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Abstract 

Generalized structured component analysis has been proposed as an alternative to 

partial least squares for path analysis with latent variables. In practice, observed and 

latent variables may often be hierarchically structured in that their individual-level scores 

are grouped within higher-level units. The observed and latent variable scores nested 

within the same higher-level group are likely to be more similar than those in different 

groups, thereby giving rise to the interdependence of the scores within the same group. 

Unless this interdependence is taken into account, obtained solutions are likely to be 

biased. In this paper, generalized structured component analysis is extended so as to 

account for the nested structures of both observed and latent variables. An alternating 

least-squares procedure is developed for parameter estimation. An empirical application 

concerning the measurements of customer-level customer satisfaction nested within 

different companies is presented to illustrate the usefulness of the proposed method.  

 

Keywords:  Generalized structured component analysis, multilevel analysis, alternating 

least squares, customer satisfaction. 
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1. Introduction 

 Generalized structured component analysis (GSCA) (Hwang & Takane, 2004) 

was proposed as an alternative method to partial least squares (PLS) (Lohmöller, 1989; 

Wold, 1966, 1973, 1975, 1982) for path analysis with latent variables defined as 

weighted composites of observed variables. GSCA so far assumes that all individual 

cases are independently selected from a population. In practice, however, data are often 

hierarchically structured in that their individual-level cases are grouped within higher-

level units. For instance, an adolescent’s level of substance use may be measured across 

different urban areas nested within different provinces. The standardized test scores of 

students may be observed across different schools. The functional magnetic resonance 

imaging data of each patient may be repeatedly taken over time (i.e., multiple time points 

are nested within each patient). The individual-level measures nested within the same 

group are likely to be more similar compared to those in different groups; thus, leading to 

the dependencies among the observations within the same group. Unless this 

interdependence of the individual-level observations is taken into account, obtained 

solutions are likely to be inaccurate (cf. Bryk & Raudenbush, 1992; Snijders & Bosker, 

1999).  

 In addition to such a clustered nature of observed variables, latent variables may 

also be seen hierarchically structured in the context of path analysis with latent variables. 

For instance, in the National Longitudinal Survey of Youth data, antisocial behavior of 

children can be viewed as a latent variable, which is often calculated as a sum of 

mothers’ responses to six items from the Behavior Problems Index (e.g., Curran, 1998). 

The antisocial behavior of each child can be repeatedly measured across multiple time 
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points. The American Customer Satisfaction Index (ACSI) model (Fornell, Johnson, 

Anderson, Cha, & Bryant, 1996) represents a path analysis model, which estimates 

customer satisfaction as a latent variable of major interest, and also focuses on the inter-

relationships among antecedent and consequent latent variables of customer satisfaction. 

In the ACSI model, customer-level satisfaction scores are measured for about 200 major 

companies nested within different sectors of the US economy (Fornell et al., 1996). Thus, 

it may be desirable to take into account the nested structure of individual latent variable 

scores as well as that of observed variable scores in path analysis with latent variables. 

In this paper, GSCA is generalized so as to deal with the hierarchical structures of 

both observed and latent variables. Specifically, the proposed method permits both 

loadings and path coefficients to be assumed to vary across higher-level units. Moreover, 

it allows investigating cross-level or interaction effects of explanatory variables for 

loadings and path coefficients in different levels.  

The paper is organized as follows. In Section 2, the proposed method is discussed 

in detail. This section focuses on the two-level GSCA model for simplicity. An 

alternating least squares algorithm is presented for parameter estimation. In Section 3, an 

empirical data set is used to illustrate the usefulness of the proposed method. The final 

section is devoted to discussing implications and further prospects of the proposed 

method. 

2. The Proposed Method 

2.1. The Two-Level GSCA Model 

 For simplicity, only the two-level GSCA model is discussed in this section. An 

extension to the three-level GSCA model is presented in the Appendix. Let jZ denote an 
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Nj by P matrix of observed variables in the j-th group ),,1( Jj L= . Let V and W denote 

weight matrices for endogenous and exogenous observed variables and latent variables, 

respectively. Let Aj denote a matrix of Level-1 loadings relating latent variables to 

observed variables, which are assumed to vary across groups. Let Bj denote a matrix of 

Level-1 path coefficients of latent variables, which are conceived to be different across 

groups. Let Ej denote a matrix consisting of all residuals. Then, the Level-1 GSCA model 

is given by 

,  
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                                           (1) 

where VZΨ jj = , WZΓ jj = , and ]  ,[ jjj BAT = .  

 Next, let Qj denote a matrix consisting of Level-2 exogenous observed variables, 

which explain the relationships between observed and latent variables in group j. Let A 

denote a matrix of Level-2 fixed loadings. Let Λj denote a matrix of Level-2 random 

loadings, which are assumed to vary across groups. Also, let Cj denote a matrix 

consisting of Level-2 exogenous observed variables, which account for the relationships 

between latent variables. Let B denote a matrix of Level-2 fixed path coefficients. Let Uj 

denote a matrix of Level-2 random effects of path coefficients, which may vary across 

groups. Then Level-2 models are given by 
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The Level-2 models indicate that Level-1 loadings and Level-1 path coefficients are 

conceived as varying over the population of a Level-2 unit, and also that such a variation 

is accounted for by the Level-2 characteristics, i.e., Qj and Cj. In (2), the variance of each 



 6

random effect represents the inter-group variability of the corresponding loading or path 

coefficient. 

 Finally, the model in combined form is as follows: 

.] ,[
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                               (3) 

In this combined model, it is seen that A and B represent the cross-level or interaction 

effects between Level-1 latent/observed variables ( jΓ ) and Level-2 characteristics (Qj 

and Cj). It is noteworthy that the proposed model is essentially the same form as the 

model of GSCA for a single group. Indeed, (3) reduces to the GSCA model when J = 1, 

Qj = I, Λj = 0, Cj = I, and Uj = 0. Therefore, the proposed model is an extension of the 

single-level GSCA model, which takes into account the multilevel structure of observed 

and latent variables. We shall call this proposed method Multilevel GSCA (MGSCA) 

hereafter. 

To illustrate MGSCA, we shall use the ACSI model which is a well-known 

generic model for measuring customer satisfaction in the United States (Fornell et al, 

1996). The ACSI model for the j-th group is depicted in Figure 1. 

___________________________ 

Insert Figure 1 about here 

___________________________ 

In Figure 1, zj’s represent vectors of the following fourteen observed variables in the j-th 

group: z1j = customer expectations about overall quality, z2j = customer expectations 

about reliability, z3j = customer expectations about customization, z4j = overall quality, z5j 

= reliability, z6j = customization, z7j = price given quality, z8j = quality given price, z9j = 
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overall customer satisfaction, z10j = confirmation of expectations, z11j = distance to ideal 

product or service, z12j = formal or informal complaint behavior, z13j = repurchase 

intention, and z14j = price tolerance. The measures and scales of these observed variables 

are presented in Fornell et al. (1996).  

 The ηj’s are vectors of latent variables and denoted as follows: η1j = customer 

expectations (CE), η2j = perceived quality (PQ), η3j = perceived value (PV), η4j = 

customer satisfaction (CS), η5j = customer complaints (CC), and η6j = customer loyalty 

(CL). In the figure, straight arrows are used to signify that the variable at the base of an 

arrow affects the variable at the head of the arrow whereas straight lines are used to 

represent the weighted relations between observed and latent variables. Moreover, the 

symbol ‘+’ in parentheses positioned over a path stands for a positive relationship 

between two latent variables, while the symbol ‘-’ represents a negative relationship.  

As shown in Figure 1, the i-th latent variable in group j is defined as a weighted 

composite of several observed variables, that is, ∑=
p

ppjij wzη , where wp is the weight for 

the p-th observed variable in group j ( 6,,1L=i ; )14,,1L=p . Note that the weight for 

z12j  is fixed to one because this is the only observed variable for η5j (CC). In the ACSI 

model, the Level-1 measurement model that specifies the relationships between observed 

and latent variables is given as follows:   
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where pja is a Level-1 loading for the p-th observed variable in group j, and pje  is a vector 

of the residual of pjz . Note that the Level-1 loading for z12j is set to one across groups, 

i.e., 112 =ja . Moreover, the Level-1 structural model that specifies the relationships 

among latent variables in group j is given as follows:  

,
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where kjb is a Level-1 path coefficient ( 9,,1L=k ), and ijd  is a vector of the residual of 

ijη . 

Next, Level-2 models may be specified for the ACSI model as follows: 

pjppj aa λ+=  and kjkkj ubb += , where pa is a Level-2 fixed loading, pjλ is a Level-2 

random loading, bk is a Level-2 fixed path coefficient, and ukj is a Level-2 random path 

coefficient. These models are contemplated because no Level-2 exogenous variables are 

available to predict across-level variations in Level-1 loadings and path coefficients. 

Then, the combined measurement model for the Level-1 loadings is specified as follows: 
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The combined structural model for the Level-1 path coefficients consists of: 
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 Suppose Zj = [ jjj 1421  , , , zzz L ] and Ej = [ jjj 1421  , , , eee L , jjjjj 54321  , , , , ddddd ]. 

The two-level GSCA model for the ACSI data is then expressed as  
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This can be re-expressed as 
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In (9), Ψj = [ jjjjjj 65432 ,,,,, ηηηηηZ ] and Γj = [ jjjjjj 654321 ,,,,, ηηηηηη ]. Note that 

j12λ = 0 because the Level-1 loading for z12j is constrained to be equal to one across 

groups.                                 

2.2. Parameter Estimation 

 To estimate model parameters, we seek to minimize the following least squares 

(LS) criterion: 
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with respect to V, W, A, B, Λj and Uj, subject to 1' =ii ηη , 0=∑
j

pjλ , and 0=∑
j

kju  for 

identification, where SS(X) = trace( XX' ), G = [Qj, I, Cj, I], R = 
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 An alternating least squares (ALS) algorithm (de Leeuw, Young, & Takane, 

1976) is developed to minimize (10). The proposed ALS algorithm can be viewed as a 

simple extension of that for GSCA. Specifically, this algorithm repeats the following 

three main steps until convergence is obtained:  

Step 1. V and W are updated for fixed A, B, Λj and Uj. This step is equivalent to 

minimizing  

)(SS
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with respect to V and W, where Tj = GRHj. This criterion is essentially equivalent to that 

for GSCA. Thus, the same ALS algorithm as that for GSCA is used to update V and W 

(see Hwang & Takane, 2004). 

Step 2. A and B (or equivalently R) are updated for fixed V, W, Λj and Uj. Criterion (10) 

can be re-written as 
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where vec(X) denotes a supervector consisting of all columns of X one below another, 

and ⊗ denotes a Kronecker product. Let r denote the vector formed by eliminating any 

fixed (e.g., zero or one) elements from vec(R). Let Ωj denote the matrix formed by 

eliminating the columns of WGZH jj ⊗' corresponding to the fixed elements in vec(R). 

Let vjω  denote the column vector of WGZH jj ⊗' corresponding to the v-th fixed element 

qv (e.g., qv  = 0 or 1) in vec(R).  Then, the LS estimate of r is obtained by 
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The updated R is reconstructed from r̂ . The regular inverse may be replaced by the 

Moore-Penrose inverse if ∑
=

J

j
jj

1
'ΩΩ is singular.  

Step 3. Λj and Uj (or equivalently Hj) is updated for fixed V, W, A, and B. Criterion (10) 

can also be re-written as 
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Let hj denote the vector formed by eliminating any fixed elements from vec(Hj). Let Ξj 

denote the matrix formed by eliminating the columns of WGRZI j⊗ corresponding to 

the fixed elements in vec(Hj). Let ljξ  denote the column vector of 

WGRZI j⊗ corresponding to the l-th fixed element mlj (e.g., mlj  = 0 or 1)  in vec(Hj).  

Then, the LS estimate of hj is obtained by 

 ( ) .)(vec''ˆ 1 ⎟
⎠

⎞
⎜
⎝

⎛
−= ∑−

l
ljljjjjjj mξVZΞΞΞh                              (15) 



 14

The updated Hj is reconstructed from jĥ . Again the regular inverse may be replaced by 

the Moore-Penrose inverse if jj ΞΞ '  is singular. 

A few remarks concerning the proposed algorithm are in order. First, the ALS 

algorithm monotonically decreases the value of criterion (10) which, in turn, is also 

bounded from below. This algorithm is therefore convergent. However, the algorithm 

does not guarantee that the convergence point is the global minimum. To safeguard 

against this so-called convergence to non-global minimum problem, one may repeat the 

ALS procedure with a large number of random initial estimates of parameters. One then 

compares the obtained function values after convergence and subsequently chooses the 

solution associated with the smallest one. Second, when Nj is large relative to P, the 

proposed algorithm can be made more efficient by a procedure similar to that for GSCA. 

Let jjj 'ΔΘZ = be portions of the QR decomposition of jZ  pertaining to the column 

space of jZ , where jΘ is an Nj by P semi-orthonormal matrix, so that IΘΘ =jj ' , and j'Δ  

is a P by N upper-triangular matrix. Then, minimizing (10) reduces to minimizing 

 ∑
=
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J

j
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1
)''(SS WTΔVΔ .                                       (16) 

It is computationally more convenient to minimize (16) than (10) because the size of j'Δ  

is usually much smaller than that of jZ . Finally, the proposed algorithm can be readily 

extended so as to estimate parameters of a higher-level GSCA model. For example, as 

shown in the Appendix, the three-level GSCA model entails an additional matrix of 

parameters compared to the two-level model. This matrix of new parameters can be 

easily updated by adding a sub-optimization step similar to Step 2 or Step 3.  
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Similarly to GSCA, MGSCA measures the overall goodness of fit of a 

hypothesized model by the portion of the total variance of all endogenous variables 

explained by model specifications. This is given by 
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This index ranges from 0 to 1. The closer to 1 its value is, the more variance of 

endogenous variables is accounted for.  

Also like GSCA, MGSCA employs the bootstrap method (Efron, 1982) in order 

to estimate the standard errors of parameter estimates. In this method, random samples 

(bootstrap samples) of Zj are repeatedly sampled from the original data matrix with 

replacement. MGSCA is applied to each bootstrap sample to obtain the estimates of 

parameters. Then, the bootstrapped standard errors of the estimates are calculated across 

entire bootstrap samples. The bootstrapped standard errors are used to assess the 

reliability of the estimates. The critical ratios (i.e., the parameter estimates divided by 

their standard errors) can be used to examine the significance of the parameter estimates 

(e.g., a parameter estimate having a critical ratio greater than two in absolute value is 

considered significant at .05 level). 

 

3. Empirical Application: The ACSI Data 

The present example consists of customer-level measures of the fourteen observed 

ACSI variables for thirteen American financial-services companies including banks and 

insurance companies. In other words, the observations of customers on the ACSI 
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variables were nested within the companies. The number of customers who have used the 

services offered by one of the thirteen companies was 3096. The number of customers 

within each company ranged from 100 to 400 (the average number of customers per 

company = 238).  

We considered a two-level GSCA model for this data, in which the loadings for 

customer-level (Level-1) observed variables and the path coefficients of customer-level 

latent variables were assumed to vary freely across companies (Level-2). More 

specifically, we applied the same two-level model as (8) to the data because no Level-2 

or company-level characteristics were available from this data. 

 The specified two-level model provided an overall goodness of fit of .80, 

indicating that it accounted for about 80% of the total variance of all endogenous 

variables. Table 1 provides weight (w’s) estimates for the observed variables in the ACSI 

model. It also presents the standard errors of the parameter estimates, calculated based on 

100 bootstrapped samples. 

___________________________ 

Insert Table 1 about here 

___________________________ 

It was shown that the weight estimates for each latent variable were similar to each other 

and all turned out to be significant. This indicates that all observed variables contributed 

equally well to determining their latent variables in the model.  

Table 2 presents the fixed (ap) loadings for the observed variables. It was shown 

that the estimated loadings appeared high and were significant. This suggests that the 

latent variables seemed to be well constructed in that they accounted for a large portion 
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of the variances of the observed variables. Table 2 also provides the fixed (bk) path 

coefficient estimates and their standard errors. The interpretations of the fixed effects 

appear consistent with the relationships among the latent variables hypothesized in the 

ACSI model. That is, CE had significant and positive influences on PQ (b1 = .49; s.e. = 

.02), PV (b2 = .15; s.e. = .01), and CS (b3 = .06; s.e. = .01). In turn, PQ showed 

significant and positive effects on PV (b4 = .65; s.e. = .01) and CS (b5 = .53; s.e. = .02). 

Also, PV exhibited a significant and positive effect on CS (b6 = .40; s.e. = .02). In turn, 

CS had a significant and positive impact on CL (b8 = .69; s.e. = .01), while a significant 

and negative impact on CC (b7 = -.38; s.e. = .02) was also apparent. Finally, CC showed 

a significant and negative effect on CL (b9 = -.08; s.e. = .02). 

___________________________ 

Insert Table 2 about here 

___________________________ 

 Table 3 shows the variance estimate of each Level-2 random loading (λpj) across 

the companies. This variance estimate represents inter-group variability in the loading. It 

was found that the variances of the random loadings for all observed variables turned out 

to be significant. This suggests that there existed substantial company-wise differences in 

each of the loadings. Table 3 also exhibits the variance estimate of the Level-2 random 

path coefficient of each latent variable (ukj). The variance estimates of all random path 

coefficients turned out to be significant, suggesting substantial differences in each of the 

path coefficients across the companies.   

___________________________ 

Insert Table 3 about here 
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___________________________ 

 To summarize, the proposed method was applied to two-level ACSI data, where 

customer-level measurements were clustered within different companies. Explicitly 

taking the nested structure into account, the proposed method provided fixed or average 

loadings between observed and latent variables in addition to fixed path coefficients 

between latent variables, specified in the ACSI model. The fixed effect estimates were 

shown to validate the relationships hypothesized in the ACSI model. Moreover, the 

proposed method allowed investigating company-wise invariance of the loadings and 

path coefficients by looking at the variance estimates of the corresponding random 

effects. Substantial inter-company variations of all loadings and path coefficients were 

revealed from this data. The single-level GSCA may also conduct the test of invariance 

through multi-group comparison analyses. However, this involves applying a separate 

ACSI model to each company. Thus, when the number of groups is large or the number 

of cases within each group is small, the single-level approach may become less attractive 

than the proposed method. Finally, the present example was not able to empirically 

illustrate the interaction effects of exogenous variables across different unit levels 

because no company-level explanatory variables were available from this data set. 

 

4. Concluding Remarks 

An extension of GSCA was proposed that takes into account the interdependence 

of hierarchical data. The proposed method allows for the modeling of fixed and random 

effects of both loadings and path coefficients in the path analytic model with latent 

variables. A straightforward least-squares algorithm was proposed for parameter 
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estimation in the proposed method. Although this algorithm is more complicated than the 

original ALS algorithm for GSCA, it still appears computationally efficient as it has 

hardly suffered from slow or no convergence according to our experience. The usefulness 

of the proposed method was empirically demonstrated with customer-level customer 

satisfaction data clustered within different companies.  

In spite of its important technical implications, MGSCA is not free from 

limitations. Most critical perhaps is the fact that it treats the random-effects (i.e., pjλ and 

ukj) as if they were fixed parameters. This is the usual approach in ANOVA (cf. Searle, 

1971). In theory, this approach seems somewhat restrictive because it regards higher-

level units as unique entities and focuses on the effects of the higher-level units on 

endogenous variables (Snijders & Bosker, 1999). Despite this narrow point of view 

regarding random effects, this approach is well suited to the distributional-free 

optimization procedure of the proposed method because it does not require any 

distributional assumptions on the random effects, e.g., iid normal. If this distributional 

assumption is unlikely to hold, the proposed approach can be a suitable choice. In this 

regard, it seemed appropriate to apply MGSCA to the ACSI data in the previous section 

because the assumption of normality is known to be almost always violated in customer 

satisfaction measures (Fornell, 1995; Anderson & Fornell, 2000). MGSCA can also 

emerge as a reasonable method when the number of a higher-level unit is small (say, J ≤ 

10) or the number of cases within the higher-level unit is relatively large (say, ≥ 100) 

because it is justifiable to treat random effects as fixed parameters in these cases (Snijders 

& Bosker, 1999). This condition was also satisfied in the ACSI data, in which the number 

of customers within each company was large. 
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A number of topics may be considered to enhance the capability of MGSCA. For 

instance, MGSCA is currently geared for the analysis of continuous variables. It may be 

effectively extended so as to deal with discrete variables through data transformations. In 

particular, the optimal scaling approach (Gifi, 1990; Young, 1981) is deemed promising 

because it can be readily coupled with the estimation algorithm of MGSCA. Moreover, 

MGSCA may be viewed as an a priori classification approach in the sense that it 

incorporates known information on group-level heterogeneity of respondents into the 

modeling of path-analytic model parameters. In many instances, the information on 

group-level heterogeneity can also be obtained by identifying clusters of respondents 

through the analysis of the data as in finite mixture models (McLachlan & Peel, 2000; 

Wedel & Kamakura, 1998). This post-hoc approach may be integrated into MGSCA for 

more sophisticated analyses. This extension may involve combining MGSCA with 

cluster analysis. Finally, MGSCA may serve to evolve new multilevel breeds of various 

extant multivariate techniques, for example, multilevel principal components analysis, 

multilevel canonical correlation analysis, etc, because their single-level counterparts can 

be viewed as special cases of GSCA (Hwang & Takane, 2004). All of these possibilities 

warrant further investigation and provide the fodder for future theoretical and empirical 

work. 
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Appendix: The Three-Level GSCA Model 

Let Zjs denote a matrix of Level-1 observed variables in the j-th Level-2 unit nested 

within the s-th Level-3 unit ),,1( Ss L= . Let Ajs and Bjs denote matrices of Level-1 

loadings and path coefficients, respectively. The Level-1 model is given by 

jsjsjsjsjs EBAWZVΖ += ] ,[ .                                       (A1) 

Next, let Qjs and Cjs denote matrices of Level-2 exogenous observed variables for 

loadings and path coefficients, respectively. Let As and Bs denote matrices of Level-2 

loadings and path coefficients, respectively. Let Λjs and Ujs denote matrices of Level-2 

random loadings and path coefficients, respectively. The Level-2 model is given by 

jssjsjs

jssjsjs

UBCB

ΛAQA

+=

+=
.                                               (A2)  

Also, let Ys and Ds denote matrices of Level-3 exogenous variables for loadings and path 

coefficients, respectively. Let A and B denote matrices of Level-3 fixed loadings and 

path coefficients, respectively. Let Λs and Us denote matrices of Level-3 random loadings 

and path coefficients, respectively. The Level-3 model is given by  
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The model in combined form is then as follows: 
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Table 1. The weight estimates and their standard errors (in the parentheses) in the ASCI 
model. 

 
 

w1 
w2 
w3 
w4 
w5 
w6 
w7 
w8 
w9 
w10 
w11 
w12 
w13 
w14 

    .45    (.01)
    .47    (.01)
    .35    (.01)
    .40    (.00)
    .40    (.00)
    .35    (.00)
    .52    (.00)
    .52    (.00)
    .38    (.00)
    .37    (.00)
    .36    (.00)
   1.00       
    .53    (.00)
    .53    (.00)
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Table 2. The Level-2 fixed loading and path coefficient estimates and their standard 
errors (in the parentheses) in the ASCI model. 

 
 

 
 
 
 
 

Level-2 
fixed 

loading 

a1 
a2 
a3 
a4 
a5 
a6 
a7 
a8 
a9 
a10 
a11 
a12 
a13 
a14 

 .83    (.01)  
  .86    (.01)
  .66    (.02)

     .90    (.01)
    .90    (.00)
    .80    (.01)
    .96    (.00)
    .96    (.00)
    .93    (.00)
    .91    (.00)
    .89    (.01)

    1.00 
    .94    (.00)
    .95    (.00)

 
 

Level-2 
fixed 
path 

coefficient 

b1  
b2   
b3   
b4   
b5   
b6   
b7   
b8   
b9   

   .49     (.02)
.15     (.01)

   .06     (.01)
.65     (.01)
.53     (.02)
.40     (.02)

-.38     (.02)
.69     (.01)

-.08     (.02)
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Table 3. The variance estimates of the Level-2 random loadings and random path 
coefficients and their standard errors (in the parentheses) in the ASCI model. 

 
 

 
 
 
 
 

Variance 
of level-2 
random 
loading 

λ1j 
λ2j 
λ3j 
λ 4j 
λ 5j 
λ 6j 
λ 7j 
λ 8j 
λ 9j 
λ 10j 
λ 11j 
λ 12j 
λ 13j 
λ 14j 

   7.99  (3.09)
 13.37  (4.37)
 16.82  (5.90)

 5.57  (2.02)
 6.26  (2.02)
 8.45  (3.36)

   1.75    (.78)
   1.78    (.81)

 4.62  (1.75)
 4.12  (1.91)
4.33  (1.74)  

- 
   4.52  (1.42)

4.39  (1.38)
 

Variance 
of  

level-2 
random  

path 
coefficient 

u1j   
u2j   
u3j   
u4j   
u5j   
u6j   
u7j   
u8j   
u9j   

.011   (.004)

.008   (.003)

.005   (.001)

.007   (.003)

.011   (.004)

.010   (.003)

.008   (.003)

.008   (.003)

.015   (.006)
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Figure 1: A Level-1 ACSI model 
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