XFVX�� (3.3)

r�VX� ≥ r�VX1�+ r�VX2�− r�X′
1VX2� (3.4)

hold. Applying (1.13) to the matrices in (3.3) and simplifying by elementary block
matrix operations yield

r�XFVX� = r

[
X
VX

]
− r�VX� = r�X�− r�VX��

r
XFVX� X1FVX1
� X2FVX2� = r




X X1 X2

VX 0 0
0 VX1 0
0 0 VX2


− r�VX�− r�VX1�− r�VX2�

= r



X 0 0
0 −VX1 −VX2

0 VX1 0
0 0 VX2


− r�VX�− r�VX1�− r�VX2�
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= r



X 0 0
0 0 0
0 VX1 0
0 0 VX2


− r�VX�− r�VX1�− r�VX2�

= r�X�− r�VX��

Hence,

r
XFVX� X1FVX1
� X2FVX2

� = r�XFVX� = r�X�− r�VX�� (3.5)

which implies (3.3) by (1.15). Applying (1.14) to VX gives

r�VX� = r�V1/2X� = r
V1/2X1� V
1/2X2�

≥ r�V1/2X1�+ r�V1/2X2�− r�X′
1VX2�

= r�VX1�+ r�VX2�− r�X′
1VX2��

establishing (3.4), where V1/2 is the square root of the nonnegative definite matrix V.
It follows from (1.6) and (1.10) that

WLSE��X��−WLSE�1
�X1�1�−WLSE�2

�X2�2�

= PX�Vy − PX1�V
y − PX2�V

y

= �GV + XFVXU − X1FVX1
U1 − X2FVX2

U2�y�

where G = X�X′VX�+X′ − X1�X
′
1VX1�

+X′
1 − X2�X

′
2VX2�

+X′
2. Hence it can be seen

from (2.2) that (2.3) holds with probability 1 if and only if there exist U, U1, and
U2 such that

�GV + XFVXU − X1FVX1
U1 − X2FVX2

U2�y = 0 for all y ∈ �
X� ���

that is, there exist U, U1, and U2 such that

�GV + XFVXU − X1FVX1
U1 − X2FVX2

U2�S = 0� (3.6)

where S = 
X� ��. Rewrite (3.6) as

AZS = −GVS� (3.7)

where A = 
XFVX� X1FVX1
� X2FVX2

� and Z = 
U′�−U′
1�−U′

2�
′. From (1.20), the

equation in (3.7) is solvable for Z if and only if

r
GVS� A� = r�A� and r

[
GVS
S

]
= r�S�� (3.8)

The second equality in (3.8) holds naturally. It is easy to see ��G� =
��G′�⊆��S�, i.e., SS+G = G. Hence it follows that ��GVS� ⊇ ��GVSS+G� =
��GVG�=��GV�, which obviously implies that

��GVS� = ��GV�� (3.9)
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Under (3.3) and (3.9), it can be shown from (1.16) and (3.5) that the first equality
in (3.8) is equivalent to

r
GV� XFVX� = r�XFVX� = r�X�− r�VX�� (3.10)

Applying (1.13) to the left-hand side of (3.10) and simplifying by elementary block
matrix operations yields:

r
GV� XFVX� = r

[
GV X
0 VX

]
− r�VX� = r

[
0 X

−VGV 0

]
− r�VX�

= r�VGV�+ r�X�− r�VX�� (3.11)

Hence, (3.10) is equivalent to VGV = 0, which is the equality in (c). Let

Z = VX�X′VX�+X′V� Z1 = VX1�X
′
1VX1�

+X′
1V� Z2 = VX2�X

′
2VX2�

+X′
2V�

Then it is easy to verify that the nonnegative definite matrices Z, Z1, and Z2 are
outer inverses of V+, and

��Z� = ��VX�� ��Zi� = ��VXi�� ��VXi� ⊆ ��VX�� ZiXi = VXi� i = 1� 2
(3.12)

hold. Under these conditions, applying (1.17) to VGV gives

r�VGV� = r�Z− Z1 − Z2�

= r�Z�− r�Z1�− r�Z2�+ 2r�Z1V
+Z2�

= r�VX�− r�VX1�− r�VX2�+ 2r�X′
1VX2�

= 
r�VX�+ r�X′
1VX2�− r�VX1�− r�VX2��+ r�X′

1VX2�� (3.13)

The equivalence of VGV = 0 and X′
1VX2 = 0 follows from (3.4) and (3.13).

It can also be seen from (3.6) that the set inclusion in Theorem 2.1(b) holds with
probability 1 if and only if

min
U

r�GVS+ XFVXUS− X1FVX1
U1S− X2FVX2

U2S� = 0

holds for any U1 and U2, where S = 
X� ��. Under (3.3) and (3.9), applying
(1.19) gives

min
U

r�GVS+ XFVXUS− X1FVX1
U1S− X2FVX2

U2S�

= r
GVS− X1FVX1
U1S− X2FVX2

U2S� XFVX�− r�XFVX�

= r
GV� XFVX�− r�XFVX�

= 2r�X′
1VX2�+ r�VX�− r�VX1�− r�VX2� (by (3.5), (3.11) and (3.13))�

Hence, (b) is equivalent to (d) as well. �
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Proof of Theorem 2.2. It can be seen from (3.6) that the set inclusion in (a) holds if
and only if there exist U�U1, and U2 such that

max
U

min
U1�U2

r�GVS+ XFVXUS− X1FVX1
U1S− X2FVX2

U2S� = 0� (3.14)

It follows from (1.19) that

min
U1�U2

r�GVS+ XFVXUS− X1FVX1
U1S− X2FVX2

U2S�

= min
U1�U2

r

(
GVS+ XFVXUS− 
XFVX� X1FVX1

�

[
U1

U2

]
S
)

= r
GVS+ XFVXUS� X1FVX1
� X2FVX2

�− r
X1FVX1
� X2FVX2

�� (3.15)

from (1.18), (3.3), and (3.9) that

max
U

r
GVS+ XFVXUS� X1FVX1
� X2FVX2

�

= max
U

r�
GVS� X1FVX1
� X2FVX2

�+ XFVXU
S� 0� 0��

= min�r
GVS� X1FVX1
� X2FVX2

� XFVX�� r�S�+ r
X1FVX1
� X2FVX2

��

= min�r
GV� XFVX�� r�S�+ r
X1FVX1
� X2FVX2

��� (3.16)

and from (1.13) that

r
X1FVX1
� X2FVX2

� = r�N�− r�VX1�− r�VX2�� (3.17)

Combining (3.15) and (3.16) gives

max
U

min
U1�U2

r�GVS+ XFVXUS− X1FVX1
U1S− X2FVX2

U2S�

= min�r
GV� XFVX�− r
X1FVX1
� X2FVX2

�� r�S��

= r
GV� XFVX�− r
X1FVX1
� X2FVX2

�

= 2r�X′
1VX2�+ r�X�− r�N� (by (3.11), (3.13), and (3.17))�

Hence, (3.14) is equivalent to 2r�X′
1VX2�+ r�X� = r�N�. �

Proof of Theorem 2.4. It can be seen from (1.8) that WLSE��X�� is unique if
and only if XFVX = 0, which is equivalent to r�X� = r�VX� by (3.5). In this case,
E
WLSE��X��� = X�X′VX�+X′VX� = X�, as required for (a). The results in (b) can
be shown similarly.

Proof of Theorem 2.5. The range equality ��X′V� = ��X′� can be rewritten in
the partitioned form �

[
X′
1V

X′
2V

]
= �

[
X′
1

X′
2

]
, which implies both ��X′

1V� = ��X′
1� and

��X′
2V� = ��X′

2�. Hence, the uniqueness of WLSE��X�� implies the uniqueness of
both WLSE�1

�X1�1� and WLSE�2
�X2�2�, as required for (a). The result in (b) is

derived from (2.4). It is easy to find from (3.12) that

r
X1�X
′
1VX1�

+X′
1V�VX2�X

′
2VX2�

+X′
2�� = r�X′

1V�VX2��
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The result in (c) is a simple consequence of this rank equality. The result in (d)
follows from (a) and Theorem 2.1. �

Proof of Corollary 2.1. The equivalence of (a) and (e) follows from Theorem 2.1.
The equivalence of (b) and (e) follows from (2.7) and (2.8). The equivalence of (c)
and (e) follows from (2.10). It is also easy to find from (3.13) that

r�Cov
BLUE��X���− Cov
WLSE�1
�X1�1��− Cov
WLSE�2

�X2�2�� �

= r
X�X′�−1X�−1X′ − X1�X
′
1�

−1X1�
−1X′

1 − X2�X
′
2�

−1X2�
−1X′

2 �

= 2r�X′
1�

−1X2��

Hence, (d) and (e) are equivalent. �

Proof of Theorem 2.6. Note from (1.6) and (1.10) that

WLSE��X��−WLSE�1
�X1�1� = �GV + XFVXU − X1FVX1

U1�y�

where G = X�X′VX�+X′ − X1�X
′
1VX1�

+X′
1� and U and U1 are arbitrary. Hence it

can be seen from (2.2) that (2.11) holds if and only if there exist matrices U and U1

such that

�GV + XFVXU − X1FVX1
U1�y = 0 for all y ∈ �
X� ���

that is, there exist U and U1 such that

(
GV + 
XFVX�X1FVX1

�

[
U

−U1

])
S = 0� (3.18)

where S = 
X���. Rewrite (3.18) as

AZS = −GVS� (3.19)

where A = 
XFVX�X1FVX1
� and Z = 
U′�−U′

1�
′. It can be derived from (1.20) that

the equation in (3.19) is solvable for Z if and only if

r
GVS�A� = r�A�� (3.20)

It is also easy to verify ��G� = ��G′� ⊆ ��S�, so that ��GVS� = ��GV� holds.
In this case, we can derive from (1.16), (1.20), and (3.3) that (3.20) is equivalent to

r
GV�XFVX� = r�XFVX� = r�X�− r�VX�� (3.21)

By (1.13) and elementary block matrix operations,

r
GV�XFVX� = r

[
GV X
0 VX

]
− r�VX� = r�VGV�+ r�X�− r�VX�� (3.22)
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Thus, (3.21) is equivalent to VGV = 0, which is, in turn, is equivalent to (c). Under
the conditions in (3.12), applying (1.17) to VGV gives

r�VGV� = r�Z− Z1� = r�Z�− r�Z1� = r�VX�− r�VX1�� (3.23)

Thus, (3.21) is equivalent to r�VX� = r�VX1�, which is also equivalent to ��VX2� ⊆
��VX1� by (1.15). Hence, (a) and (e) of the theorem are equivalent.

It can be seen from (3.18) that the set inclusion in (b) holds if and only if there
exists a U such that

min
U

r�GVS+ XFVXUS− X1FVX1
U1S� = 0 (3.24)

for any U1. By (1.19), (3.3), (3.5), (3.22), and (3.23),

min
U

r�GVS+ XFVXUS− X1FVX1
U1S�

= r
GVS− X1FVX1
U1S�XFVX�− r�XFVX�

= r
GV�XFVX�− r�XFVX�

= r�VX�− r�VX1��

Thus (3.24) is equivalent to (d). �
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