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Abstract

Takane’s original algorithm for DEDICOM (DEcomposition into DIrectional COMponents)

was proposed more than two decades ago. There have been a couple of significant develop-

ments since then: Kiers et al.’s modification to ensure monotonic convergence of the algo-

rithm, and Jennrich’s recommendation to use the modified algorithm only when Takane’s

original algorithm violates the monotonicity. In this paper, we argue that neither of these

modifications is essential, drawing a close relationship between Takane’s algorithm and the

simultaneous power method for obtaining dominant eigenvalues and vectors of a symmet-

ric matrix. By ignoring monotonicity, we can develop a much more efficient algorithm by

simple modifications of Takane’s original algorithm, as demonstrated in this paper. More

specifically, we incorporate the minimum polynomial extrapolation (MPE) method to ac-

celerate the convergence of Takane’s algorithm, and show that it significantly cuts down the

computation time.

1 Takane’s personal note

Richard Harshman left us two important legacies. This paper is closely related to one of

them. At the 1978 meeting of the Psychometric Society in Hamilton, Ontario, Richard

presented a seminal paper on DEDICOM, a model for the analysis of asymmetric square

tables (Harshman, 1978). His paper opened up a new horizon for asymmetric data analysis,

which until then drew little attention from statisticians. People were, however, quick to

recognize the importance of the topic in statistics. Only two years later, a one-day workshop

on asymmetric data analysis was organized through the initiative of Joe Kruskal and Richard

himself. This satellite meeting to the annual meeting of the Psychometric Society in Iowa

attracted over 30 people from around the world. One of the authors of the present paper

(Takane) was invited to give a talk at the workshop, and he initially accepted the invitation

in the hope that he would be able to come up with something worth presenting. However,

despite a great deal of effort, even one week before the workshop he was still unable to
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think of anything worthwhile, and decided to withdraw his talk. This turned out to be a

nightmare for him in dual sense. First of all, it was disgraceful to withdraw a paper shortly

before the meeting, and secondly, just a few days after he withdrew his talk, he suddenly

came up with an algorithm, which is now known as Takane’s algorithm for DEDICOM.

He missed the chance of presenting his algorithm at the workshop, although a short paper

(Takane, 1985) describing the algorithm came out several years after the workshop. The

present paper describes some recent developments in this algorithm.

2 Introduction

Numerous situations give rise to square asymmetric tables. Mobility tables, journal cita-

tion data, brand loyalty data, and stimulus identification data are but a few examples of

such tables. Two-way single-domain DEDICOM (DEcomposing DIrectional COMponents;

Harshman, 1978; Harshman, Green, Wind, and Lundy, 1981) is a model for the analysis of

such asymmetric square tables. Let Ã represent a square asymmetric table of size n. The

infallible DEDICOM model of dimensionality r is written as

Ã = XBX′, (1)

where X is an n by r columnwise nonsingular matrix such that Sp(X) = Sp(Ã) = Sp(Ã′),

and B a nonsingular matrix of order r. The DEDICOM model attempts to explain asym-

metric relationships among n objects by asymmetric relationships among a smaller number

(r) of latent “objects”.

Takane (1985) developed a least squares (LS) method for fitting the DEDICOM model

to fallible data, which, although iterative, turned out to be quite efficient in many practical

situations. However, his algorithm is not always monotonically convergent in the sense

that it consistently minimizes the value of the LS criterion. A modified algorithm has

been proposed (Kiers, ten Berge, Takane, and de Leeuw, 1990) that ensures monotonic

convergence. However, this modification tends to slow the speed of convergence of the
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algorithm. Consequently, Jennrich (2001) proposed to use the modified algorithm only

when the monotonicity is actually violated. Following his strategy, the algorithm maintains

monotonicity in convergence, and a substantial improvement has been gained in convergence

speed. In this paper, we argue that the monotonicity in convergence is not a crucial property

of an algorithm, drawing a close relationship between Takane’s algorithm for DEDICOM

and the simultaneous power method for obtaining dominant eigenvalues and vectors of a

symmetric matrix. The latter, like the former, has no monotonic convergence property

unless the matrix is nnd (nonnegative definite). We show that Takane’s algorithm can be

further improved in convergence speed by ignoring monotonicity, and incorporating some

acceleration techniques developed in the context of simultaneous power iterations.

3 The DEDICOM model

In this section, we discuss the DEDICOM model in some detail. We first take up the

error-free case, and then the error-contaminated case. In the former, we focus on algebraic

properties of the model, and in the latter, estimating model parameters.

3.1 Infallible case

A square matrix Ã of order n and of rank r is called an EPr matrix if and only if

Sp(Ã) = Sp(Ã′), (2)

where Sp(Ã) indicates the range (column) space of Ã. The name EPr was first introduced

by Schwerdtfeger (1950), who defined it as a set of square matrices Ã of rank r such that

Ãx = 0 if and only if Ã′x = 0. That is, Ã and Ã′ have the same null space, or equivalently

the same range space. Condition (2) is sometimes called range symmetry, and generalizes

the usual notion of symmetry in which Ã = Ã′. Special cases of EP matrices include

symmetric matrices, skew-symmetric matrices, normal matrices (Ã′Ã = ÃÃ′), and so on.
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Note that square nonsingular matrices of order n are always EPn, and that EP1 matrices

are always symmetric.

There are a number of interesting properties of EP matrices (e.g., Tian, 2008), of which

the one most relevant to the present paper is noted here. EPr matrices admit a represen-

tation by the DEDICOM model given in (1). In fact, there is one-to-one correspondence

between an EPr matrix of order n and the DEDICOM representation. Given the represen-

tation (1), it is obvious that Sp(Ã) = Sp(Ã′) ⊃ Sp(X). By postmultiplying both sides of (1)

by XB′(BX′XB′)−1, we obtain ÃXB′(BX′XB′)−1 = X, which indicates Sp(X) ⊃ Sp(Ã).

That Sp(X) ⊃ Sp(Ã′) can be similarly shown. Conversely, let X be an n by r columnwise

nonsingular matrix consisting of basis vectors spanning Sp(Ã). Then, Ã = XC for some

rowwise nonsingular matrix C, but Sp(Ã) = Sp(Ã′) implies C′ = XB′ or C = BX′ for

some nonsingular matrix B of order r. Combining the two, we obtain Ã = XBX′.

The above result indicates that the infallible DEDICOM model requires the EPr-ness

of matrix Ã of order n. The representation (1) is not unique, however, because the set

of basis vectors spanning Sp(Ã) = Sp(Ã′) is not unique. For convenience, we require

that X is columnwise orthonormal. If X is not orthonormal initially, it can always be

made so. Let X = PDQ′ denote the singular value decomposition (SVD) of X. Then,

Ã = PDQ′BQDP′. We may then set Xnew = P, and Bnew = DQ′BQD. The columnwise

orthonormality of X is still not sufficient to make the representation (1) unique because there

are infinitely many ways to define orthonormal bases for Sp(Ã). To make the DEDICOM

representation completely unique (except for reflections and permutations of the columns

of X), we further require

BB′ + B′B = ∆ (diagonal and positive definite (pd)). (3)

If the original B fails to satisfy this condition, it can always be transformed into one that

satisfies the condition. Let BB′ + B′B = T∆̃T′ denote the spectral decomposition of

BB′ + B′B. Then, the new X and B can be obtained by Xnew = XT, and Bnew =

T′BT, respectively. It is obvious that Xnew remains columnwise orthogonal, and that
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BnewB′
new + B′

newBnew = ∆̃ ≡ ∆ is satisfied.

There is a closed form solution to the infallible DEDICOM model (i.e., an exact way to

obtain X and B from Ã). Let

ÃÃ′ + Ã′Ã = P̃D̃P̃′ (4)

be the spectral decomposition of ÃÃ′+ Ã′Ã, where P̃ is the n by r matrix of eigenvectors,

and D̃ the r by r positive diagonal matrix of eigenvalues. Then, X = P̃ and B = X′ÃX

solve (1) exactly. It can be easily seen that

BB′ + B′B = P̃′(ÃÃ′ + Ã′Ã)P̃ = D̃(≡ ∆) (diagonal). (5)

(Note that ÃXX′Ã′ = ÃÃ′, and Ã′XX′Ã = Ã′Ã.)

There are two important special cases that deserve particular attention: (1) Ã is sym-

metric, and (2) Ã is skew-symmetric (Ã′ = −Ã). When Ã is symmetric, ÃÃ′ + Ã′Ã

reduces to 2(Ã)2. The DEDICOM model in this case simply reduces to the spectral decom-

position of matrix Ã. When Ã is skew-symmetric, let Ã = P̃(D̃1/2/
√

2)Q̃′ be the SVD of Ã.

Nonzero singular values of a skew-symmetric matrix come in pairs, and P̃(D̃1/2/
√

2)Q̃′ can

be further rewritten as P̃(D̃1/2/
√

2)Q̃′ = P̃(D̃1/2/
√

2)LP̃′ = XBX′ by setting X = P̃, and

B = (D̃1/2/
√

2)L, where L is a block diagonal matrix consisting of 2 by 2 blocks of the form


0 1

−1 0


. It can be easily verified that BB′ + B′B = D̃ because L′L = LL′ = I. This

case is equivalent to Canonical Analysis of a SKew-symmetric (CASK) matrix by Gower

(1977; see also Takane, 2004). Note that r is always even for a skew-symmetric matrix.

3.2 Fallible case: Takane’s algorithm for DEDICOM and its

modifications

In most practical data analysis situations, the data matrix A is not likely to be exactly

EPr, and so we approximate A by an EPr matrix. That is,

A = Ã + E, (6)
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where E is the matrix of disturbance terms, and we attempt to find X and B that minimize

the least squares (LS) criterion,

f(X,B) = tr(E′E) (7)

subject to the identification restrictions

X′X = Ir, (8)

and

BB′ + B′B = ∆. (9)

The minimum of f with respect to B is obtained by

B = (X′X)−1X′AX(X′X)−1 = X′AX. (10)

(The second equality holds only when X is columnwise orthonormal.) If we put this estimate

of B in (7), we obtain

f∗(X) = min
B

f(X,B) = tr(A′A)− tr(B′B). (11)

Since tr(A′A) is constant once the data are given, minimizing f∗(X) with respect to X

subject to (8) is equivalent to maximizing

g(X) =
1
2
tr(B′B) (12)

under the same restriction. (The factor of 1/2 preceding tr(B′B) is merely for convenience.)

This constrained maximization problem can be turned into an unconstrained maximiza-

tion problem by introducing Lagrange multipliers and defining a new function. Let S denote

a symmetric matrix of Lagrange multipliers, and define

g∗(X,S) = g(X)− 1
2
tr(S(X′X− I)). (13)

We maximize this function with respect to X. Differentiating g∗(X,S) with respect to X

and S, and setting the results equal to zero, we obtain

AXB′ + A′XB−XS = 0, (14)
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and

X′X− I = 0. (15)

Let
∂g(X)
∂X

≡ G = AXB′ + A′XB. (16)

Then, premultiplying (14) by X′, we obtain X′G = BB′ + B′B = S under (8). (This

confirms that S is indeed symmetric.) Constraint (9) is not yet explicitly imposed. To do

so, let S = T∆T′ denote the spectral decomposition of S. Then, postmultiplying (14) by

T, we obtain AXB′T + A′XBT = AXTT′X′A′XT + A′XTT′X′AXT = XT∆. If we

take XT as new X in this equation, we obtain

AXB′ + A′XB = X∆ (17)

to be solved. This looks like an eigen-equation, but unfortunately it is not, because B =

X′AX is also a function of X. It is in fact a cubic equation in X, and in general it is

difficult to solve in closed form.

Takane (1985) proposed to solve equation (17) by applying the following two steps iter-

atively:

Step I: Calculate X∗ = G = AXB′ + A′XB.

Step II: Apply the Gram-Schmidt orthonormalization to X∗ to obtain a new X, and go

back to Step I.

This algorithm is called Takane’s algorithm for DEDICOM. (Takane’s algorithm can be in-

terpreted as regarding B as constant temporarily, and solving the resultant linear equations.

However, because B is in fact not constant, iterative adjustments to X are needed.)

The second step decomposes X∗ into XR, and defines X = X∗R−1, where R is an

upper triangular matrix. At a convergence point, the equation

AXB′ + A′XB = XR (18)
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must hold exactly. By premultiplying (18) by X′, we obtain BB′+B′B = R. Since the left

hand side of this equation is symmetric, and R is upper triangular, R must be diagonal.

(The only symmetric matrix which is also upper triangular is diagonal.) This shows that

both (8) and (9) are satisfied at a convergence point. Step II above may be replaced by:

Step II’: Obtain the SVD of X∗, i.e., X∗ = PDQ′. Then set X = P and go back to

Step I.

Step II’ makes the algorithm converge slightly faster.

Let PrDrP′
r denote the best rank r approximation to AA′ +A′A. Then X = Pr gives

a good initial estimate of X to start Takane’s algorithm described above. It considerably

reduces the number of iterations to convergence. It also helps avoid convergence to non-

global optima, although the problem of nonglobal optima is not completely resolved by

this convention. It is still recommended to obtain multiple solutions starting from multiple

initial estimates to ensure a globally optimal solution in each case.

Takane’s algorithm can be viewed as a special case of the gradient projection method

(Jennrich, 2001; Edelman, Arias, and Smith, 1998). The gradient of g(X) with respect to

X is given by G as defined in (16), which is projected onto the tangent space of the Stiefel

manifold (the set of all columnwise orthonormal matrices) at X. This projection is given

by

X(X′G−G′X)/2 + (I−XX′)G = G−X(BB′ + B′B). (19)

We attempt to make this projected gradient as close to zero as possible. (Note that the

first term on the left hand side of the above formula is identically equal to 0 because X′G is

always symmetric in the present case.) Jennrich (2001) suggested that the Frobenius norm

of the projected gradient be used as the convergence criterion. This criterion is attractive

because it does not depend on the stepsize often associated with the updating equations for

parameter estimates. We use

||(I−XX′)G|| ≤ 10−6 (20)
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in all numerical results to be reported subsequently, where ||F|| = (tr(F′F))1/2 indicates

the Frobenius norm of matrix F. Note, however, that the norm on the left hand side of (20)

is not independent of the scale unit used to collect the data matrix A, and the right hand

side may have to be adjusted accordingly.

Takane’s algorithm turned out to be not monotonically convergent in the sense that it

consistently maximizes (12) (or equivalently, minimizes (7)), except when A + A′ is nnd

and of at least rank r. Kiers et al. (1990), however, showed, based on the majorization

principle for finding a maximum of a matrix trace function (Kiers, 1990), that modifying

Step I of Takane’s algorithm by

X∗ = G + αX, (21)

where α is a prescribed constant, will guarantee monotonic convergence. The constant α

should be at least as large as the largest eigenvalue of −[(A ⊗ B) + (A ⊗ B)′] (where ⊗
indicates a Kronecker product). This α depends on X through B, and consequently has to

be updated every time X is updated. A sufficiently large value of α that does not depend

on X is given by the largest eigenvalue of −[(A ⊗A) + (A ⊗A)′], or twice the square of

the largest singular value of A. We call the modified algorithm by Kiers et al. (1990) the

KBTL algorithm.

When A is pd, no modification to Takane’s algorithm is necessary to ensure monotonic

convergence (α = 0 is sufficient for monotonic convergence in this case), but a negative α

may still accelerate the convergence (without hampering the monotonicity). When the value

of α is positive, the KBTL algorithm can considerably slow the convergence speed. Jennrich

(2001) consequently recommends the use of the KBTL modification only when Takane’s

original algorithm exhibits a violation of monotonic convergence. The KBTL procedure

only gives a sufficient condition for monotonic convergence, and Takane’s algorithm may

not violate monotonicity of convergence, even if the KBTL procedure points to a positive

value of α. Jennrich’s procedure is monotonic because it switches to the KBTL procedure as

soon as Takane’s algorithm violates the monotonicity. He shows a substantial improvement

in the speed of convergence using his procedure. In his demonstration, many 10 by 10
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matrices were generated with each of the elements following an independent standard normal

distribution, and 5-component DEDICOM solutions were obtained. Jennrich (2001) found

that his recommended procedure was about four times faster than the KBTL algorithm

with the third choice of α described above (i.e., twice the square of the largest singular

value of A). Takane’s algorithm, ignoring the monotonicity in convergence, is presumed to

be at least as fast as Jennrich’s procedure.

4 Similarity of Takane’s algorithm to the simulta-

neous power iterations

For the special case of a symmetric matrix A, Takane’s algorithm for DEDICOM is similar

to the simultaneous power method for obtaining r dominant eigenvalues and vectors of A.

In the simplest version of the simultaneous power method (Bauer, 1957), X is updated by

first calculating (1) X∗ = AX(q), which is then (2) orthonormalized by X(q+1) = X∗R−1,

where R is the upper triangular matrix obtained by the Cholesky factorization of X∗′X∗,

which is equivalent to that obtained by the Gram-Schmidt orthonormalization of X∗. These

two steps are analogous to Steps I and II in Takane’s algorithm for DEDICOM.

Rutishauser (1969) proposed a slightly different procedure which uses an orthonormal-

ization step analogous to Step II’ in Takane’s algorithm. In this procedure, the second

step above is replaced by the spectral decomposition of X∗′X∗ = X′A2X. Let QD2Q′ de-

note the spectral decomposition of X∗′X∗. Then, X(q+1) is obtained by X∗QD−1, which is

equivalent to setting X(q+1) = P, where P is obtained by the SVD of X∗ = PDQ′. Under

some mild conditions (|λr| > |λr+1|, where λr is the rth most dominant eigenvalue of A in

the absolute value, and none of the column vectors in the initial X are orthogonal to the

eigenvectors to be obtained), both Bauer’s and Rutishauser’s algorithms have been shown

to converge to a set of eigenvectors corresponding to the r dominant eigenvalues of A.

Takane’s algorithm for DEDICOM, on the other hand, obtains the Gram-Schmidt or-
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thonormalization of 2AX(X′AX) when A is symmetric. Since the postmultiplication of

AX by X′AX does not change the column space of AX, Takane’s algorithm converges

to the same solution as both versions of the simultaneous power method described above,

although it is slightly less efficient due to the additional and unnecessary computations

involved for a symmetric matrix A.

A number of acceleration techniques have been suggested for the simultaneous power

method, and the similarity of the two algorithms suggests that some of them may work

in the context of Takane’s algorithm for DEDICOM. One recommended procedure in the

simultaneous power method is to apply the orthonormalization step as few times as possible

during the course of iterations. That is, instead of applying Step II of Takane’s algorithm in

every iteration, it is done, for example, every 5 or 10 iterations. By avoiding the additional

computations involved in the orthonormalization step, this strategy is expected to save some

computation time, although in DEDICOM, X∗′X∗ has to be inverted in order to calculate B

(because X = X∗ is not orthonormal in the iterations in which the orthonormalization phase

is skipped), which might take almost as much time as calculating R−1 in orthonormalization.

Somewhat unexpectedly, however, this strategy turned out to work very well in Takane’s

algorithm according to the numerical experiment carried out in a similar set-up to Jennrich’s

(2001) experiment.

In this study, three sets of one hundred data matrices of varying sizes (n = 10, 50, 100)

were randomly generated according to an independent standard normal distribution for

each entry. DEDICOM solutions were obtained for each data matrix with selected numbers

of components (for n = 10, the number of components (r) was taken to be either 3 or 5,

and for n = 50 and n = 100, r was taken to be either 5 or 10) using the two algorithms:

Takane’s original algorithm and one that implements the non-orthonormalization strategy

in several consecutive iterations. In the latter, the orthonormalization was carried out every

5 iterations or 10 iterations. In all cases, uniform random numbers initiated the iterative

process. Table 1 shows the mean cpu time required for convergence over the 100 replicated

data matrices. As can be seen, the cpu time is reduced by roughly 10% to 40% by not
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orthonormalizing X in every iteration. This is a substantial gain in efficiency over Takane’s

original algorithm, which is reputed to be quite efficient already. The number of consecutive

iterations in which no orthonormalizations are applied does not seem to have substantial

effects on the cpu time beyond 5. (The case of orthonormalization in every 15 iterations

was also tried, but not reported in Table 1 because the cpu time was so similar to that for

the 10 iterations.)

***** Insert Table 1 about here. *****

One important remark to be made is that in both Takane’s algorithm and its modifica-

tion above, the monotonicity principle is ignored. This is partly justified by the fact that

neither Bauer’s algorithm nor Rutishauser’s algorithm possesses the monotonicity property

with respect to 1
2tr((X′AX)2) that they are presumed to maximize.

5 Some acceleration/deceleration techniques

by stepsize adjustments

Ramsay (1975) proposed an acceleration/deceleration technique applicable to a wide class

of iterative parameter estimation methods. In his method, X is updated by

X∗ = (1− β)X(q+1) + βX(q), (22)

where q indicates the iteration number, and β is the parameter that regulates the conver-

gence speed. In Takane’s and the KBTL algorithms, X(q+1) (the (q+1)th update of X using

an unaccelerated method) is taken to be G defined in (16). When β < 0, an acceleration

occurs (with X∗ being further away from the previous X(q)), while a deceleration occurs

when 1 > β > 0 (with X∗ being more heavily influenced by the previous estimate X(q)

than its new update X(q+1)). An acceleration is needed when the unaccelerated update

(β = 0) approaches the convergence point too slowly, while a deceleration is needed when
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the standard update approaches the convergence point too “quickly”, and toggles back and

forth around the target point. An optimal value of β is determined by observing three

consecutive updates of X according to

β′ = 1− (1− β)
||U(q)||
||V(q)|| , (23)

where β′ is the new stepsize, β the old stepsize, U(q) = X(q+1) − X(q) (the first order

difference), and V(q) = U(q+1)−U(q) = X(q+2)−2X(q+1)+X(q) (the second order difference).

The value of β is initially taken to be zero.

Both Takane’s and the KBTL algorithms are special cases of (22). To establish the

exact relationships, we modify (22) slightly:

X∗ = γ(1− β)G + γβX(q), (24)

where an additional parameter γ > 0 has been introduced. This parameter has no effect

on the final estimate of X because X∗ is orthonormalized in Step II anyway which nullifies

its effect. Takane’s algorithm (X∗ = G = G + (0)X(q)), follows from (24) by setting γ = 1,

and β = 0. Similarly, the KBTL algorithm (X∗ = G + αX(q) = (1)G + αX(q))) follows

from (24) by setting γβ = α, and γ(1− β) = 1, that is, γ = 1 + α, and β = α/(1 + α).

It is interesting to note that the steepest ascent algorithm X∗ = δG + X(q), which is a

general iterative algorithm that could have been used in DEDICOM, can also be considered

as a special case of (24). This can be seen by setting γβ = 1, and γ(1−β) = δ in (24), that

is, γ = 1 + δ, and β = 1/(1 + δ).

These relations prompt us to apply Ramsay’s acceleration/deceleration technique to

DEDICOM with “optimal” updates of stepsize parameters. In this study, the same data

sets that were used to obtain Table 1 were reanalyzed by Ramsay’s method. The results were

rather mixed, however. It sometimes reduced the cpu time for convergence significantly,

but it also sometimes increased the cpu time significantly. Overall, there was no significant

change in the cpu time. We conjecture that this rather mixed performance of Ramsay’s

acceleration procedure is due to the fact that it looks at only three consecutive iterations.
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The MPE method to be discussed in the next section (and which turns out to be quite

successful) looks at 10 to 15 successive iterations for best performance.

6 The minimal polynomial extrapolation (MPE)

method

In this section, we explore a different type of acceleration technique, based on solving

polynomial equations. For notational convenience, we use the vectorized form of parameter

matrices throughout this section. A good overview of this line of acceleration techniques

has been given by Smith, Ford, and Sidi (1987). See also Loisel and Takane (2009).

We first consider the case in which the updating equations are linear, and then adapt

it to the nonlinear case. Let

x(q+1) = Hx(q) + b (25)

denote the updating equation, and let xconv. represent a stationary point of (25). Then,

xconv. = (I−H)−1b, (26)

where it is assumed that I−H is nonsingular. Let

u(q) = x(q+1) − x(q), (27)

and consider the sequence of vectors, u(0),u(1), · · · ,u(k), where the first k vectors are linearly

independent, whereas the entire k + 1 vectors are linearly dependent. That is,
k∑

q=0

cqu(q) = 0 (28)

for some cq, (q = 0, · · · , k), where we further assume ck = 1 (without loss of generality). Note

that such a k always exists (for any set of vectors u(q), q = 0, · · · , k, if a sufficiently large k is

chosen), and we tentatively assume that it is known in advance. Let c = [c0, c1, · · · , ck−1]′,

and U = [u(0),u(1), · · · ,u(k−1)]. Then,

Uc = −u(k), (29)
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so that

c = −U+u(k), (30)

where U+ is the Moore-Penrose inverse of U.

We note that Hqu(0) = u(q) in this particular case. Using this relation, we can rewrite

(28) in the form of a polynomial equation in H. That is,

0 =
k∑

q=0

cqu(q)

= c0u(0) + c1u(1) + c2u(2) + · · · , +cku(k),

= c0u(0) + c1Hu(0) + c2H2u(0) + · · · , +ckHku(0)

=
k∑

q=0

cqHqu(0)

= P(H)u(0), (31)

where

P(H) =
k∑

j=1

cjHj . (32)

We say that P(H) is the minimal polynomial function of H that annihilates u(0).

We also observe that

u(0) = (H− I)(x(0) − xconv.), (33)

where xconv. is, as defined previously, the convergence point of x, and that H−I is invertible

(see the remark made immediately after (26)) and commutes with P(H), so that

P(H)(x(0) − xconv.) = 0 (34)

also holds. That is, the minimal polynomial P(H) that annihilates u(0) also annihilates

x(0) − xconv.. Hence, (31) can be further rewritten as

0 = P(H)(x(0) − xconv.)

=
k∑

q=0

cqHq(x(0) − xconv.)

=
k∑

q=0

cq(x(q) − xconv.), (35)
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(because x(j) − xconv. = Hq(x(0) − xconv.)). From (35), we obtain

xconv. =
k∑

q=0

cqx(q)/
k∑

q=0

cq. (36)

That is, xconv. gives an exact solution (convergence) point of x, provided that (1) the basic

iterate is linear, and that (2) the exact value of k is known.

However, the basic iteration formula in Takane’s algorithm is not linear. Thus, the

above procedure has to be applied repeatedly. The value of k is also not known in advance.

Fortunately, however, this value does not have to be determined precisely. As far as the

above procedure has to be applied repeatedly (because of the nonlinear updating equations),

k can be any value for which the relation (28) holds only approximately. In the following

numerical experiment, several values of k (= 1, 5, 10, 15, and 20) were tried to see which

value gives the best performance.

Table 2 compares the performance of the MPE method with Takane’s original algorithm.

Again, the same data sets that were generated to obtain Table 1 were used in this study.

Entries of the table indicate the mean cpu time for convergence over 100 replications. In

the table, n indicates the size of the data matrix, r the number of components, and k the

degree of polynomials in the MPE method. (k = 1 corresponds with Takane’s original

algorithm.) It can be seen that the MPE method achieves a substantial reduction in cpu

time, particularly when the number of DEDICOM parameters to be estimated is large. An

optimal value of k is around 15 in the present case, although obviously a more elaborate

study is in order on this point.

***** Insert Table 2 about here. *****

Figure 1 shows a typical iteration history for Takane’s original algorithm and the MPE

method with k = 10. The top panel shows the value of the fit criterion (12) against iteration

numbers, and the bottom panel shows the log of the norm of the projected gradients (the

log of (20)) against iteration numbers. In the figure, the results from Takane’s original

method are labeled by “x”, whereas those from the MPE method by “o”. Note that both
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the fit value and the log norm of the projected gradient are obtained for every iteration for

Takane’s original algorithm (k = 1), while they were obtained only for every 10 iterations

for the MPE method. For both methods a near optimal value of the fit criterion is attained

rather quickly. However, the norm of the projected gradient goes down more quickly using

the MPE method than for Takane’s algorithm. This means that the MPE method is more

suitable to obtain precise solutions. This degree of precision is often necessary because the

fit criterion may be rather flat near the optimal point, which causes premature stopping

unless a strict convergence criterion is used. The case of non-monotonic convergence has

been found to be rather rare with the data generation scheme adopted here, particularly

with Takane’s algorithm, and even when it happens the amount of decrease in the fit value

is in most cases so slight that it is difficult to see in a graph.

***** Insert Figure 1 about here *****

To investigate the seriousness of convergence to suboptimal solutions in the two algo-

rithms (Takane’s algorithm and the MPE method with k = 10), analyses were repeated

with 15 different random initial estimates of X. Neither of the two algorithms have shown

clear superiority in avoiding suboptimal solutions. Overall, the chance of convergence to

suboptimal solutions is remarkably low for both methods (about 5%), which are mostly

concentrated in a few specific data sets. Out of 300 data sets, each analyzed under two

different values of r (the number of components), there was no single instance in which the

two methods yielded different best solutions among the 15 solutions they each obtained,

a majority of which coincided with the best solutions. Note that these are the results

from randomly generated data sets with no obvious DEDICOM structures. It is expected

that the chance of suboptimal solutions is much less with real data sets with some built-in

DEDICOM structures.
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7 Concluding remarks

In this paper, we proposed some acceleration techniques for Takane’s algorithm for DEDI-

COM, and demonstrated their usefulness numerically. In doing so, we made a “bold” propo-

sition to ignore the monotonic convergence property with respect to the criterion function

they optimized ((7) and (12)). Note, however, that at present there is no rigorous conver-

gence proof of the algorithms without the monotonicity property. Nonetheless, it seemed

worthwhile to explore what we could gain if we lifted the principle of monotonicity, and we

were successful in demonstrating the positive effects of two simple acceleration techniques.

Takane’s original algorithm is fairly efficient already for moderate sized problems, par-

ticularly when the data matrix is nearly EPr. One might argue that there is little need to

further accelerate the algorithm. There are situations, however, in which DEDICOM solu-

tions have to be obtained repeatedly. For example, permutation tests for determining the

number of significant components in the DEDICOM model would require repeated appli-

cations of the DEDICOM algorithm to matrices having no obvious DEDICOM structures.

There is also a problem of non-global optima, as pointed out earlier. The only possible

solution to the problem is to obtain solutions for the same data set starting from many dif-

ferent initial estimates. The relative infrequency of the occurrence of suboptimal solutions

in the DEDICOM model is no consolation. As far as they exist, we have to avoid them,

and this is again where a more efficient algorithm is called for.
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Table 1: The mean cpu time with Takane’s algorithm with orthonormalization in

every several iterations.

Orthnormalization in every

n r 1 iteration 5 iterations 10 iterations

10 3 0.0133 0.0117 0.0107

10 5 0.0147 0.0116 0.0116

50 5 0.1362 0.1006 0.0980

50 10 0.2804 0.2450 0.2402

100 5 0.6253 0.3209 0.3148

100 10 1.4424 0.7995 0.8000

22



Table 2: The mean cpu time with the MPE method as compared to Takane’s original

algorithm.

n r k = 1 k = 5 k = 10 k = 15 k = 20

10 3 0.0133 0.0080 0.0070 0.0041 0.0042

10 5 0.0147 0.0124 0.0058 0.0052 0.0048

50 5 0.1362 0.0536 0.0491 0.0304 0.0480

50 10 0.2804 0.0901 0.0701 0.0601 0.1063

100 5 0.6253 0.2698 0.2597 0.2331 0.2329

100 10 1.4424 0.3500 0.3253 0.2254 0.3892
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Figure 1: The fit index and the log norm of the projected gradients as a function of

typical iterations. (x indicates no acceleration, and o indicates acceleration by the

MPE method with k = 10.)
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