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Abstract

Nonsymmetric correspondence analysis (NSCA) is designed to analyze two-way con-
tingency tables in which rows and columns assume an asymmetric role, e.g., columns
depend on rows, but not vice versa. A ridge type of regularization was incorporated
into a variety of NSCA: Ordinary NSCA, and Partial and/or Constrained NSCA.
The regularization has proven useful in obtaining estimates of parameters, which
are on average closer to the true population values. An optimal value of the reg-
ularization parameter is found by a G-fold cross validation method, and the best
dimensionality of the solution space is determined by permutation tests. A bootstrap
method is used to evaluate the stability of the solution. A small Monte Carlo study
and an illustrative example demonstrate the usefulness of the proposed procedures.

Key words: Reduced rank approximation, Covariates, Linear constraints, Ridge
regularization method, Generalized singular value decomposition (GSVD),
Permutation tests, G-fold cross validation, Bootstrap method

1 Introduction

In two-way contingency tables, rows and columns often assume an asymmetric
role. Table 1 (Haberman, 1978, p.113) shows a typical example. This table was
constructed by classifying 1,441 psychiatric patients by diagnostic group and
the type of therapy. It is clear that the type of therapy is affected by the
diagnostic group, while the reverse is not necessarily true. Such a situation
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Table 1
Number of psychotic patients in specified diagnostic groups receiving a principal
type of psychiatric therapy (from Haberman, 1978, p. 113).

Type of therapy

Diagnostic group Psychotherapy Organic therapy Custodial care Total

Affective 30 102 28 160

Alcoholic 48 23 20 91

Organic 19 80 75 174

Schizophrenic 121 344 382 847

Senile 18 11 141 170

Total 236 560 646 1422

raises two interesting questions (Kroonenberg and Lombardo, 1999): 1) How
strongly does a category in the diagnostic group predict a category in the type
of treatment? 2) What is the best possible way of visualizing the predictive role
of diagnostics on treatments? Nonsymmetric correspondence analysis (NSCA;
D’Ambra and Lauro, 1992; Lauro and D’Ambra, 1984) is designed to answer
such questions.

How should the predictive power of row i on column j be measured? Consider
the size of the conditional probability of column j given row i relative to the
size of the “average” (= unconditional) probability of column j. The larger
the difference between the two, the larger the predictive power of row i on
column j. (Throughout this paper, it will be assumed that rows represent the
predictive categories, and columns the criterion categories.) Let pij denote the
joint probability of row i and column j, and let pi. =

∑C
j=1 pij and p.j =

∑R
i=1 pij

represent the marginal probabilities of row i and column j, respectively. Then,
the conditional probability of column j given row i is given by pj|i = pij/pi.,
and the unconditional probability of column j by the marginal probability
p.j of column j. The predictive power of row i on column j is calculated by
aij = pij/pi. − p.j. The generalized singular value decomposition (GSVD) is
then used for visualizing the set of aij in a low dimensional space. Let A denote
the R×C matrix with aij as the ijth element, and let P denote the matrix of
pij arranged in the same way. Let PR and PC represent the diagonal matrices
of row and column marginal probabilities pi. and p.j, respectively. Then,

A = P−1
R P− 1R1>CPC , (1)

where 1R and 1C are, respectively, R- and C-component vectors of ones. The
GSVD of A is calculated with the row metric PR and the identity column
metric. The non-identity row metric PR is used to reflect the size of row
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marginal probabilities in a representation of rows and columns, as rows with
larger probabilities should have more influence in the representation. In a
resultant map constructed from the results of GSVD, the predictive power of
row i on column j is indicated by the magnitude of the inner product of the
two vectors representing the row and the column.

Contingency tables are often accompanied by some auxiliary information. For
example, the diagnostic groups in Table 1 may be characterized by sets of
scores on MMPI (Minnesota Multiphasic Personality Inventory) subscales.
Such additional information can be incorporated as linear constraints on the
rows of the table (Böckenholt and Böckenholt, 1990; Böckenholt and Takane,
1994; Hwang and Takane, 2002; Takane, Yanai, and Mayekawa, 1991; ter
Braak, 1986). By imposing linear constraints on predictor categories, a variant
of NSCA is obtained, called constrained NSCA. Constrained NSCA may be
viewed as a nonsymmetric version of canonical correspondence analysis (CCA;
ter Braak, 1986), which is based on symmetric CA. (While CCA analyzes a
mutual relationship between rows and columns of a contingency table with
constraints on either rows or columns, constrained NSCA analyzes a predic-
tive relationship between the two with constraints on predictive categories.)
Constraints may have an added benefit of stabilizing the estimates of param-
eters, provided that they are consistent with the predictive relationship in the
data.

The predictive relationship between rows and columns of a contingency table
is often mediated by variables other than those that define the rows and the
columns of the table. For example, the psychiatric patients in Table 1 may
differ among themselves in various aspects other than the diagnostic group
and the type of treatment. They may be of different gender, of different age,
with different socio-economic backgrounds, and so on. Part of the predictive
relationship between the diagnostic group and the treatment may be due to
these extraneous variables. The effects of these extraneous variables can be
eliminated (Yanai, 1988) to capture the more intrinsic aspects of the predictive
relationship between rows and columns. The resultant procedure may be called
partial NSCA. Note, however, that partial NSCA requires patient level data;
it is not feasible if the data are provided only in the form of a contingency
table, which has no facet corresponding to individual patients.

Partial NSCA and constrained NSCA may be combined into a unified pro-
cedure, which may be called partial and constrained NSCA. In partial and
constrained NSCA, not only are the effects of extraneous variables eliminated
in predicting the criterion variable (columns), but linear restrictions are also
imposed on the predictor variable (rows).

D’Ambra and Lauro (1989) proposed similar techniques for constrained and
partial NSCA’s in the specific context of three-way contingency tables. How-
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ever, their proposal was rather limited in scope. Their procedures allow only
a special kind of constraints and variables to be partialled out. (See sections
4.1 and 5 for more information about their procedures.) Our methods, on the
other hand, are much more general. Any kind of linear constraints can be
imposed, and the effects of any kind of variables can be eliminated.

So far, NSCA has been used to a large extent as a descriptive tool, although
some effort has been expended to make it more inferential. These efforts have
mostly been directed toward assessing the stability of parameter estimates in
NSCA (Balbi, 1992; 1994) using the bootstrap method (Efron and Tibshirani,
1993). While this is an important development, there remains another impor-
tant issue to be addressed. Solutions of NSCA are almost always obtained by
the GSVD of A in (1) with the row metric PR and an identity column metric.
Does this method produce the best estimates of parameters in the sense that
they are on average closest to the true population values? It will be shown in
this paper that this is not always the case, and a better estimation method
for NSCA is proposed. This method is easy to implement, almost as simple as
the original method, and yet is capable of obtaining better quality estimates.

Our method is based on the ridge regularization method, which was originally
developed by Hoerl and Kennard (1970) for multiple regression analysis. Let
X and y represent a matrix of predictor variables and a vector of the cri-
terion variable, respectively. In ridge regression, an estimate of the vector of
regression coefficients b is obtained by b̂(λ) = (X>X + λI)−1X>y, where λ is
a ridge parameter, and I is an identity matrix of appropriate order. A small
positive value of λ often provides an estimate of b that is on average closer to
true parameter values than their least squares (LS) counterpart, particularly
when the sample size is small, and/or predictor variables are highly collinear
(Hoerl and Kennard, 1970). A similar idea can be exploited to develop a better
estimation procedure for NSCA.

The ridge type of regularization has recently been incorporated in a variety
of multivariate data analysis techniques with considerable success. Takane
and Hwang (2006) developed regularized multiple correspondence analysis
(Greenacre, 1984; Nishisato, 1980), which subsumes symmetric CA as a spe-
cial case. Takane and Hwang (2007) also developed a similar regularization
procedure for redundancy analysis (RA), and Takane and Jung (2006) further
extended the regularized RA to partial and/or constrained RA. The latter
developments are particularly important for NSCA, since, as will be shown,
NSCA turns out to be a special case of RA, in which both predictor and cri-
terion variables are dummy coded categorical variables. The results given in
Takane and Hwang (2007) and Takane and Jung (2006) on RA are readily
extensible to NSCA with relatively minor modifications.

The rest of this paper is organized as follows. In section 2, first it is shown
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that NSCA is indeed a special case of RA, and then how to incorporate a
regularization procedure into ordinary NSCA is described. In the remainder
of section 2, regularized partial and/or constrained NSCA is discussed in a
similar fashion. Section 3 describes how to choose an optimal value of regular-
ization parameter by cross validation. Permutation tests are used to determine
the best dimensionality of the solution space. The bootstrap method is then
described for evaluating the stability of the estimates of parameters. In sec-
tion 4, two illustrative examples are given to demonstrate the usefulness of
the proposed procedures. The final section gives concluding remarks.

2 The Method

In this section we develop methods of parameter estimation for regularized
NCSA. We first discuss the case of regularized ordinary NSCA in some detail,
and then extend it to the other varieties of NSCA discussed in the introduction
section.

2.1 Ordinary Nonsymmetric Correspondence Analysis

For the sake of generality, we start with two dummy coded (indicator) data
matrices, although in some cases only a contingency table calculated from
these matrices is required for computation. Let ZY and ZX denote n by C
and n by R indicator matrices of criterion and predictor variables, respectively,
where n is the number of subjects, C is the number of categories in the criterion
variable, and R is the number of categories in the predictor variable. Note that
Z>XZY = nP, DR ≡ Z>XZX = nPR, and DC ≡ Z>Y ZY = nPC .

In NSCA, ZY and ZX are usually columnwise centered to eliminate an inter-
cept term in regression analysis. This is done by Y = QnZY and X = QnZX ,
where Qn = In − 1n1

>
n /n is the centering matrix of order n, and In is the

identity matrix of order n, and 1n is the n-component vector of ones. Note
that the centering operation applied to an indicator matrix reduces the rank
of the resultant matrix by 1. We attempt to predict as much as possible of
variations in Y based on as small a number of components of X as possible.
Let

Y = XB + E (2)

denote the multivariate regression model, where B is the matrix of regression
coefficients, and E is the matrix of disturbance terms. We would like to find
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B that minimizes

φ(B) = SS(E) = SS(Y−XB), (3)

where SS(E) = tr(E>E), subject to rank(B) = r ≤ rank(X>Y) ≤ min(rank(Y),
rank(X)) ≤ min(R − 1, C − 1). This is called redundancy analysis (RA; Van
den Wollenberg, 1977). RA is a general-purpose technique to analyze predic-
tive relationships between two sets of multivariate data (Lambert, Wildt, and
Durand, 1988).

Let

B̂ = (X>X)−X>Y (4)

be a rank free least squares (LS) estimate of B, where (X>X)− indicates a
generalized inverse (g-inverse) of X>X. Matrix X is necessarily a rank defi-
cient matrix, and so a g-inverse of X>X is always required. Then, (3) can be
rewritten as

φ(B) = SS(Y−XB̂) + SS(B̂−B)X>X , (5)

where SS(B̂ − B)X>X = tr(B̂ − B)′X>X(B̂ − B) (e.g., Takane and Hwang,
2007). Since the first term in (5) is unrelated to B, a reduced rank estimate
of B can be obtained by minimizing the second term, which is accomplished
by the generalized singular value decomposition (GSVD) of B̂ with the row
metric matrix X>X and the column metric matrix I. This GSVD problem is
written as GSVD((X>X)−X>Y)X>X, I .

How is this solution related to the NSCA solution discussed in the introduc-
tion section? Note that X>Y = Z>XZY −Z>X1n1

>
n ZY /n = n(P−PR1R1>CPC).

However, X>X 6= DR = Z>XZX . Fortunately, X>X in the above GSVD prob-
lem can be replaced by DR (Takane, Hwang, and Abdi, in press; Theorem 1
and Corollary 1 in Appendix (B)). When DR is nonsingular as assumed in the
introduction section, D−1

R X>Y = (nPR)−1n(P−PR1R1>CPC) = A. The mul-
tiplicative factor n in the row metric DR = nPR has no effect on the solution.
Thus, the two solutions are equivalent. This shows that NSCA is a special
case of RA when both sets of variables consist of indicator variables. A vari-
ety of useful extensions have been proposed for RA (Takane and Jung, 2006).
Similar extensions may be useful for NSCA, including regularized NSCA, and
partial and/or constrained NSCA. When DR is not necessarily nonsingular,
as will be assumed in the rest of this paper, the Moore-Penrose inverse of DR

(denoted as D+
R) may be used as a g-inverse of X>X (Takane, et al., in press;

Theorem 1).

6



We solve GSVD(D+
RX>Y)DR, I . Let this GSVD be denoted by D+

RX>Y =

U∆V>. This can be solved as follows. We first premultiply D+
RX>Y by D

1/2
R

to obtain (D+
R)1/2X>Y, whose ordinary SVD is calculated. Let this SVD be

denoted by (D+
R)1/2X>Y = U∗∆∗V∗>. Then, the above GSVD is obtained

by U = (D+
R)−1/2U∗, ∆ = ∆∗, and V = V∗. To obtain the reduced rank

approximation we retain only those portions of U, ∆, and V pertaining to the
r largest singular values. Let these portions of U, ∆, and V be denoted by
Ũ, ∆̃, and Ṽ, respectively. Then, the reduced rank estimate of B is obtained

by B̃ = Ũ∆̃Ṽ
′
. In the r-dimensional solution space, the standard coordinates

of vectors representing criterion categories (columns) are defined by Ṽ, and
the principal coordinates of vectors representing predictive categories (rows)
by Ũ∆̃. All subsequent GSVD problems in this paper are solved in essentially
the same way.

We follow a similar line of development to obtain a reduced rank ridge LS
(RLS) estimate of B (Takane and Hwang, 2007). In regularized ordinary
NSCA, we minimize

φλ(B) = SS(Y−XB) + λSS(B)P
X> , (6)

where λ is the ridge parameter, PX> = X>(XX>)−X is the orthogonal pro-
jection operator onto the row space of X. Let

B̂(λ) = (X′X + λPX>)−X>Y (7)

represent a rank free RLS estimate of B that minimizes the above criterion.
Then (6) can be rewritten as

φλ(B) = SS(Y)QX(λ) + SS(B̂(λ)−B)X>X+λP
X>

, (8)

where

QX(λ) = I−PX(λ) = I−X(X>X + λPX>)−X> (9)

(Takane and Hwang, 2007). Since the first term in (8) is unrelated to B,
(8) can be minimized by minimizing the second term, and the reduced rank
RLS estimate of B is obtained by GSVD(B̂(λ))X>X+λP

X> , I . By Theorem 2

of Takane et al. (in press), X>X + λPX> in this GSVD can be replaced by
DR + λPX> , and its g-inverse by the Moore-Penrose inverse of the latter.

In both the LS and RLS estimations of ordinary NSCA, reduced rank estimates
of B could be obtained by first obtaining a rank free estimate of B followed
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by a GSVD. This follows for all the other variants of NSCA we discuss in this
paper.

2.2 Partial Nonsymmetric Correspondence Analysis

Suppose that there are two sets of predictor variables. One is an indicator
matrix ZX1 just like ZX in the previous section, and the other ZX2 , to be
treated as covariates, could be a matrix of continuous variables, another matrix
of indicator variables, or a mixture of the two types. We assume that all three
data matrices concerned (Y, X1, and X2) are columnwise centered. We write
the model as

Y = X1B1 + X2B2 + E. (10)

We impose a rank restriction on B1, but not on B2, since the latter pertains
to the effects of extraneous variables in which we have no vested interest. For
convenience, we orthogonalize the two predictor sets (Reinsel and Velu, 1998),
and rewrite the model as

Y = QX2
X1B1 + X2B

∗
2 + E, (11)

where

QX2
= I−PX2 = I−X2(X

>
2 X2)

−X>
2 (12)

and

B∗
2 = B2 + (X>

2 X2)
−X>

2 X1B1. (13)

In the LS estimation, we minimize

φ(B1,B
∗
2) = SS(Y−QX2

X1B1 −X2B
∗
2). (14)

Let

B̂1 = (X>
1 QX2

X1)
−X>

1 QX2
Y, (15)

and

B̂
∗
2 = (X>

2 X2)
−X>

2 Y (16)
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be rank free LS estimates of B1 and B∗
2 that minimize (14). Then (14) can be

rewritten as

φ(B1,B
∗
2) = SS(QXY) + SS(B̂1 −B1)X′

1QX2
X1

+ SS(B̂
∗
2 −B∗

2)X′
2X2

, (17)

where X = [X1,X2] (Takane and Jung, 2006). Since the first and the third
terms in (17) are unrelated to B1, a reduced rank LS estimate of B1 can be ob-
tained by minimizing the second term, which is achieved by GSVD(B̂1)X′

1QX2
X1, I .

Matrix X>
1 QX2

X1 = X>
1 X1 − X>

1 PX2X1 in this GSVD may be replaced by

D1 − D12D
+
2 D>

12, provided that Sp(1n) ⊂ Sp(ZX2), and its generalized in-
verse by the Moore-Penrose inverse of the latter, where D1 = Z>X1

ZX1 , D2 =

Z>X2
ZX2 , and D12 = Z>X1

ZX2 . This follows from QZX2
= QZX2

Qn = QX2
Qn,

which in turn follows from QZX2
= QX2

+ Pn, where Pn = 1n1
>
n /n, and

Qn = In−Pn as defined earlier. Also, see Yanai and Puntanen (1993; Lemma
1(b)). The above replacement has a slight computational advantage when D2

is diagonal.

To incorporate ridge regularization in partial NSCA, we minimize

φλ(B1,B2) = SS(Y−X1B1 −X2B2) + λSS(



B1

B2


)P

X> . (18)

To minimize this criterion, we first rewrite the model (10) as

Y = QX2
(λ)X1B1 + X2B

∗
2 + E, (19)

where

QX2
(λ) = I−PX2(λ) = I−X2(X

>
2 X2 + λPX>

2
)−X>

2 , (20)

and

B∗
2 = B2 + (X>

2 X2 + λPX>
2
)−X>

2 X1B1. (21)

Let

B̂1(λ) = (X>
1 QX2

(λ)X1 + λPX>
1
)−X>

1 QX2
(λ)Y, (22)

and

B̂
∗
2(λ) = (X>

2 X2 + λPX>
2
)−X>

2 Y (23)
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be rank free estimates of B1 and B∗
2. Then (18) can be rewritten as

φλ(B1,B
∗
2) = SS(Y)QX(λ)

+SS(B̂1(λ)−B1)X>
1 QX2

(λ)X1+λP
X>

1

+ SS(B̂
∗
2(λ)−B∗

2)X>
2 X2+λP

X>
2

, (24)

where, as before, X = [X1,X2] (Takane and Jung, 2006). Since the first and
the third terms in (24) are unrelated to B1, a reduced rank RLS estimate
of B1 can be obtained by minimizing the second term, which is achieved by
GSVD(B̂1(λ))X>

1 QX2
(λ)X1+λP

X>
1

, I .

2.3 Constrained Nonsymmetric Correspondence Analysis

The model of constrained NSCA remains the same as (2). Additional infor-
mation about the rows of a contingency table is incorporated in the form
B = TB∗, where T is a known constraint matrix. We may assume with-
out loss of generality that T′PX>T = I. (If a given T does not satisfy this
condition, it can always be turned into one that satisfies the condition. Let
PX>T = UDV> represent the SVD of PX>T. Then, we may redefine T by
U and B∗ by DV>B∗.) In the LS estimation, we minimize

φ(B) = SS(Y−XB) = SS(Y−XTB∗) = φ(B∗). (25)

A rank free LS estimate of B∗ can be obtained by B̂
∗

= (T>X>XT)−T>X>Y
from which a rank free estimate of B can be obtained by

B̂
(c)

= TB̂
∗

= T(T>X>XT)−T>X>Y. (26)

Then, (25) can be rewritten as

φ(B) = SS(QXTY) + SS(B̂
(c) −B)X′X , (27)

where

QXT = I−XT(T>X>XT)−T>X>. (28)

Since the first term in (27) is unrelated to B, a reduced rank estimate of
B can be obtained by minimizing the second term, which is achieved by

GSVD(B̂
(c)

)X′X, I . As in ordinary NSCA, X′X in this GSVD can be replaced
by DR, and its g-inverse by the Moore-Penrose inverse of the latter.
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In regularized constrained NSCA, we minimize (6) under the constraint that
B = TB∗. Let

B̂
(c)

(λ) = T(T>X>XT + λPX>)−T>X>Y (29)

be a rank free RLS estimate of B. Then, (6) can be rewritten as

φλ(B) = SS(Y)QXT (λ) + SS(B̂
(c)

(λ)−B)X′X+λP
X> , (30)

where

QXT (λ) = I−XT(T>X>XT + λPX>)−T>X>. (31)

A reduced rank RLS estimate of B is obtained by GSVD(B̂
(c)

(λ))X′X+λP
X> , I .

Again, X>X + λPX> in this GSVD can be replaced by DR + λPX> , and its
g-inverse by the Moore-Penrose inverse of the latter.

2.4 Partial and Constrained Nonsymmetric Correspondence Analysis

Partial and constrained NSCA follows essentially the same line of development
as partial NSCA. The major distinction between them is that the predictor
variables in the former are subject to both rank restriction and linear con-
straints, while in the latter only the rank restriction is imposed. Let

B̂
(c)

1 = T(T>X>
1 QX2

X1T)−T>X>
1 QX2

Y (32)

be a rank free LS estimate of B1. Then a reduced rank estimate is obtained

by GSVD(B̂
(c)

1 )X>
1 QX2

X1, I . As in partial NSCA, X>
1 QX2

X1 can be replaced by

D1 −D12D
+
2 D>

12 and its g-inverse by the Moore-Penrose inverse of the latter,
provided that Sp(1n) ⊂ Sp(ZX2).

In the regularized estimation, let

B̂
(c)

1 (λ) = T(T>X>
1 QX2

(λ)X1T + λPX>
1
)−T>X>

1 QX2
(λ)Y (33)

be a rank free RLS estimate of B1. Then, the reduced rank ridge estimate of

B1 is obtained by GSVD(B̂
(c)

1 (λ))X>
1 QX2

(λ)X1+λP
X>

1
, I .
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3 The choice of dimensionality and λ

There are two important decisions to be made in applying regularized NSCA:
1) How many dimensions should be retained in the solution, and 2) What is
the “optimal” value of the ridge parameter?

We use permutation tests to choose the best dimensionality in the solution.
They are easy to apply and have been proven useful in similar contexts (e.g.,
Takane and Hwang, 2002). The permutation test proceeds as follows: First,
singular values (sv) are calculated from the original data. Then, the rows of
predictor variables are randomly permuted, and sv’s are calculated from the
permuted data. The largest sv from the permuted data is compared with that
from the original data. This is repeated many times, say 1000, and the number
of times the sv’s from the permuted data exceed the original sv is counted.
If this count is smaller than 100α (where α is the prescribed significance
level), the largest sv from the original data is considered significantly different
from 0 at the α level. Subsequent sv’s can be tested in a similar fashion
by eliminating the effects of more dominant sv’s. The chosen dimensionality
is the number of sv’s that are significantly different from 0. See Legendre
and Legendre (1998), and ter Braak and Šmilauer (1998) for more general
discussions on permutation tests in similar contexts.

The ridge parameter λ regulates the strength of the shrinkage effect. Since
the optimal level of the shrinkage effect is usually not known in advance, an
“optimal” value of λ has to be determined from data. We use cross validation
to choose an optimal value of λ. In G-fold cross validation, we randomly divide
the data into G groups, one of which is set aside as a test sample, while the
remaining G − 1 groups are used to estimate parameters in the model. The
estimates obtained from the calibration sample are used to predict the test
sample. We repeat this G times with each of the G test samples used in turn
and calculate the mean squared prediction error. The whole procedure is re-
peated with the value of λ systematically varied (say, 0, 5, 10, 20, 50, 100). We
choose the value of λ which gives the smallest mean squared prediction error.
When G = n (the number of cases in the original data) is taken, this method
reduces to the leaving-one-out (LOO) method (aka the Jackknife method).

A bootstrap method (Efron and Tibshirani, 1993) can be used to assess the
stability of parameter estimates. In the bootstrap method, we repeatedly draw
random samples of size n (called bootstrap samples) from the original data set
with replacement. We apply NSCA to each of the bootstrap samples to obtain
parameter estimates. We then calculate means and variances of the estimates,
from which we estimate biases and standard errors. The bootstrap method may
also be used to test whether the estimated parameters are significantly positive
or negative. Suppose that an estimate with the original data set happens to be
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positive. We count the number of times the estimate of the same parameter
is negative in bootstrap samples. If the relative frequency of the bootstrap
estimates crossing over zero is less than a prescribed significance level (e.g.,
.05 or .01), we conclude that it is significantly positive.

4 Some Numerical Results

We first demonstrate the effectiveness of regularization in ordinary NSCA and
constrained NSCA using a Monte Carlo technique, in which we sample data
from a population, and the quality of estimation procedures is evaluated in
terms of closeness of the estimates they produce to the population parameters.
In the second analysis, we apply constrained NSCA to spider abundance data
(ter Braak, 1986), where the objective is to predict the abundance of vari-
ous kinds of spider from the environmental variables characterizing the sites
where they are trapped. This data set was previously analyzed by canonical
correspondence analysis (CCA; ter Braak, 1986), but because of the direc-
tional nature of the relationship between spiders and the sites, constrained
NSCA seems to offer a more appropriate way of analyzing the data. We also
demonstrate the positive effect of regularization using the bootstrap method.
Specifically, we show that estimates obtained by regularized constrained NSCA
are more reliable than those derived by non-regularized constrained NSCA.

4.1 A Monte Carlo Study Using Shoplifting Data

The quality of estimates can generally be assessed by how close they are on
average to the corresponding true population values. One possible measure of
this is the mean squared error (MSE), defined by E[SS(θ̂ − θ)], where θ̂ is
the vector of parameter estimates, θ is the vector of population parameters,
and E indicates expectation. The MSE can be decomposed into two parts: the
variance, E[SS(θ̂ − E(θ̂))] (the expected value of squared difference between
estimates and their expectations), and the squared bias, SS(θ − E(θ̂)) (the
squared difference between the true parameter values and the expected values
of the estimates). It is known (e.g., Hoerl and Kennard, 1970) that in regression
analysis, the LS estimates of regression coefficients have zero biases but large
variances, while the ridge estimates have some biases (usually small), but much
smaller variances than their LS counterparts. Consequently, the latter tend to
have smaller MSE’s.

Of course, the MSE cannot be calculated unless the values of population pa-
rameters are known. Fortunately, some contingency tables can be considered
as representing populations, exhausting all cases under study. One such exam-
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ple is the shoplifting data (Israëls, 1987), in which the total number of 33,101
people suspected of shoplifting in the Netherlands during 1977 and 1978 were
cross-classified in terms of gender (male or females), age group (younger than
12, 12 to 14, 15 to 17, 18 to 20, 21 to 29, 30 to 39, 40 to 49, 50 to 64, and 65
and over), and categories of stolen goods (clothing, clothing accessories, pro-
visions, tobacco, writing material, books, records, household goods, sweets,
toys, jewelry, perfume, hobby tools, and others). Ordinary NSCA was first
applied to the table with the combinations of age group and gender treated
as predictor categories. This yields the population parameters. (The solution
is not presented here, since Kroonenberg and Lombardo (1999) have already
presented it along with a detailed explanation of how to interpret the config-
uration in NSCA.) One hundred data sets of varying sample sizes (N = 50,
100, 200, 300, and 500) were then sampled from the population contingency
table, which were then analyzed by regularized ordinary NSCA with the value
of the ridge parameter λ systematically varied (0, 2, 5, 10, 25, and 50), and
the MSE evaluated as a function of λ.

Figure 1(A) presents MSEs as functions of the sample size (N) and λ. As can
be seen, in all sample sizes the MSE goes down as the value of λ departs from
zero, but has an upward trend after a while. This tendency is particularly
clear for small sample sizes, although it can still be observed to a lesser extent
for larger sample sizes. This means that a moderate value of λ yields the
best estimates of parameters associated with the smallest MSE’s. Figure 1(B)
displays a breakdown of the MSE function for N = 100 into variance and
squared bias. The variance consistently decreases as the value of λ increases,
while the squared bias increases. The MSE attains its smallest value near
λ = 5. Similar behavior of the MSE was first demonstrated in the context of
univariate regression by Hoerl and Kennard (1970), and subsequently in many
multivariate data analysis contexts by Takane and Hwang (2006; 2007), and
Takane and Jung (2006).

Figures 1(C) and 1(D) show the results similar to Figures 1(A) and 1(B)
respectively, for constrained NSCA. They are remarkably similar to those ob-
tained for ordinary NSCA. In this analysis, predictor categories of the shoplift-
ing data were created by interactive coding of the gender and age variables.
The effects of the predictor categories were then constrained to be an additive
function of the main effects of the gender and age variables. Incidentally, this
is the kind of constrained NSCA suggested by D’Ambra and Lauro (1989) in
the specific context of three-way contingency tables.

In the above, the RLS estimates (λ > 0) were indeed found to be better es-
timates than their non-regularized counterparts (λ = 0). However, we cannot
assume that the effect of regularization is uniform across all the estimates.
To illustrate the differential effects of regularization, we selected two predic-
tor categories, one (male aged 65 and over) with a relatively small marginal
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Fig. 1. (A) shows MSE as a function of the ridge parameter (λ) and the sample size,
and (B) shows the breakdown of MSE into squared bias and variance for N = 100
for ordinary NSCA. (C) and (D) are similar to (A) and (B), but for constrained
NSCA with additivity constraints on predictor categories. In (A) and (C), symbols
a, b, c, d, and e indicate sample sizes of N = 50, 100, 200, 500, and 1000, respectively.
In (B) and (D), o indicates MSE, x indicates Variance, and + indicates Squared
Bias.

frequency (less than 2%), and the other (male aged between 12 and 14) with
a relatively large marginal frequency (nearly 17%). Estimates of parameters
were obtained corresponding to these categories by both LS and RLS for 100
random samples each of size N = 100 drawn from the original table. Figure
2(A) displays the scatter plot of the 100 LS estimates corresponding to the
small marginal frequency category. The asterisk indicates the population pa-
rameters, while the circle indicates the mean of the estimates. Although the
LS estimates are biased very little (as indicated by closeness of the popula-
tion values and the mean of the estimates), they scatter widely in the solution
space. Figure 2(B), on the other hand, presents the RLS estimates for the same
category. The RLS estimates are more biased than the LS estimates. However,
they are much more tightly clustered around the mean. This shows that reg-
ularization has the strongest effect on small frequency categories. Figure 2(C)
and 2(D) show analogous results for the large marginal frequency category. In
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this case, even the LS estimates are fairly tightly clustered around their popu-
lation value. However, the RLS estimates are even more tightly clustered. The
effect of regularization is less on large marginal frequency categories, although
its effect in reducing the size of MSE can still be observed.
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Fig. 2. (A) One hundred estimates (dots) of coordinates of vectors representing
a predictor category with a small marginal frequency derived by non-regularized
ordinary NSCA. (B) The same as (A), but obtained by regularized ordinary NSCA.
(C) The same as (A), but for a predictor category with a large marginal frequency.
(D) The same as (C), but obtained by the regularized estimation. In all of these
figures, “*” indicates the population parameter, and “o” indicates the mean of the
estimates.

4.2 Hunting Spider Abundance Data

The second example concerns a data set pertaining to the abundance of 12
species of hunting spiders at 28 sampled sites originally collected by Van der
Aart and Smeek-Enserink (1975). (The data, as analyzed in the present study,
were taken from ter Braak (1986), who applied CCA to this data set.) There
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are also six environmental variables describing some aspects of environmen-
tal conditions of the sites such as: (ws) Water content (percentage of soil
dry mass), (bs) Bare sand (percentage cover of bare sand), (cm) Cover moss
(percentage cover of moss layer), (lr) Light refl. (reflection of the soil sur-
face with cloudless sky), (ft) Fallen twigs (percentage cover of fallen leaves
and twigs), and (ch) Cover herbs (percentage cover of herb layer). In ecol-
ogy, it is important to understand the influence of environmental factors on
species diversity. We thus focus on the predictive relationship between the en-
vironmental variables and the distribution of various kinds of hunting spiders.
Criterion categories are the 12 species of hunting spider: (al) Arctosa lutetiana,
(pl) Pardosa lugubris, (zs) Zora spinimana, (pn) Pardosa nigriceps, (pp) Par-
dosa pullata, (aa) Aulonia albimana, (tt) Trochosa terricola, (ac) Alopecosa
cuneata, (pm) Pardosa monticola, (ae) Alopecosa accentuana, (af) Alopecosa
fabrilis, and (ap) Arctosa perita. (Symbols in parentheses are plotting symbols
in Figure 3.)

Constrained NSCA was applied with the environmental variables as additional
information on predictor categories (sites). Permutation tests were first applied
to determine the dimensionality of the solution. They uniformly indicated that
the first component was highly significant (s2

1 = 18.67, p < .001 (where s2
1

indicates the sum of squares in the criterion categories that can be accounted
for by the first component), as was the second (s2

2 = 8.33, p < .001), and the
third (s2

3 = 2.34, p < .001), while the fourth component was not significant
(s2

4 = 0.50, p > .670). (The reported numbers are for λ = 100, which was later
found to be optimal.) Thus, the best dimensionality was three. Although the
third dimension is significant, its contribution is relatively small compared to
the first two dimensions. A 55-fold cross validation was then applied with the
value of λ varied systematically: 0, 10, 25, 50, 100, 150, and 200. The optimal
value of λ was found to be 100. The cross validation also found that the three
dimensional solution was the best, which was consistent with the result of the
permutation tests.

Figure 3 shows the three-dimensional RLS configuration obtained by con-
strained NSCA. (It was found that the RLS configuration was shrunk slightly
toward the origin compared to the LS configuration.) The predictive power of
a particular site on a particular kind of spider can be evaluated by the magni-
tude of the inner product between two vectors representing these entities. For
example, cover herbs labeled as (ch) is closest to Pardosa pullata labeled as
(pp), suggesting that herbal sites predict the highest occurrences of the spi-
der pp. To help interpret the derived components (dimensions), correlations
between the environmental variables and the components were calculated and
reported in Table 2. Component 1 seems to contrast dry sites with wet sites.
The cm (Cover moss), lr (Light refl.), and bs (Bare sand) are positively corre-
lated with this component, while wc (Water content) and ft (Fallen twigs) are
negatively correlated. On this component, spiders ae (Alopecosa accentuana)
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Fig. 3. Three-dimensional configuration of hunting spider abundance data by reg-
ularized NSCA. Circles indicate criterion categories (species of hunting spiders) in
standard coordinates, dots indicate predictor categories (sampled sites) in principal
coordinates, and arrowheads indicate the environmental variables.

and af (Alopecosa fabrilis) come at the positive end (preferring dry areas),
while tt (Trochosa terricola) comes at the negative end (preferring wet sites).
The second component separates herbal sites (ch) on the negative side and
woody sites (ft) on the positive side. Spider pp (Pardosa pullata) seems to
prefer herbal sites, while pl (Pardosa lugubris) woody areas. The third com-
ponent contrasts bs (Bare sand) on the positive side and cm (Cover moss) on
the negative side. Spiders af (Alopecosa fabrilis) and pn (Pardosa nigriceps)
prefer bare sand, while pm (Pardosa monticola) prefers areas covered by moss.

Confidence ellipsoids indicate the degree of stability of parameter estimates.
Since it is rather difficult to visualize them in three dimensions, a series of
two-dimensional projections of the confidence ellipsoids were drawn. (They
are sufficient to get a feel for which of the two estimation methods, regular-
ized or non-regularized, will yield more reliable parameter estimates.) Figures
4 and 5 report the projected 95% confidence regions for the estimates of re-
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Table 2
Correlations between the environmental variables and the components derived by
the regularized constrained NSCA.

Component

E.V. 1 2 3

wc -.910 -.256 .024

bs .630 .316 .578

cm .812 -.063 -.506

lr .779 -.448 -.026

ft -.583 .715 -.145

ch -.097 -.927 .106

gression weights (the top row), predictor categories (the middle row), and
criterion categories (the bottom row). Of the three columns, the first depicts
the projections onto the first two dimensions, the second column to dimensions
1 and 3, and the last column to dimensions 2 and 3. Figure 4 presents the re-
sults of non-regularized LS estimation, and Figure 5 of regularized constrained
NSCA. For both the regression weights and the predictor categories, the RLS
estimates are consistently more reliable than the corresponding LS estimates.
To avoid the impression that the RLS estimates look more reliable simply
because they were shrunk toward 0, the RLS configurations were scaled up to
match the size of the LS configurations. As can be seen, confidence regions
are still smaller for the RLS estimates after this adjustment. (This scaling is
presumed to have a bias equalizing effect. Note, however, that it is only for
the purpose of the reliability comparison.) There does not seem to be any
systematic differences in the reliability of the estimates of criterion categories
between the RLS and LS estimations, which are only indirectly affected by
the regularization.

5 Concluding Remarks

NSCA is a preferred method of analysis, when rows and columns of a two-
way contingency table have a directional dependence structure. NSCA yields a
graphical representation of the rows and columns in a low dimensional space.
The best dimensionality of the solution can be determined in such a way that
the low dimensional representation captures all the important aspects of the
predictive relationship in the table. Another potential advantage of NSCA has
been pointed out by Gimaret-Carpentier, Chessel, Pascal, and Ramesh (1999)
in that NSCA is relatively unaffected by a rare criterion category, which of-
ten dominates the symmetric CA solutions. (This is because the symmetric
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Fig. 4. Bi-dimensional 95% confidence regions for the estimates of weights for the
environmental variables and of category vectors by non-regularized NSCA. Top row:
Weights for the environmental variables. Middle row: Predictor categories (sampled
sites) in principal coordinates. Bottom row: Criterion categories (species of hunting
spiders) in standard coordinates. The first column: Dimension 1 vs 2. The second
column: Dimension 1 vs 3. The third column: Dimension 2 vs 3.

CA, being a special case of canonical correlation analysis, treats all categories
“equally” irrespective of their size.) Partial and/or constrained NSCA were
introduced to incorporate external information into NSCA. Subjects under
study may have some background information (e.g, demographic information).
Partial NSCA eliminates the effects of extraneous variables in analyzing the
relationships between rows and columns of a contingency table. Predictor cat-
egories may have some interesting structural relationship among themselves.
Such information can be incorporated into NSCA as linear constraints, yield-
ing constrained NSCA.

To obtain better estimates of parameters in NSCA, a ridge type of regular-
ization was introduced into NSCA. It was shown through the analysis of two
example data sets that this type of estimation was indeed capable of obtaining
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Fig. 5. The same as Figure 4, but obtained by regularized NSCA. Weights for the
environmental variables (the first row) and predictor categories (the second row)
have been scaled up to the size of the corresponding configurations Figure 4. This
is presumed to have a bias equating effect between the two solutions.

estimates of parameters which were more stable, and which were on average
closer to the true population values.

No real examples were given for partial NSCA or partial and constrained
NSCA in this paper. This is largely due to a lack of suitable and interesting
data sets. It is rare to find in literature the subject level indicator matrices with
the additional subject level information. Higher order contingency tables are
perhaps the only exceptional cases. As mentioned in the introduction section,
D’Ambra and Lauro (1989) developed a special kind of partial NSCA for
three-way contingency tables. In their procedure, one of the three categorical
variables is taken as the criterion variable, while the other two are interactively
coded and used as the predictor set. The main effect of one of the two predictor
variables (say, A) is partialled out by conditioning on each level (category) of
variable A. What remains is the simple main effects of the other predictor
variable (say, B) at different levels of A. (The combined effect of these simple
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main effects is equivalent to the overall main effect of A plus the interaction
between A and B.) This is a special case of our partial NSCA and the kind
that can also be dealt with as a special case of constrained NSCA by specifying
appropriate constraints (Takane, Yanai, and Mayekawa, 1991). Thus, the kind
of partial NSCA that can only be carried out by our procedure still awaits
good example data sets.
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