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1 Introduction

The growth curve model (GCM; Potthof and Roy, 1964), also known as gener-
alized MANOVA (or GMANOVA for short), is a useful technique for investi-
gating patterns of change in repeated measurements of a response variable or
variables over time and examining the effects of predictor variables on tempo-
ral trajectories. This type of model is often used in the analysis of longitudinal
or repeated measurements data, often arising in psycho-physiological, biolog-
ical and medical research. Recently, the reduced rank feature was introduced
to GCM (Reinsel and Velu, 1998, 2003) to capture redundant information in
the criterion variables in a parsimonious way. This additional feature allows
the extraction of components of predictor variables that are most predictive
of criterion variables. A series of components called redundancy components
are mutually orthogonal and successively account for the maximum variance
in the criterion variables.

In experimental studies conducted in biomedicine and psychology, we fre-
quently encounter data with small sample sizes, which tend to produce esti-
mates of parameters with large standard errors. The small sample size problem
casts serious doubts about the adequacy of conventional estimation methods,
such as the maximum likelihood estimation method, that largely rely on an
asymptotic rationale. To remedy this situation, we incorporate a ridge type
of regularization in estimating parameters in the reduced rank GCM. This
method shrinks estimates of parameters toward zero, thereby reducing the
variance of the estimates a great deal, while introducing a small bias. The net
result is that estimates of parameters closer to true population values may
be obtained. A ridge type of regularization method is particularly attractive
when the sample size is small and/or predictor variables are nearly collinear
(Hoerl and Kennard, 1970). This has been demonstrated recently in a variety
of contexts in multivariate analysis (Hwang, 2009; Takane and Hwang, 2007;
Takane, Hwang, and Abdi, 2008; Takane, and Jung, 2008, 2009). In this pa-
per, we extend the basic methodology of ridge regularization to the reduced
rank GCM and illustrate its use. We also consider an analogous extension of
a mixture of the GMANOVA and MANOVA models (Chinchilli and Elswick,
1985) with the GMANOVA part subject to similar rank reduction, and the
MANOVA part capturing the effects of extraneous variables.

This paper is organized as follows. We first present the model and the pa-
rameter estimation procedure for the regularized reduced rank GCM (Section
2.1). We then extend the model and the estimation procedure to a mixture
of the GMANOVA and MANOVA models (Section 2.2). This is followed by
expositions of permutation tests for selecting the best dimensionality in the so-
lution, the K-fold cross validation method for choosing optimal values of ridge
parameters, and the bootstrap method for assessing the reliability of param-
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eter estimates (Section 2.3). Illustrative examples are given to demonstrate
the usefulness of the proposed method in simulated and real data analysis
situations (Section 3). The final section concludes the paper (Section 4).

2 The Methods

2.1 The reduced rank GCM and the regularized parameter estimation

Let Y denote an n by p matrix of criterion variables. In the GCM setting, this
matrix typically consists of multiple measurements of a response variable at
p time points from a group of n subjects or cases, although in more general
settings, it could be any multivariate data matrix. We assume that there is
some additional information about the subjects and/or about the variables in
Y that may be used to predict parts of Y. Let X denote an n by q (q ≤ n)
matrix of predictor variables for subjects such as their group memberships
(e.g., treatment groups) and other demographic information. Let H denote a
p by d (d ≤ p) matrix of predictor variables for time points (or variables) in Y
that capture the relationships among the columns of Y such as the coefficients
of orthogonal polynomials over time. (The matrix X is often called a between-
subjects design matrix, and H a within-subjects design matrix.) Then, the
GCM may be written as

Y = XBH′ + E, (1)

where B is a q by d matrix of regression coefficients, and E is an n by p matrix
of disturbance terms. In the reduced rank GCM, we assume that there is some
redundancy in B, so that

rank(B) = r ≤ min(q, d) (2)

(Reinsel and Velu, 1998, 2003). A model of the above form has existed out-
side the realm of GCM, e.g., 2-way CANDELINC (CANonical DEcomposition
under LINnear Constraints; Carrol, Pruzansky, and Kruskal, 1980), and as a
special case of CPCA (Constrained Principal Component Analysis; Takane
and Shibayama, 1991; Takane and Hunter, 2001). Note that, if there is no ob-
vious H available, we set H = I, and the model reduces to a simple MANOVA
or redundancy analysis model (Van den Wollenberg, 1977; van der Leeden,
1990).

Parameters in the reduced rank GCM are usually estimated by the maximum
likelihood (ML) method (Reinsel and Velu, 1998, 2003) or by the least squares

3



(LS) method (Carroll et al., 1980; Takane et al., 1991, 2001). We use the latter
with the provision of its extension to regularized estimation in mind. The
structure of derivations for the regularized estimation is remarkably similar to
that for the non-regularized case. In the ordinary LS estimation, we minimize

φ(B) = SS(Y −XBH′) (3)

with respect to B subject to the rank restriction (2). To achieve this goal, we
first rewrite φ(B) as (Takane and Shibayama, 1991; ten Berge, 1993):

φ(B) = SS(Y −XB̂H′) + SS(B̂−B)X′X, H′H

= SS(Y)− SS(Y)PX , PH
+ SS(B̂−B)X′X, H′H , (4)

where SS(A)M,N = tr(A′MAN), PX = X(X′X)−X′ and PH = H(H′H)−H′

are orthogonal projectors onto the column spaces of X and H, respectively,
and

B̂ = (X′X)−X′YH(H′H)−, (5)

is a rank free LS estimate of B. Here “−” indicates a generalized inverse (g-
inverse). Note that while B̂ in (5) is not unique if X or H is singular, the
decomposition (4) is unique. To obtain a unique estimate of B̂, we can use
the Moore-Penrose inverse for (X′X)− and (H′H)−. Since the first and the
second terms on the right hand side of (4) are unrelated to B, the reduced
rank estimate of B can be obtained by minimizing the third term. This can
be done via the generalized singular value decomposition (GSVD) of B̂ with
metric matrices X′X and H′H. This GSVD problem is written as

GSVD(B̂)X′X, H′H . (6)

Note that here GSVD refers to an SVD under nonidentity metrics (Greenacre,
1984), that is,

B̂ = UDV′, (7)

where U is called the matrix of left (generalized) singular vectors such that
U′X′XU = I, V the matrix of right (generalized) singular vectors such that
V′H′HV = I, and D a positive definite (pd) diagonal matrix of (generalized)
singular values. The reduced rank estimate of B is obtained from the above
GSVD by retaining only the portions of U, D, and V pertaining to the r
dominant (generalized) singular values (assuming that the rank of B̂ is at
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least r), that is,

B̃ = UrDrV
′
r, (8)

where Ur, Dr, and Vr are the portions of U, D, and V pertaining to the r
largest (generalized) singular values of B̂ with metrics X′X and H′H. Further
details on GSVD can be found in Takane and Hunter (2001, p. 415) and Takane
(2003).

We now extend the above method to the ridge LS (RLS) estimation. As before,
the reduced-rank RLS estimate of regression parameters can be obtained by
first obtaining a rank free RLS estimate of B, followed by a GSVD. (In essence,
equations (3), (4), and (5) in the LS estimation become (9), (16), and (17),
respectively, in the RLS estimation.) In the RLS estimation, we minimize

φλ,ρ(B) = SS(Y −XBH′)
+ λSS(B)PX′ , H′H + ρSS(B)X′X, PH′ + λρSS(B)PX′ , PH′ , (9)

where λ and ρ are small positive numbers called ridge parameters, and PX′ =
X′(XX′)−X and PH′ = H′(HH′)−H are the orthogonal projectors onto the
row spaces of X and H. Note that PX′ and PH′ reduce to Iq and Id, respec-
tively, when X and H are columnwise nonsingular. The terms added to the
LS criterion (3), that is, the second, third, and fourth terms in (9), have the
effects of “regularizing” an estimate of B by shrinking it toward zero.

Let

RX(λ) = X(X′MX(λ)X)−X′, (10)

and

RH(ρ) = H(H′MH(ρ)H)−H′ (11)

denote ridge operators (Takane and Yanai, 2008), where

MX(λ) = In + λ(XX′)+, (12)

and

MH(ρ) = Ip + ρ(HH′)+ (13)
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are called ridge metric matrices (Takane and Yanai, 2008), and “+” indicates
the Moore-Penrose inverse. Note that

X′MX(λ)X = X′X + λPX′ , (14)

and

H′MH(ρ)H = H′H + ρPH′ . (15)

To minimize (9) with respect to B subject to the rank restriction (2), we first
rewrite the criterion as:

φλ,ρ(B) = SS(Y)

− SS(Y)RX(λ), RH(ρ) + SS(B̂(λ, ρ)−B)X′MX(λ)X, H′MH(ρ)H , (16)

where

B̂(λ, ρ) = (X′MX(λ)X)−X′YH(H′MH(ρ)H)− (17)

is a rank free RLS estimate of B. Eq. (16) indicates that the reduced rank
estimate of B can be obtained by minimizing the third term on the right hand
side of (16), which is achieved via

GSVD(B̂(λ, ρ))X′MX(λ)X, H′MH(ρ)H . (18)

Equivalence between (9) and (16) can be shown as follows. From (9), we have

φλ,ρ(B) = tr(Y′Y − 2B′X′YH + B′X′MX(λ)XBH′MH(ρ)H)

= tr(Y′Y −Y′RX(λ)YRH(ρ) + Y′RX(λ)YRH(ρ)

− 2B′X′YH + B′X′MX(λ)XBH′MH(ρ)H)

= SS(Y)− SS(Y)RX(λ), RH(ρ)

+ SS(B̂(λ, ρ)−B)X′MX(λ)X, H′MH(ρ)H , (19)

which is (16).

2.2 A mixture of the GMANOVA-MANOVA models

Now, we consider an extension of the GCM to a mixture of the GMANOVA
and MANOVA models (Chinchilli and Elswick, 1985). Suppose that X is split
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into two subsets, X = [X1,X2] where X1 is an n by q1 matrix of predictor
variables (analogous to the entire X in the previous section), and X2 is an
n by q2 (q1 + q2 = q) matrix of extraneous variables whose effects are to be
partialled out in a manner analogous to the analysis of covariance. We consider
the following model:

Y = X1B1H
′
1 + X2B2 + E, (20)

where B1 and B2 are q1 by d and q2 by p matrices, respectively, of regression
coefficients. As before, B1 is subject to the rank restriction

rank(B1) ≤ min(q1, d), (21)

while no such restriction is imposed on B2. The term related to X2 is included
in the model for eliminating its effects in fitting the GCM. (Note that H in
the previous section is now written as H1.)

As before, we first discuss the LS estimation, and then an extension to the
RLS estimation. In the LS estimation, we minimize

φ(B1,B2) = SS(Y −X1B1H
′
1 −X2B2) (22)

with respect to B1 and B2 subject to rank(B1) ≤ r. We first rewrite the model
by orthogonalizing the two terms in the model:

Y = QX2X1B1H
′
1 + X2B

∗
2 + E, (23)

where

B∗
2 = B2 + (X′

2X2)
−X′

2X1B1H
′
1, (24)

and QX2 = In −X2(X
′
2X2)

−X′
2 is the orthogonal projector on the null space

of X′
2. The criterion (22) can also be rewritten as

φ(B1,B
∗
2) = SS(Y −QX2X1B1H

′
1 −X2B

∗
2), (25)

which can be further rewritten as

φ(B1,B
∗
2) = SS(Y)− SS(Y)PQX2

X1
, PH1

− SS(Y)PX2
, I

+ SS(B̂1 −B1)X′
1QX2

X1, H′
1H1

+ SS(B̂∗
2 −B∗

2)X′
2X2, I , (26)
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where

B̂1 = (X′
1QX2X1)

−X′
1QX2YH1(H

′
1H1)

−, (27)

and

B̂∗
2 = (X′

2X2)
−X′

2Y. (28)

Equivalence between (25) and (26) is shown in Appendix (A). Since the first
and second terms on the right side of (26) are unrelated to B1, and the fourth
term can always be made equal to zero by taking B∗

2 = B̂∗
2, (26) can be

minimized by minimizing the third term with respect to B1 subject to the
rank restriction (21). This is again obtained via

GSVD(B̂1)X′
1QX2

X1, H′
1H1

. (29)

An estimate of B2 is obtained by

B̃2 = (X′
2X2)

−X′
2(Y −X1B̃1H

′
1) = B̂∗

2 − (X′
2X2)

−X′
2X1B̃1H

′
1, (30)

where B̃1 is obtained from (29).

We now extend the LS estimation to the RLS estimation. Again, a reduced
rank RLS estimate of B1 is obtained by first obtaining a rank free RLS esti-
mate of B1 followed by a GSVD, which is similar to the simple GMANOVA
case. Equations (22) through (30) in the LS estimation turn into equations
(31), (35), (37), (38), (44), (41), (42), (45), and (46), respectively, in the RLS
estimation. In the RLS estimation, we minimize

φλ,ρ(B1,B2) = SS(Y −X1B1H
′
1 −X2B2)

+ λSS(C1)PX′ , Ip + ρSS(C2)R′X′XR, Ip + λρSS(C2)R′PX′R, Ip , (31)

with respect to B1 and B2 under the rank restriction (21), where

C1 =



B1H

′
1

B2


 , C2 =



B1H

′
1(H1H

′
1)
−1/2

B2


 , (32)

R =




PX′
1

0

−G−X′
2X1 0


 , (33)
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and

G = X′
2MX(λ)X2. (34)

We then rewrite the model (20) as

Y = SX2(λ)X1B1H
′
1 + X2B

∗
2 + E, (35)

where

SX2(λ) = In −X2G
−X′

2, (36)

and

B∗
2 = B2 + G−X′

2X1B1H
′
1. (37)

Note that the first two terms on the right hand side of (35) are orthogonal with
respect to MX(λ) defined in (12). We also rewrite the criterion (31) according
to this rewritten model:

φλ,ρ(B1,B
∗
2) = SS(Y − SX2(λ)X1B1H

′
1 −X2B

∗
2)

+ λSS(C∗
1)N ′PX′N, Ip + ρSS(B1)X′

1SX2
(λ)2X1, PH′

1

+ λρSS(B1)PX′
1
+X′

1X2G−PX′
2
G−X′

2X1, PH′
1

, (38)

where

C∗
1 =



B1H

′
1

B∗
2


 , (39)

and

N =




PX′
1

0

−G−X′
2X1 PX′

2


 . (40)

Note that N is such that C1 = NC∗
1.

Let

B̂1(λ, ρ) = A−X′
1SX2(λ)YH1(H

′
1MH1(ρ)H1)

− (41)
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and

B̂∗
2(λ) = G−X′

2Y (42)

be rank free estimates of B1 and B∗
2 that minimize (38), where

A = X′
1SX2(λ)MX(λ)SX2(λ)X1. (43)

Then, (38) can further be rewritten as

φλ,ρ(B1,B
∗
2) = SS(Y)− SS(Y)RSX2

(λ)X1
(λ), RH1

(ρ) − SS(Y)RX2
(λ), I

+ SS(B̂1(λ, ρ)−B1)A, H′
1MH1

(ρ)H1
+ SS(B̂∗

2(λ)−B∗
2)G, I , (44)

where RSX2
(λ)X1(λ), and RX2(λ) are defined analogously to (10), RH1(ρ) to

(11), and MH1(ρ) to (13). Note that A = X′
1SX2(λ)MX(λ)SX2(λ)X1 =

X′
1SX2(λ)X1+λPX′

1
. Equivalence between (38) and (44) is shown in Appendix

(B). The first three terms on the right hand side of (44) are unrelated to B1,
and the fifth term can always be made equal to zero by taking B∗

2 = B̂∗
2(λ).

Thus (44) can be minimized by minimizing the fourth term with respect to
B1 subject to rank(B1) ≤ min(q1, d). A reduced rank ridge estimate of B1 is
obtained via

GSVD(B̂1(λ, ρ))A, H′
1MH1

(ρ)H1
. (45)

The estimate of B2 is obtained by

B̃2(λ) = B̂∗
2(λ)−G−X′

2X1B̃1(λ, ρ)H′
1, (46)

where B̃1(λ, ρ) is obtained from (45).

2.3 Permutation tests, cross validation and the bootstrap method

Two important decisions have to be made in the application of regularized
reduced rank GCM: The choice of dimensionality and the choice of optimal
values of the ridge (regularization) parameters λ and ρ. We discuss these topics
in turn and then, introduce the bootstrap method to assess the reliability of
parameter estimates.

We use permutation tests to choose the best dimensionality (the number of
components) r in the solution. In the permutation tests, rows of X are ran-
domly permuted many times. The permutation operation effectively eliminates
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any (systematic) associations between X and Y, thereby allowing us to obtain
the null distribution of singular values. Our proposed model is applied to each
permuted X and the original Y repeatedly to obtain the null distribution of
the largest singular value. If these singular values are larger than the largest
singular value obtained from the original X and Y less than 100α% times,
the first component is considered statistically significant at the α level. If the
first component is significant, we eliminate its effect from X (deflating X) and
apply the same procedure as above to test the significance of the second com-
ponent, and so on. We continue this procedure until we find a nonsignificant
component or reach the maximum possible number of components. See Takane
and Hwang (2002) for more applications of permutation tests in a similar sit-
uation, and Legendre and Legendre (1998) and ter Braak and Šmilauer (1998)
for more general discussions on the permutation tests in similar contexts. We
may apply the above procedure with different values of λ and ρ in cases where
the best dimensionality may depend on the values of λ and ρ.

A bit of a cautionary remark is in order. The permutation tests are based on
the assumption of exchangeability of observations (rows of X or of Y) under
the null hypothesis that X has no predictability on Y. The most representative
cases of exchangeability include those in which observations are independently
and identically distributed, and in which they are normally distributed with
homogeneous variances and covariances across observations (Good, 2005, p.
24). There is some evidence, however, showing that the permutation tests are
not so robust when the exchangeability assumption is violated (e.g., Boik,
1987; Romano, 1990).

We use K-fold cross validation (Hastie, Tibshirani, and Friedman, 2001) to
choose an optimal value of λ and ρ. In this method, the data are randomly
divided into K subsets. One of the K sets is set aside as the test sample, and
model parameters are estimated from the remaining K − 1 subsets (called
the calibration or training sample). These estimates are then applied to the
test sample to estimate the amount of prediction error. This is repeated K
times with the test sample changed systematically, and the prediction errors
accumulated over the K test samples. We then compare the prediction error
for different pairs of λ and ρ (e.g., λ, ρ = 0, .5, 1, 3, 5), and choose the λ and ρ
pair associated with the smallest value of prediction error.

A bootstrap method (Efron and Tibshirani, 1993) is used to assess the reliabil-
ity of parameter estimates. In this method, random samples of size n (equal to
the size of the original data set) are repeatedly sampled from the original data
set with replacement. Estimates of parameters are obtained for each bootstrap
sample. We then calculate the means and the variances of the estimates across
the bootstrap samples to estimate biases and standard errors of the original
estimates. Significance tests of estimated coefficients may also be performed
as a by-product of the bootstrap procedure. We simply count the number of
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times bootstrap estimates “cross” over zero (if the original estimate is positive,
we count the number of times the bootstrap estimates turn out to be negative,
and vice versa). If the relative frequency (p-value) of crossovers is less than a
prescribed value of α, we conclude that the coefficient is significantly positive
(or negative).

3 Empirical Demonstrations

In this section we provide empirical demonstrations of the usefulness of the
proposed method. The first study investigates the effect of regularization us-
ing a Monte Carlo technique. The second and third studies pertain to the
analysis of real data sets. The second study employs the reduced rank GCM
(GMANOVA), while the third the mixture of the reduced rank GCM and
MANOVA.

3.1 A Monte Carlo study

We first examine the quality of the RLS estimator compared to the OLS
(ordinary least squares) estimator using a Monte-Carlo technique. The quality
of an estimator can be measured by how close it is on average to its population
counterpart. For this purpose we use the mean square error (MSE). MSE is
the expected value of SS(θ̂ − θ), where θ is the vector of true parameters and
θ̂ is the vector of their estimators. MSE can be decomposed into two parts:
MSE = E[SS(θ − E(θ̂))] + E[SS(θ̂ − E(θ̂))]. The first term on the right hand
side is the squared bias, and the second term is the variance of the estimator
θ̂. The estimator with a smaller value of MSE is considered a better estimator.
The ridge LS (RLS) estimator is shown to provide smaller MSE’s than OLS
(Takane and Hwang, 2007; Takane and Jung, 2008). This is due to the fact
that the OLS estimator tends to have a large variance, while it is unbiased.
The RLS estimator, on the other hand, is slightly biased, but it has much
smaller variance, resulting in a smaller MSE.

A small Monte Carlo study was conducted to verify the above expectation.
First, a population reduced rank GCM was postulated, from which 100 repli-
cated data sets of varying sample sizes (N = 20, 50, 80, 100) were generated.
The reduced rank GCM was then fitted using the RLS estimation method to
derive the estimates of regression coefficients with the values of λ and ρ system-
atically varied (λ, ρ = 0, .5, 1, 3, 5). Average MSE, squared bias, and variance
were calculated using the assumed population values of regression coefficients.
In the assumed population model, the number of criterion variables (p) was
set to 15, and that of predictor variables (q) to 5. (We also tried p = 5, but
the results were similar to those for p = 15.) Each row of Y was generated
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according to y′j = x′jBH′ + e′j, where x′j ∼ N(0,Σ), and e′j ∼ N(0, γ2Ip) for
j = 1, . . . , N . The diagonal elements of Σ were set to unity, and off-diagonal
elements varied at three levels (0, .5, and .9). The value of γ2 was also varied
at three levels (.5, 1, and 2). The design matrix for criterion variables H was
set to the second order orthogonal polynomials with a constant term, that is,

H′ =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

91 52 19 −8 −29 −44 −53 −56 −53 −44 −29 −8 19 52 91


 .

Matrix Y was columnwise centered, and X and H were columnwise standard-
ized before the analysis was conducted. For each data set, elements of B were
initially generated by uniform random numbers. Matrix B was then subjected
to GSVD to reduce its rank to 1.

Figure 1 presents the main results of the study for a particular combination
of conditions, namely the medium level of correlations among the predictor
variables (off-diagonal elements of Σ = .5), a high level of error variance
(γ2 = 2), and rank(B) = 1. The figure shows the MSE of regression coefficients
in the reduced rank GCM as a function of the sample size and the ridge
parameters (λ and ρ). The top left panel displays MSE as a function of sample
size and λ (0, .5, 1, 3, and 5) for ρ = 0, the top right panel the same for ρ = .5.
In both cases, MSE is larger at λ = 0 (this case corresponds with the non-
regularized case), decreases as the value of λ departs from 0, but then rises
again. This tendency is clearer for small sample sizes, although it can still be
observed for larger sample sizes. The bottom panels show MSE’s as a function
of sample size and ρ (0, .5, 1, 3, and 5), but for fixed values of λ (λ = 0
for the left panel, and λ = 3 for the right panel). A similar tendency (that
MSE decreases initially, but eventually picks up again as ρ increases) can be
observed in the left panel, where λ = 0. However, this tendency is no longer
observed (MSE monotonically increases) at λ = 3. MSE takes minimum values
for λ = 3 and ρ = 0 in all cases presented in Figure 1. Overall, the effect of ρ
on MSE is much weaker than that of λ. This may be because in the present
case the columns of H are always orthogonal as they are the coefficients of
orthogonal polynomials, and there is no instance of multicollinearity.

Table 1 compares MSE, squared bias, and variance between non-regularized
and optimally regularized (λ = 3, and ρ = 0) cases as a function of sample size.
It can be observed that squared bias increases and the variance decreases as a
result of regularization, but that their sum, MSE, decreases across all sample
sizes. This is because the amount of decrease in variance is much larger than
the amount of increase in squared bias.
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Fig. 1. Plot of MSE as a function of sample size N and the ridge parameters λ
and ρ. Top left: ρ = 0, and λ = 0, .5, 1, 3, 5; Top right: ρ = .5 and λ = 0, .5, 1, 3, 5;
Bottom left: λ = 0, and ρ = 0, .5, 1, 3, 5; Bottom right: λ = 3, and ρ = 0, .5, 1, 3, 5.

Table 1
MSE, squared bias and variance at optimal values of λ and ρ as a function of sample
size (N).

Non-Regularized Regularized
N MSE BIAS VAR MSE BIAS VAR λopt ρopt
20 .428 .004 .424 .266 .063 .203 3 0
50 .115 .001 .114 .102 .014 .088 3 0
80 .069 .001 .068 .062 .004 .058 3 0

100 .057 .001 .056 .054 .004 .050 3 0

3.2 Coronary sinus potassium level over time

The first real data set we analyze comes from a biomedical study (Grizzle
and Allen, 1969). The study involved 36 dogs randomly assigned to one of the
following four treatment groups: Group 1 - Control group (9 dogs), Group 2
- Extrinsic cardiac denervation three weeks prior to coronary occlusion (10
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dogs), Group 3 - Extrinsic cardiac denervation immediately prior to coronary
occlusion (8 dogs), Group 4 - Bilateral thoracic sympathectomy and stellec-
tomy three weeks prior to coronary occlusion (9 dogs). This data set clearly
has a small sample size (36 cases). The level of coronary sinus potassium was
measured for each dog 1, 3, 5, 7, 9, 11 and 13 minutes after coronary occlu-
sion (7 time points). The design matrix for time H consists of coefficients of
orthogonal polynomials of up to the third order with a constant term. (This
is based on the finding by Grizzle and Allen.) The criterion variables (Y)
were columnwise centered, and the predictor variables (X) indicating group
membership and the design matrix H were normalized before the analysis.

The reduced rank GCM was fitted to the data. Permutation tests were first
applied with varying values of λ and ρ (0, .5, 1, and 5), which consistently
indicated one and only one significant dimension. The 36-fold cross validation
method was then applied with the dimensionality equal to one. As shown in
Table 2, the prediction error takes the minimum value of .787 at λ = 1 and
ρ = 1. This compares favorably with the value of .803 for the non-regularized
case.
Table 2
K-fold Cross Validation Results for Grizzle and Allen’s (1969) data

λ ρ Prediction Error
0 0 .803
.5 0 .795
1 0 .791
5 0 .795
0 .5 .795
.5 .5 .790
1 .5 .788
5 .5 .801
0 1 .790
.5 1 .788
1 1 .787*
5 1 .807
0 5 .803
.5 5 .808
1 5 .813
5 5 .849
∗Optimal combination

A bootstrap method was then used to assess the reliability of the parameter
estimates. This was done for both λ = 0 and ρ = 0 (the non-regularized case)
and the optimal values of λ and ρ (the regularized case) for comparison. One
thousand bootstrap samples were generated, parameter estimates were ob-
tained for each sample, and the standard errors of the estimated parameters
were calculated. Table 3 compares the non-regularized (ordinary) LS estimates
and the best regularized LS estimates of regression coefficients. Each cell in
the table has an estimate and its standard error in parentheses. The p-values
were also calculated, as described in Section 2.3, and the significance of esti-
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mated coefficients is indicated by one (5%) or two asterisks (1%) according to
the p-values. The overall pattern of significance of estimated coefficients re-
mains the same for both non-regularized and regularized cases. As expected,
the estimates of coefficients tend to be smaller in the regularized estimation,
showing the shrinkage effect of regularization. The standard errors are also
smaller in the regularized estimation. This, however, does not necessarily im-
ply that the regularized estimates are more reliable. Note, however, that the
ratio of estimated coefficients to their standard errors is consistently larger
in the regularized case, indicating that the smaller standard errors are not
merely due to the shrinkage effect of regularization, but reflect the fact that
the regularized estimates are indeed more reliable.

Table 3
Comparison of estimated regression coefficients B from Grizzle and Allen’s (1969)
data.

Non-Regularized Regularized
(λ = 0 and ρ = 0) (λ = 1 and ρ = 1)

Const. Linear Quad. Cub. Const. Linear Quad. Cub.
Group 1 **.566 **.195 -.057 **-.095 **.446 **.154 -.045 **-.075

(.152) (.061) (.052) (.037) (.118) (.047) (.040) ( .029)
Group 2 **-.498 **.172 .050 **.083 -.396 -.137 .040 **.066

(.156) (.046) (.044) (.029) (.121) (.036) (.034) (.022)
Group 3 .116 .040 -.012 -.020 .090 .031 -.009 -.015

(.204) (.069) (.031) (.030) (.152) (.051) (.024) (.023)
Group 4 -.116 -.040 .012 .020 -.092 -.032 .009 .015

(.162) (.056) (.024) (.028) (.125) (.043) (.018) (.022)

3.3 The rat growth data

The second data set, which was taken from Box (1950), concerns the prediction
of growth in rats. In predicting the weight change in rats, it is essential to
take into account differences in their initial weight. We thus include the initial
weight of rats as a covariate in the analysis, and eliminate its effect in assessing
weekly gains in weight under different drug treatments. The study involved
27 rats randomly assigned to one of the following three treatment groups:
Group 1 - Control group (10 rats), Group 2 - Thyroxin treatment (7 rats),
Group 3 - Thiouracil treatment (10 rats). Each rat was weighed after one, two,
three and four weeks (4 time points). The design matrix H for time consists
of up to the second order orthogonal polynomials with a constant term. The
criterion variables (Y) were columnwise centered, and the predictor variables
(X) indicating drug treatments and the design matrix H were normalized
before the analysis.

A mixture of the GMANOVA and MANOVA models was applied to the data
set. The results of permutation tests with varying λ and ρ (0, .5, 1, and 5)
showed that the dimensionality was consistently one. Results of 24-fold cross
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validation are given in Table 4. This table indicates that the prediction error
takes the minimum value of .648 at λ = 1 and ρ = 0, which is slightly better
than the value of .655 for the non-regularized case. (The effect of regulariza-
tion seems much smaller in this example than in the previous one.) Table 5
compares regularized and non-regularized estimates in a manner similar to
Table 3. Results similar to Table 3 are also observed in Table 5, although the
effect of regularization is not as remarkable as in the former. We also tried
to assess the effect of the covariate in prediction. Specifically, we compared
the mixture model of GMANOVA and MANOVA and the reduced rank GCM
in their predictability. The result showed that the cross validated normalized
prediction error of .515 for the mixture model was smaller than that of .539 for
the reduced rank GCM, indicating that more stable predictions of rat growth
could be made with the former.

Table 4
K-fold Cross Validation Results for Box’s (1950) data.

λ ρ Prediction Error
0 0 .655
.5 0 .650
1 0 .648*
5 0 .681
0 .5 .652
.5 .5 .652
1 .5 .655
5 .5 .702
∗Optimal combination

Table 5
Comparison of estimated regression coefficients B from Box’s (1950) data.

Non-Regularized Regularized
(λ = 0 and ρ = 0) (λ = 1 and ρ = 0)

Const. Linear Quad. Const. Linear Quad.
Group 1 **2.898 **1.548 -0.651 **2.646 **1.409 -.584

(1.165) (.585) (.417) (1.034) (.516) (.367)
Group 2 *4.228 *2.259 -.950 *3.695 *1.967 -.815

(2.144) (1.207) (.811) (1.812) (1.026) (.696)
Group 3 **-5.857 **-3.130 *1.316 **-5.334 **-2.839 1.176

(.941) (.799) (.776) (.858) (.727) (.693)

4 Concluding Remarks

In this paper, we proposed a ridge type of regularized estimation method
for the reduced rank GCM to deal with the problem of small sample size in
biomedical studies. We have shown that the reduced rank ridge LS (RLS) es-
timates of regression coefficients can be obtained in closed form, given fixed
values of the regularization parameters λ and ρ. The best dimensionality of the
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solution and the optimal values of ridge parameters were determined, respec-
tively, by permutation tests and the cross validation method. Furthermore, we
extended the RLS estimation to a mixture of the GMANOVA and MANOVA
models.

We have demonstrated the usefulness of the RLS estimation through examples.
In the Monte Carlo study, we reported that the RLS estimation could pro-
vide better estimates than the OLS counterparts in terms of achieving smaller
MSE’s (mean square errors), particularly in small samples. In two empirical
examples, we have shown that the RLS estimates are more stable than the
non-regularized estimates in the reduced rank GCM as well as in the mixture
of reduced rank GMANOVA (GCM) and MANOVA models. In sum, the pro-
posed method can serve as an efficient tool for handling potential problems
with data with small sample sizes.

For further extensions of the proposed method, we may consider analogous
extensions of the maximum likelihood (ML) estimator in GCM. The rank free
ML estimate of the regression coefficients in model (1) is given by (e.g., Grizzle
and Allen, 1969)

B̂ = (X′X)−1X′YS−1H(H′S−1H)−1, (47)

where S = Y′(I−X(X′X)−1X′)Y, under the distributional assumption that
E ∼ MN(0, Σ⊗ I). There are at least a couple of ways to incorporate a ridge
type of regularization in this estimate. First of all, S can be regularized by
S+ρ1I. Secondly, H′S−1H can be regularized by H′S−1H+ρ2I. Thirdly, these
two procedures can be combined into one. In somewhat different contexts,
Jung and Takane (2009) have successfully demonstrated the usefulness of this
type of regularized estimation.

We might also consider a similar regularization method for extended growth
curve models (EGCM; Vervyla and Venables, 1988; Tian and Takane, 2009).
A basic form of EGCM posits that

Y =
J∑

j=1

XiBiH
′
i + E (48)

where J is generally greater than 1. A closed form solution exists for both ML
and LS estimation, if no rank restrictions are imposed on Bj, although some
form of iterative algorithm, like the one used in Takane, Kiers, and de Leeuw
(1995), is necessary when the reduced rank restriction is imposed. In any case,
it is relatively straightforward to incorporate the regularized estimation into
these procedures.

Another possible area of extension involves hierarchical linear models (HLM)
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(e.g., Croon and van Veldhoven 2007). In all of these, it may also be worthwhile
to consider a more generalized form of ridge regression that incorporates λL
(instead of λP

′
X) as the regularization term, where L is a q by q nonnegative-

definite (nnd) matrix such that Sp(L) = Sp(X′). This generalized form of ridge
regression is useful for incorporating more complicated forms of regularization
such as smoothness (Ramsay and Silverman, 2005).

5 Appendix

5.1 (A): Proof of the equivalence between (25) and (26)

φ(B1,B
∗
2) in (25) can be expanded as

φ(B1,B
∗
2) = SS((Y −QX2X1B̂1H

′
1 −X2B̂

∗
2)

+QX2X1(B̂1 −B1)H
′
1 + X2(B̂

∗
2 −B∗

2)). (49)

It can be easily verified that the three terms in SS are mutually orthogonal,
so that φ(B1,B

∗
2) can be further rewritten as

φ(B1,B
∗
2) = SS(Y −QX2X1B̂1H

′
1 −X2B̂

∗
2)

+ SS(B̂1 −B1)X′
1QX2

X1, H′
1H1

+ SS(B̂∗
2 −B∗

2)X′
2X2, I , (50)

where the first SS reduces to

SS(Y −QX2X1B̂1H
′
1 −X2B̂

∗
2) =

SS(Y)− SS(Y)PQX2
X1

, PH1
− SS(Y)PX2

, I . (51)

Here, B̂1 = (X′
1QX2X1)

−X′
1QX2YH1(H

′
1H1)

−, and B̂∗
2 = (X′

2X2)
−X′

2Y, as
defined in (27) and (29), respectively.

5.2 (B): Proof of the equivalence between (38) and (44)

Criterion (38) can be expanded as

φλ,ρ(B1,B
∗
2) =

tr[(Y′Y + H1B
′
1X

′
1SX2(λ)2X1B1H

′
1 + B∗′

2 X′
2X2B

∗
2

− 2H1B
′
1X

′
1SX2(λ)Y − 2B∗′

2 X′
2Y + 2B∗′

2 X′
2SX2(λ)X1B1H

′
1
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+ λ(H1B
′
1B1H

′
1 + H1B

′
1X

′
1X2G

−PX′
2
G−X′

2X1B1H
′
1

−H1B
′
1X

′
1G

−B∗
2 −B∗′

2 G−X′
2X1B1H

′
1

+ B∗′
2 B∗

2) + ρ(B′
1X

′
1SX2(λ)2X1B1PH′

1
)

+ λρ(B′
1B1 + B′

1X
′
1X2G

−PX′
2
G−X′

2X1B1PH′
1
)]. (52)

Note that the sixth, ninth, and tenth terms in the trace (tr) on the right hand
side of the above equation add up to 0, the third and eleventh terms add up
to

tr(B∗′
2 GB∗

2), (53)

and the second, seventh, eighth, twelfth, thirteenth, and fourteenth terms add
up to

tr(B′
1AB1H

′
1MH1(ρ)H1). (54)

This may be seen as follows: First of all, the second, seventh, and eighth terms
add up to

tr(B′
1AB1H

′
1H1), (55)

and the twelfth and fourteenth terms add up to

tr(B′
1AB1PH′

1
), (56)

so that (55), (56), and the thirteenth term in (52) add up to (54).

On the other hand, (44) can be expanded as

φλ,ρ(B1,B
∗
2) =

tr[Y′Y −Y′RSX2
(λ)X1(λ)YRH1 −Y′PX2(λ)Y

+ H′
1B̂1(λ, ρ)′AB̂1(λ, ρ) + B′

1AB1H
′
1MH1(ρ)H1

− 2H′
1B

′
1AB̂1(λ, ρ) + B̂∗

2(λ)′GB̂∗
2(λ)

+ B∗′
2 GB∗

2 − 2B∗′
2 GB̂∗

2(λ)]. (57)

As noted earlier, A = X′
1SX2(λ)X1 + λPX′

1
. Note that the second and fourth

terms in the trace on the right hand side of the above equation cancel out,
and so do the third and seventh terms. Observe that the first term on the
right hand side of (57) is equal to the first term on the right hand side of (52),
the sixth term in (57) to the fourth term in (52), the ninth term in (57) to
the fifth term in (52), the eighth term in (57) to the sum of the third and
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eleventh terms in (52), and the fifth term in (57) is equal to (54), establishing
the equivalence between (38) and (44).

6 Computer Software

Matlab programs that carried out the computations reported in the paper are
available upon request from the second author.
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