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Dynamic GSCA (Generalized Structured Component Analysis) with applications to

the analysis of effective connectivity in functional neuroimaging data

Abstract

We propose a new method of structural equation modeling (SEM) for longitudi-
nal and time series data, named Dynamic GSCA (Generalized Structured Component
Analysis). The proposed method extends the original GSCA by incorporating a mul-
tivariate autoregressive model to account for the dynamic nature of data taken over
time. Dynamic GSCA also incorporates direct and modulating effects of input variables
on specific latent variables and on connections between latent variables, respectively.
An alternating least square (ALS) algorithm is developed for parameter estimation. An
improved bootstrap method called a modified moving block bootstrap method is used
to assess reliability of parameter estimates, which deals with time dependence between
consecutive observations effectively. We analyze synthetic and real data to illustrate the
feasibility of the proposed method.
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1. Introduction

Hwang and Takane (2004) recently proposed Generalized Structured Component Anal-

ysis (GSCA) as a viable alternative to two conventional approaches to structural equation

modeling (SEM): covariance structure analysis (CSA; Jöreskog, 1970) and partial least

squares (PLS; Wold, 1973). Since their original work, GSCA has been extended and gen-

eralized to improve its data-analytic capability and applicability, e.g., dealing with cluster-

level respondent heterogeneity (Hwang, DeSarbo, and Takane, 2007a), multilevel modeling

(Hwang, Takane, and Malhotra, 2007b), and modulating effects of latent variables (Hwang,

Ho, and Lee, 2010).

In this paper, we propose a new method of structural equation modeling for longitu-

dinal and time series data, named Dynamic GSCA. Dynamic GSCA is a component-based

method which combines the original GSCA and a multivariate autoregressive model in a

unified framework to account for dynamic nature of data taken over time. Indeed, Dynamic

GSCA is a comprehensive structural equation model, which is able to handle temporally

correlated data (i.e., time-dependent samples), as well as independently sampled data. In

addition, Dynamic GSCA incorporates direct and modulating effects of input variables on

specific latent variables and on the connections between latent variables, respectively. As

such, Dynamic GSCA is capable of dealing with more complex structural model than the

conventional methods of SEM.

Dynamic GSCA is a general statistical method in that it is applicable for any field of

study dealing with longitudinal and time series data. In this paper, however, we mainly

focus on applications of the proposed method to the analysis of effective connectivity in

functional neuroimaging data, which refers to a class of analysis methods that quantify

the influence that one neural system exerts on another (Friston, 1994). This is intended

to highlight its flexibility in model specification by handling complex brain connectivity.

It might also substantiate its practical usefulness in a rapidly emerging field of science,

human brain research.

To place effective connectivity modeling in perspective, we briefly introduce a typical

fMRI study (Huettel, Song, and McCarthy, 2004). fMRI records changes in blood oxygena-

tion over scans (also called time points) while an individual is presented with stimuli or

asked to perform a task. The measures are called blood-oxygen level dependent (BOLD)

signals. The basic element of spatial measurement in fMRI is referred to as a voxel (i.e., a

three dimensional volume element), and a region of interest (ROI) consisting of a certain

number of voxels is commonly used as a unit of analysis when modelling effective con-

nectivity. That is, a number of specific brain regions are selected based on a hypothesis

about their importance in completing a task, and then their directional relationships are

modeled and tested, providing a statistical test of effective connectivity.
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In sum, we demonstrate that the newly proposed Dynamic GSCA is appropriate for

multivariate time series data, with applications to modelling effective connectivity in func-

tional neuroimaging data, where the data matrix contains repeated measures across time

points in the rows, and variables (i.e., voxels) in the columns. In the Dynamic GSCAmodel,

BOLD signals in the voxels in a given ROI correspond to observed variables/indicators,

and ROIs correspond to latent variables/constructs, indicating representative activity in

the brain regions inferred from BOLD signals in voxels in the brain areas of interest.

This paper is organized as follows. In the next section (section 2), we discuss Dynamic

GSCA in detail. We present the model for Dynamic GSCA (secition 2.1) and the esti-

mation of model parameters (secition 2.2). We then discuss the GOF (Goodness of Fit)

indices (secition 2.3) and a special bootstrap method for assessing the reliability of param-

eter estimates (secition 2.4). In section 3, we investigate performance of Dynamic GSCA

in parameter recovery through Monte-Carlo simulation studies. In section 4, we illustrate

the empirical validity of Dynamic GSCA with real examples. In the final section (sec-

tion 5), we summarize previous sections and discuss further prospects for Dynamic GSCA.

2. Dynamic GSCA

2.1 The Model

Dynamic GSCA consists of two submodels; measurement and structural models. The

measurement model specifies hypothesized relationships between observed variables and

latent variables. This part of the Dynamic GSCA model remains essentially the same as

in the original GSCA model (Hwang and Takane, 2004). The structural model, on the

other hand, specifies hypothesized relationships among latent variables. This part of the

Dynamic GSCA model has many new features to deal with the dynamic nature of time

series data and accommodate input variables such as experimental stimuli in brain imaging

studies, which results in more complicated structural models. Specifically, Dynamic GSCA

has a mechanism for examining relationships between latent variables involving different

time points (called time lagged effects) by incorporating a multivariate autoregressive

model. In addition, Dynamic GSCA is able to investigate direct and modulating effects

of input variables on specific latent variables and on connections between latent variables,

respectively.

We begin with the measurement model. Let Zi (i = 1, · · · , p) denote a T by vi matrix

of observations, where i indexes a latent variable, T indicates the number of time points,

vi the number of observed variables for latent variable i, and p the total number of latent

variables. The matrix Zi is assumed to be columnwise standardized. In Dynamic GSCA, a

latent variable, γi, is defined as an exact linear combination of the observed variables, and
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it is scaled to have unit variance. Let wi denote a vi by 1 vector of component weights.

Then,

γi = Ziwi. (1)

The measurement model specifies the relationship between the observed variables Zi and

the latent variable γi. Let ci denote the vector of weights applied to γi to best approximate

Zi. Then, the measurement model for latent variable i is stated as

Zi = γic
′
i +Ei

= Ziwic
′
i +Ei, (2)

where Ei is a T by vi matrix of disturbance terms. Note that Zi and γi are assumed to

be standardized, and thus the weight vectors wi and ci are scaled accordingly.

For later use, it is convenient to rewrite (1) and (2) for i = 1, · · · , p as single equations.

Define a row block matrix Z by

Z = [Z1,Z2, · · · ,Zp]. (3)

The total number of columns in Z is denoted by V =
∑p

i=1 vi. Also, define a block diagonal

matrix DW with wi as the ith diagonal block,

DW = bdiag([w1,w2 · · · ,wp]) =


w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wp

 (4)

(the operator bdiag forms a block diagonal matrix with vectors (matrices) in its argument

as diagonal blocks), a similar block diagonal matrix with ci as the ith diagonal block,

DC = bdiag([c1, c2, · · · , cp]) =


c1 0 · · · 0

0 c2 · · · 0
...

...
. . .

...

0 0 · · · cp

 , (5)

and a row block matrix with γi as the ith column vector,

Γ = [γ1,γ2, · · · ,γp]. (6)

Then, (1) and (2) can be collectively written as

Γ = ZDW , (7)



Psychometrika Submission February 14, 2012 DynamicGSCA˙PMET Page 6

and

Z = ΓD′
C +EM = ZDWD′

C +EM , (8)

where

EM = [E1,E2, · · · ,Ep]. (9)

A necessary and sufficient condition for identification has been discussed by Kiers

and Takane (1993) and Takane, Kiers, and de Leeuw (1995) for identifiability of a model

similar to the above. Kiers and Takane’s (1993) theorem, in particular, stipulates that

γi(i = 1, · · · , p) is disjoint with Zj for all j ̸= i. Their A corresponds with our Γ, Gi with

Zi, and the theorem almost literally applies to our situation. This condition can be easily

checked after the analysis by Dynamic GSCA is conducted. Kiers and Takane (1993) also

provide a sufficient condition for identification that can be checked before the analysis

is made. This condition stipulates that Z has full column rank, which we assume in this

paper. It is not at all difficult to satisfy this condition in most practical situations, and

indeed they are satisfied in all examples we discuss in this paper.

Next, we specify the structural model, for which several more matrices have to be in-

troduced. Let uj represent the T -component vector of the jth input variable. It is assumed

that each uj is a priori standardized. (An example of an input variable vector is given in

Figure 2.) It is assumed that in the general case there are k such vectors, which we denote

collectively by the row block matrix U = [u1,u2, · · · ,uk]. Let diag(uj) be the diagonal

matrix with elements of uj as its diagonal elements. As we will see shortly, this diagonal

matrix plays an important role in defining interaction effects between input variables and

latent variables.

Shift matrices are now introduced to capture time lagged effects. Here, we adopt the

strategy that a series of shift matrices represent both contemporaneous and lagged effects.

Note that contemporaneous effects denote concurrent relations between latent variables

at the same time point as in the conventional methods of SEM. Specifically, the shift

matrix with time lag 0 (S0 = IT , where IT is the identity matrix of order T ) represents

contemporaneous effects, while Sℓ (ℓ = 1, · · · , q) represents time lagged effects among

latent variables. The subscript ℓ indexes the order of lags. The matrix S1, for example,

represents the effect of time t− 1 on time t. This matrix looks like:

S1 =



0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


. (10)
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The matrix above is obtained from S0 by down-shifting the first T − 1 rows of S0 into row

2 through row T of S1 and by filling the first row by a zero vector. In general, the shift

matrix Sℓ = [s
(ℓ)
ij ] of lag ℓ (ℓ = 0, · · · , q) is defined by

s
(ℓ)
ij =

{
1 if i ≥ ℓ+ 1 and j = i− ℓ,

0 otherwise.
(11)

Premultiplying Γ by Sℓ shifts down the rows of Γ by ℓ rows and defines the matrix of the

effect of latent variables at time t − ℓ on time t. Note that the shift matrices Sℓ (except

S0) are generally singular.

The generic structural model of Dynamic GSCA can now be stated as

Γ =
q∑

ℓ=0

SℓΓA
′
ℓ +

q∑
ℓ=0

SℓUD′
ℓ +

q∑
ℓ=0

k∑
j=1

Sℓdiag(uj)ΓM
′
ℓj +ES , (12)

where the Aℓ are square matrices of order p of path coefficients for connections between

latent variables of varying lags, the Dℓ are p by k matrices of path coefficients for the

direct effects of input variables on latent variables, the Mℓj are square matrices of order p

of path coefficients for modulating effects of input variables on connections between latent

variables, and ES represents the matrix of prediction errors. These matrices typically

have many prescribed zero elements representing our hypothesis that certain effects are

0. Free elements in the matrices, on the other hand, represent the hypothesis that the

corresponding effects are nonzero and are to be estimated from data. The first term in

(12) thus represents the contemporaneous and lagged effects between latent variables, the

second term direct effects of input variables on latent variables, and the third term the

modulating effects of input variables on connections between latent variables. Note that

(12) reduces to the structural model of the original GSCA when there is only the first

term and q = 0.

It is difficult to state a general identification condition for the structural model written

in the form of (12) with unknown patterns of 0’s in the parameter matrices. A simple and

directly verifiable condition will be given right after (32).

***** Insert Figure 1 about here. *****

For illustration, an example of a path diagram is displayed in Figure 1, in which

we assume that there are three latent variables (γ1,γ2,γ3) and three input variables

(u1,u2,u3). In the hypothesized model, we assume that three latent variables are fully

and reciprocally (bidirectionally) connected. Solid arrows indicate contemporaneous effects

between latent variables. Path coefficients for these effects are denoted by a1 through

a6. We also assume that there are autoregressive effects of lag 1 of latent variables on
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themselves. Dashed arrows indicate the time lagged effects. The path coefficients associated

with the autoregressive effects are denoted by a7 through a9 in Figure 1. Figure 1 also

indicates that there were three input variable effects. We hypothetically assume that 1)

the first input variable (u1) has a direct effect on γ1 (the path coefficient denoted as

d1), 2) the second input variable (u2) modulates the connection from γ1 to γ2 (the path

coefficient denoted as m1), and 3) the third input variable (u3) modulates the connection

from γ3 to γ1 (the path coefficint denoted as m2). The modulation effect here means that

connectivity between latent variables is temporarily enhanced or reduced as a result of an

input variable effect. The model in this diagram can be written as

Γ = ΓA′
0 + S1ΓA

′
1 + u1d

′
01 + diag(u2)ΓM

′
02 + diag(u3)ΓM

′
03 +ES , (13)

where

A′
0 =


0 a3 a5

a1 0 a6

a2 a4 0

 , (14)

A′
1 =


a7 0 0

0 a8 0

0 0 a9

 , (15)

d′
01 = (d1, 0, 0), (16)

M′
02 =


0 m1 0

0 0 0

0 0 0

 , (17)

and

M′
03 =


0 0 0

0 0 0

0 m2 0

 . (18)

Note that d′
01 denotes the first row vector of D′

0. In general, the rows of A′
ℓ and M′

ℓj rep-

resent latent variables exerting influence, whereas the columns represent latent variables

being influenced. The rows of D′
j , on the other hand, represent input variables exerting

influence on latent variables corresponding to the columns of D′
j .
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2.2 Parameter Estimation

In the Dynamic GSCA model, a least squares (LS) criterion is used for parameter

estimation. Specifically,

ϕ = SS(E) = tr(E′E) (19)

is minimized with respect to model parameters, where E = [EM ,ES ]. We use an iterative

algorithm called an ALS (Alternating Least Squares; e.g., de Leeuw, Young, and Takane,

1976) algorithm to find LS estimates of parameters that minimize (19). The ALS algorithm

is particularly attractive in the present context because Dynamic GSCA has two natural

subsets of parameters; wi’s that define latent variables and all other parameters (path

coefficients; ci’s, Aℓ’s, Dℓ’s and Mℓj ’s). The proposed ALS algorithm thus consists of two

major steps:

Step I. Update ci’s, Aℓ’s, Dℓ’s, and Mℓj ’s with wi’s being fixed.

Step II. Update wi’s while ci’s, Aℓ’s, Dℓ’s, and Mℓj ’s are fixed.

In developing updating formula, it is helpful to “vectorize” some of the quanti-

ties. The following operations are useful for this purpose: The vec operator strings out

column vectors of a matrix in its argument to form a tall supervecctor. A Kronecker

product between two matrices is denoted C = A ⊗ B and defined as C = [aijB], where

A = [aij ]. The following formula is commonly used for the vec of a triple matrix product

vec(ABC) = (C′ ⊗ A)vec(B) = (I ⊗ AB)vec(C). Detailed accounts of these as well as

other useful operations can be found in Harville (1997).

2.2.1 Updating path coefficients (ci’s, Aℓ’s, Dℓ’s and Mℓj’s)

The error vector eM = vec(EM ) for the measurement model (8) can be written as

eM = z− (IV ⊗DZw)c, (20)

where z = vec(Z),

DZ = bdiag(Z) =


Z1 O · · · O

O Z2 · · · O
...

...
. . .

...

O O · · · Zp

 , (21)
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w =


w1

w2

...

wp

 = DW1p, (22)

and c = DC1p, where 1p is the p-component vector of ones. The error vector eS = vec(ES)

for the structural model (12), on the other hand, can be written as

eS = γ −X∗h∗, (23)

where γ = vec(Γ),

h∗ =


vec([A′

0, · · · ,A′
q])

vec([D′
0, · · · ,D′

q])

vec([M′
01, · · · ,M′

qk])

 , (24)

and X∗ = [X∗
1,X

∗
2,X

∗
3] with

X∗
1 = [Ip ⊗ S0Γ, · · · , Ip ⊗ SqΓ], (25)

X∗
2 = [Ip ⊗ S0U, · · · , Ip ⊗ SqU], (26)

and

X∗
3 = [Ip ⊗ S0diag(u1)Γ, · · · , Ip ⊗ Sqdiag(uk)Γ]. (27)

The vector h∗ has many 0 elements. Let h̃ denote the vector formed from h∗ by eliminating

all of its 0 elements, and let X̃ denote the matrix formed from X∗ by eliminating all the

corresponding columns of X∗. Then, (20) and (23) can be collectively written as

e =

(
eM

eS

)
= f −Xh, (28)

where

f =

(
z

γ

)
, (29)

X = bdiag([IV ⊗DZw, X̃]), (30)

and

h =

(
c

h̃

)
. (31)
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Thus, the update of h (path coefficients; ci’s, Aℓ’s, Dℓ’s and Mℓj ’s) that minimizes e′e is

found by

ĥ = (X′X)−1X′f . (32)

Note that in (32) we assume that X has full column rank, which ensures uniqueness of ĥ.

2.2.2 Updating wi’s

The measurement model (8) can be also rewritten as

eM = z−


c1 ⊗ Z1 O · · · O

O c2 ⊗ Z2 · · · O
...

...
. . .

...

O O · · · cp ⊗ Zp

w
= z− (DC ⊗DZ)w. (33)

Similarly, the structural model (12) can be rewritten as

eS = −vec(
q∑

ℓ=0

SℓUD′
ℓ)

+ γ −
q∑

ℓ=0

(Aℓ ⊗ Sℓ)γ −
q∑

ℓ=0

k∑
j=1

(Mℓj ⊗ Sℓdiag(uj))γ, (34)

or by replacing γ by DZw,

eS = −vec(
q∑

ℓ=0

SℓUD′
ℓ)

− {−I+
q∑

ℓ=0

(Aℓ ⊗ Sℓ) +
q∑

ℓ=0

k∑
j=1

(Mℓj ⊗ Sℓdiag(uj))}DZw. (35)

From (33) and (35) it follows that

e = g −Yw, (36)

where

g =

(
z

−vec(
∑q

ℓ=0 SℓUD′
ℓ)

)
, (37)

and

Y =

[
DC ⊗DZ

{(−I+
∑q

ℓ=0(Aℓ ⊗ Sℓ) +
∑q

ℓ=0

∑k
j=1(Mℓj ⊗ Sℓdiag(uj))}DZ

]
. (38)
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In this step, e′e is minimized with respect to wi separately and sequentially subject

to the normalization restriction that

(1/T )w′
iZ

′
iZiwi = 1 (39)

for each i. (A latent variable is scaled to have unit variance.) This implies that e′e is

minimized with respect to wi sequentially (i = 1, · · · , p) with other wj (j ̸= i) being fixed.

Let Y(−i) and w(−i) pertain to the portions of Y and w unrelated to the variable set i,

and let Yi and wi represent the portion of Y and w specifically related to i. Then, the

portion of g unrelated to the variable set i can be written as g(−i) = g−Y(−i)w(−i), and e

in (36) can be written as e = g(−i)−Yiwi. As a result, e′e is minimized with respect to wi

for a specific i subject to the normalization restriction in (39). Note that Yi is assumed to

have full column rank. This ensures uniqueness of the estimates of wi. There is a special

algorithm to solve a minimization problem of this form developed by ten Berge and Nevels

(1977), which we used in our program. Once wi is updated, it has to be immediately put

back into redefining the next g(−i) in order to preserve the monotonic convergence property

of the ALS algorithm. Thus, we update w in (36) using the sequentially updated wi’s in

this step, and we calculate the sum of squares of errors (e′e) using e in (36).

The two steps described above are repeatedly applied until the change in e′e from

one iteration to the next gets smaller than a certain prescribed value, say 1.0E-6.

2.3 GOF Indices

In Dynamic GSCA, the overall fit of a hypothesized model is measured by predictabil-

ity of the specified model, which is given by

FIT = 1− SS(g −Yŵ)

SS(g)
, (40)

where ŵ is the estimate of w at a convergence point of the ALS algorithm presented

in the previous section. This fit index (FIT, Hwang and Takane, 2004) ranges from 0 to

1. The larger the FIT value, the larger the proportion of the variance in the endogenous

variables explained by the model. It is inversely related to the sum of the squared residuals

indicating the overall discrepancy between the model and data.

However, FIT is obviously affected by model complexity, i.e., the larger the number of

parameters in the model, the larger the value of FIT we get. Hence, we use an alternative

fit measure which takes into account the complexity of a fitted model. This fit measure is

called adjusted FIT or AFIT (Hwang et al., 2007a), and is given by

AFIT = 1− (1− FIT)
n0

n1
, (41)
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where n0 = TV is the degree of freedom for the null model (i.e., the model with no

structural relationships among latent variables), n1 = TV − r is the degree of freedom for

the model being tested, where V is the total number of observed variables, and r is the

number of free parameters in the hypothesized model. The AFIT measure takes into ac-

count the number of parameters used in the model. This measure typically favors simpler

models over complex models given similar explanatory power. A model that maximizes

AFIT is regarded as the best model among all competing models.

2.4 A Special Bootstrap Method

In the original GSCA, a bootstrap method is used for assessing the reliability of

parameter estimates, since it is impossible to obtain analytic expressions for standard

errors of parameter estimates (Efron, 1982). However, the standard bootstrap method

used in the original GSCA is not appropriate for time series data because it does not

take into account the time order of observations, and consequently it results in incorrect

standard error estimates (Lahiri, 2003). Thus, in Dynamic GSCA, a modified moving block

bootstrap method is employed to deal with this problem. (For more details, see Bühlmann,

2002; Zhang and Browne, 2010).

Specifically, the modified moving block bootstrap method implemented in Dynamic

GSCA can be described by the following three steps. In the first step, we break down the

original data into overlapping blocks of size L (L = the order of lagged effect+1). For

instance, in case of the effect of lag 1, the first block consists of (z1, z2)
′, the second block

(z2, z3)
′, and the tth block (zt, zt+1)

′. Here, zt is a vector of variables measured at time

t. The overlapping blocks are supposed to capture the dependence among consecutive

observations. In the second step, we draw blocks of observations with replacement up

to the number of time points (T ). As a result, we obtain T × L bootstrap samples. In

the third step, we apply Dynamic GSCA to the bootstrap samples. This step, however,

requires special attention, as described below.

For illustration, suppose that the model has only the first order lagged effect (L = 2)

and that we are updating h in the first phase of the ALS algorithm. We create Xb and

fb (analogous to X and f) from the bootstrap samples created in the previous step of

the bootstrap procedure. Even rows of Xb and fb contain the information of the first

order lagged effect, whereas odd rows represent the effects of bad joints denoting the time

sequences that did not exist in the original data. This can be easily demonstrated by using

the following simple bootstrap sample: (z1, z2, z5, z6)
′. The second and fourth rows of Xb

and fb consisting of (z1, z2)
′ and (z5, z6)

′ capture the first order time lagged effect given

the data, while the third row of Xb and fb consisting of (z2, z5)
′ capture merely pseudo
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time lagged effect. The first row of Xb and fb also has nothing to do with the first time

lagged effect because z1 has no pair. Hence, we deliberately eliminate the odd rows of Xb

and fb, and obtain the reduced Xb and fb, denoted by X̃b and f̃b. Then we use X̃b and f̃b

instead of Xb and fb, respectively, in updating h. Essentially the same method has to be

used in updating wi in the second phase of the ALS algorithm.

The three steps described above are repeated for as many bootstrap samples as needed.

Estimates of parameters are obtained for each bootstrap sample, and then means and

variances of the estimates are calculated across the bootstrap samples to obtain standard

errors of the estimates. Empirical distributions of parameter estimates derived by the

bootstrap procedure may not be symmetric. In that case, it may be more practical to

obtain confidence intervals based directly on the empirical distribution of the parameter

estimates.

Significant tests of estimated coefficients may also be performed as a by-product of the

bootstrap procedure. Specifically, the number of times bootstrap estimates “crossing” over

zero is counted for a significant test (if the original estimate is positive, the number of times

the bootstrap estimates turn out to be negative is counted, and vice versa). If the relative

frequency (p-value) of crossovers comes to less than a prescribed α level, it is concluded

that the coefficient is significantly positive (or negative). This counting method is used

in Dynamic GSCA because it requires no parametric assumption such as the asymptotic

normality of parameter estimates, which may not hold in practice.

Note that our model assumes that serial correlations are fully captured by the time lag

effects included in the structural model. There is always a question of whether a sufficient

number of the time lag effects are included in the model. In the examples of analysis of

fMRI data, we always assume that the first order time lag effects are sufficient to “explain

away” all the serial correlations. In the fMRI data, the time resolution is typically not very

high, and thus inclusions of higher order time lag effects are not likely to be substantively

important. There is also some evidence in the literature (e.g., Gates et al., 2011) that

serial correlations beyond order 1 are negligible, once the first order time lag effects are

taken into account.

3. Simulation Studies: Recovery of Parameters

In this section, we report two Monte Carlo studies designed to show that Dynamic

GSCA works the way it is supposed to. We considered two different structural models

varying in the number of latent variables (i.e., 3 and 7) and in hypothesized relationships

among them. They were designated to illustrate flexibility of the proposed method in

model specification. Furthermore, we also considered the number of time points (sample
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sizes), and the size of random errors in both measurement and structural models as two

important factors influencing the goodness of parameter recovery.

3.1 Study 1: A SEM with Three Latent Variables with Three Observed Variables per

Latent Variable

In this simulation study, we employed the path diagram (structural models) as de-

picted in Figure 1. Recall that in Figure 1, we used a structural equation model that in-

volved three latent variables (γi, i = 1, · · · , 3) and three input variables (uj , j = 1, · · · , 3).
The structural models used in this study can be stated as

γ1 = γ2a1 + γ3a2 + S1γ1a7 + u1d1 + e1,

γ2 = γ1a3 + γ3a4 + S1γ2a8 + diag(u2)γ1m1 + diag(u3)γ3m2 + e2,

γ3 = γ1a5 + γ2a6 + S1γ3a9 + e3,

where S1 is the shift matrix of lag 1 and ei’s (i = 1, · · · , 3) are vectors of prediction errors.

Prescribed parameter values of path coefficients in the specified model are as follows:

Coefficients a1 a2 a3 a4 a5 a6 a7 a8 a9 d1 m1 m2

Parameters 0.5 0.2 0.3 0.4 0.4 0.3 0.4 0.2 0.4 0.2 0.4 0.3

We also specified measurement models with three observed variables for each of the three

latent variables:

Z1 = γ1c
′
1 +E1,

Z2 = γ2c
′
2 +E2,

Z3 = γ3c
′
3 +E3,

where the component loading vectors were assumed to be ci = (0.7, 0.8, 0.9)′ for i =

1, · · · , 3. The loadings indicate the strength of relationships between observed variables

and latent variables.

The data were generated with varying numbers of time points (T = 50, 100, 200, and

1000). Specifically, we followed a two-step procedure to generate simulated data. In the

first step, we generated latent variables (Γ) using the given parameters. For example, (13)

can be rearranged as follows,

Γ = (I−A′
0)

−1(S1ΓA
′
1 + u1d

′
01 + diag(u2)ΓM

′
02 + diag(u3)ΓM

′
03 +ES). (42)

Each row of Γ was generated sequentially using all other known parameters. Note that the

first row vector of S1Γ denoting the previous latent variables was randomly sampled from

a uniform distribution, and the errors in the structural models were assumed to follow a
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normal distribution with zero mean and variance τ2, where τ2 = .5, 1, or 2. Then, the

latent variables (Γ) were standardized. In the second step, the observed variables for each

latent variable were generated using the predefined component loadings and errors, based

on the measurement model, Zi = γic
′
i +Ei. Errors in the measurement models were also

assumed to follow a normal distribution with zero mean and variance σ2, where σ2 was

varied at four levels (σ2 = 0.3, 0.5, 0.7, or 0.9). These variances roughly correspond with

the situations in which the first principal component in each latent variable accounts for

92%, 82%, 72%, and 62% of the total variance in observed variables for the latent variable.

The input variable (u1) is depicted in Figure 2. Input variables could be any kind of

time series vectors of interest, but we here used the input vectors, simulating hemody-

namic response function (HRF) in functional neuroimaging studies. Specifically, we first

generated a delta function (0 = no stimulus, 1 = stimulus) with experimental stimuli

presented every 15th time point starting at time 5 (in the upper panel), and then the in-

puts were convolved with a gamma function to model the hemodynamic response (in the

bottom panel). Here, we used Statistical Parametric Mapping (SPM; Wellcome Institute

of Cognitive Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm) for the convolu-

tion. Other input variables (u2 and u3) were similarly generated with different intervals

of stimulus presentation, that is, every 25th time point for u2 and every 35th time point

for u3, respectively.

***** Insert Figure 2 about here. *****

As allured in the parameter estimation section (2.2), we need initial values of wi in

the ALS algorithm. For this, we used weights for the first principal component of Zi as

initial values of wi. Note that we have also run the ALS procedure with many random

initial starts (i.e., 100 different sets) of wi to see if the convergence point is the global

minimum, and observed that the algorithm converged to the same minimum.

To measure the goodness of parameter recovery, we used the congruence coefficient

between parameters and their estimates (Tucker, 1951) in this and subsequent simulation

studies. The congruence coefficient is defined as follows: Let θ and θ̂ denote the vectors of

the true parameters and their estimates from a single replication, respectively. Then, the

congruence coefficient is given by θ′θ̂/(
√
θ′θ
√
θ̂′θ̂). A value of the congruence coefficient

greater than 0.9 is conventionally regarded as an acceptable degree of agreement (Mulaik,

1972) between parameters and the corresponding estimates.

***** Insert Table 1 about here. *****

The average congruence coefficients over 100 replications were presented in Table 1.

Results for T = 1000 and τ2 = 0.5 have been omitted from the table because they can be
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easily extrapolated from the rest of the table. We observed that the number of time points

(T ) and the amounts of errors (σ2 and τ2) in both measurement and structural models had

significant influence on parameter recoveries of path coefficients (“path”). Overall, values

of the congruence coefficient on path coefficients increased as the number of time points

increased, and they decreased as the amounts of errors increased. However, Dynamic

GSCA indeed provided reasonable recoveries (mean congruency coefficients greater than

0.9) across all conditions with a few exceptions (the number of time points was 50 and

the amount of errors in measurement models was 0.7 or 0.9). Furthermore, we observed

that the recovery of component loadings (“loadings”) was very good and stable across

conditions.

3.2 Study 2: A SEM Seven Latent Variables with Three Observed Variables per Latent

Variable

The second simulation study was similar to the previous one, except that the number

of latent variables involved was increased to seven, which were nearly fully connected

by contemporaneous reciprocal (bidirectional) relations and by autoregressive paths. For

structural models used in this study, however, there were no input variables in this example,

so that both the second and third terms on the right-hand side of the generic specification

given in (12) did not exist. In the first term, only the contemporaneous effects (ℓ = 0)

and the autoregressive effects of lag 1 (ℓ = 1) were present. Path coefficients for the

contemporaneous effects were set to:

A′
0 =



0 −0.3 −0.2 0 0.2 0.2 0

−0.5 0 −0.5 0 0.5 0.2 0.3

−0.4 −0.5 0 0 0.2 0.4 0

0 −0.2 0 0 0.3 −0.3 0.5

0.5 0.4 0.2 0.3 0 0.3 −0.5

0.4 0.2 0.5 0 0.3 0 0.5

0 0.4 0 0.5 −0.5 0.4 0


,

and those for the autoregressive effects to:

A′
1 = diag(0.4, 0.2, 0, 0.4, 0.3, 0, 0),

where diag indicates a diagonal matrix with elements of the vector in its argument as the

diagonal elements. The diagonal elements of matrix A′
0 were all 0. This implies there was

no contemporaneous effects of latent variables on themselves. The matrix A′
1 was diagonal,

meaning that there were only the time lag effects of latent variables on themselves. Note



Psychometrika Submission February 14, 2012 DynamicGSCA˙PMET Page 18

that there were zero off-diagonal elements in A′
0 as well as zero diagonal elements in

A′
1. This implies that latent variables were not completely connected. However, the data

generated were analyzed as if they were fully connected. That is, path coefficients assumed

to be zero in the population were estimated as if they were nonzero. This was motivated

by the fact that an investigator often has no clear idea about which connections really

exist. Thus, he/she may fit a more comprehensive model in the hope that an analysis

reveals nonsignificant connections, which may be subsequently removed from the model.

The total number of path coefficients estimated in this example is 49.

The data were generated in the same manner as in study 1, except that there were

three observed varibles per latent variable with a slightly different component loading

vector of ci = (0.6, 0.7, 0.8)′ (i = 1, · · · , 7). Note that due to somewhat smaller values

of the component loading used in this study the approximate percentage of variances

accounted for by the first principal components tended to be smaller than in study 1

(89%, 78%, 67%, and 59%).

The average congruence coefficients were similar to those obtained in study 1. That is,

the congruency coefficients on path coefficients increased as the number of time points (T )

increased. They decreased as the amount of errors (σ2) in measurement models increased.

Contrary to study 1, however, the amount of errors (τ2) in structural models did not

make much difference in parameter recovery. Overall, however, Dynamic GSCA provided

reasonable parameter recoveries (the average congruency coefficients are greater than 0.9

in all cases for T = 100 and 200). Similar to study 1, we also observed that the recovery

of component loadings was fairly good and stable across conditions.

So far, all 49 parameters estimated have been treated “equally”. However, among those

49 parameters, 13 parameters were assumed to be zero, while the remaining 36 parameters

were assumed nonzero in generating the data. It is thus possible to investigate how many

times zero parameters are judged to be significantly nonzero (α level), and how many

times nonzero parameters are judged to be significantly nonzero (power) when a certain

significance testing procedure is applied.

We first approximated standard errors of the estimates by calculating their standard

deviations over the 100 replicated data sets in each condition. We then formed critical

ratios by dividing the estimates by the corresponding standard errors. The critical ratios

exceeding 2 in absolute value were judged to be significantly different from zero. The value

of 2 roughly corresponds with the α level of .05 in the standard normal distribution.

Table 2 reports average powers and average α levels across all 36 parameters assumed

to be nonzero (powers) and 13 parameters assumed to be zero (α levels) in the data

generation. Note that the powers obviously depend on how nonzero the assumed parameter

values are (the further they are away from zero, the higher is the power expected). The
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average powers were calculated, however, disregarding the fact that nonzero parameters

are not equally nonzero. It was hoped that this somewhat crude method was still sufficient

to see general trends. The results showed that the power increased as the number of time

points (T ) increased, and it decreased as the amount of errors (σ2 and τ2) increased. It

seems that overall a reasonable degree of power is achieved when the sample size is large.

The average α level was nearly all zero across all conditions. This means that when the

parameters are zero, it is almost never judged to be significantly different from zero. The

test applied may, however, be a bit too conservative.

Finally, it should be noted that in our simulation studies, all errors were assumed to

follow a normal distribution. However, this assumption may be questionable in some ap-

plications. Further simulation studies will be necessary in the future, taking into account a

greater variety of conditions, such as non-normal data, correlated errors, and mis-specified

models, for more thorough investigations of the performance of the proposed method.

***** Insert Table 2 about here. *****

4. Applications Dynamic GSCA to Real Functional Neuroimaging Data

In this section, we applied Dynamic GSCA to two real data sets for the purpose of

demonstrating its usefulness in empirical research. In the first data set, a subject’s atten-

tion to visual motion was experimentally manipulated, and its direct effect on a ROI and

its modulating effect on connectivity between ROIs were investigated. The second data

set involved a memory task. In this example, a relatively large number of ROIs (seven)

were postulated, which were assumed to be fully connected. We examined the significance

of connections by Dynamic GSCA. Recall that a ROI indicates representative activity

inferred from BOLD signals in voxels in the brain areas of interest, and it is represented

by a latent variable in Dynamic GSCA.

4.1 The Attention to Visual Motion Data

The first example pertains to the “attention to visual motion” data available from

the SPM web site (http://www.fil.ion.ucl.ac.uk/spm/data/attention/). In the experiment,

subjects performed a visual motion processing task under four different experimental con-

ditions while undergoing fMRI. The four experimental conditions were fixation, static

(non-moving dots), no attention (moving dots but no attention required), and attention.

Three experimental stimuli (i.e., input variables) were created by combining the four con-
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ditions: photic (u1, comprising all conditions with visual inputs), motion (u2, including all

conditions with moving dots), attention (u3, including the only conditions with attention

to moving dots). These three experimental stimuli were entered into the Dynamic GSCA

model. See the three top panels of Figure 3, where the three stimulus vectors were depicted

as a function of time.

***** Insert Figure 3 about here. *****

The BOLD signals for three ROIs were extracted using the SPM software: V1 (the

primary visual cortex), V5 (middle temporal area), and SPC (superior parietal cortex).

Specifically, all activated voxels over a threshold level corresponding to an experimental

condition were first identified using SPM, and then BOLD signals for a ROI were selected

with an 8mm sphere centered on the global maxima within a ROI (for more details, see

Friston et al., 2007). A total of 92 BOLD signals were selected as multiple indicators for

the three ROIs and used in the Dynamic GSCA model: 54 BOLD signals for V1, 24 BOLD

signals for V5, and 14 BOLD signals for SPC. The 92 BOLD signals were extracted from

each of 360 scans (T = 360) with the time interval of 3.22 seconds.

Time series of BOLD signals were presented in the bottom portions of Figure 3. The

fourth, fifth, and sixth panels depict BOLD signals on a single voxel in each of the three

ROIs. These were examples of the observed variables used in Dynamic GSCA. The bot-

tom three panels indicate BOLD signals from all selected voxels within the three ROIs

(superimposed on top of each other) to show how variable they are in general within the

ROIs. It could be seen that although there was quite a bit of variability among the voxels,

there was also some common variability across voxels within a ROI. This common vari-

ability was our main focus of analysis. It was deemed representative of neuronal activities

in the ROI, and was to be captured in the form of a latent variable along with its relations

to activities in other ROIs (contemporaneous effects on other ROIs), to stimulus inputs

(effects of experimental stimuli), and to its previous states (autoregressive effects).

The structural model used in this analysis was the same as that depicted in Figure 1.

That is, in the hypothesized model, we assumed that three ROIs were fully and reciprocally

(bidirectionally) connected. We also assumed that there were autoregressive effects of

lag 1 of ROIs on themselves. Furthermore, we hypothesized that 1) the experimental

input “photic” (u1) had a direct effect on V1 (γ1), 2) the experimental manipulation

“motion” (u2) modulated the connection from V1 (γ1) to V5 (γ2), and 3) the experimental

manipulation “attention” (u3) modulated the connection from SPC (γ3) to V5 (γ2).

Dynamic GSCA was applied to fit the specified model to the data. The overall fit of

the model was found to be FIT = 0.767 and AFIT = 0.766, indicating that the specified

model accounted for about 77% of the total variance of all observed and latent variables.
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Table 3 shows estimates of path coefficients, their standard errors, and p-values. Boot-

strap standard errors were calculated based on 500 bootstrap samples using the modified

moving block bootstrap method. All contemporaneous effects (a1 through a6) were signif-

icant at α = .05. Only one autoregressive effect (a7) turned out be significant, while the

other two autoregressive effects (a8 on V1 and a9 on SPC) were not significant. The direct

effect (d1) of u1 on V1 was significant. However, neither of the two modulating effects of

experimental stimuli were significant.

To confirm some of these effects, we displayed the time series of u1, the three latent

variables representing the three ROIs, and interaction effects between u2 and V1, and u3

and SPC in Figure 4. At the top, there is a time series of u1, which looks fairly highly

correlated with V1 (i.e., r=0.73). As such, this confirms the significant direct effect of u1

on V1. At the third and fifth pannels, there are the time series of the modulating effects of

u2 and u3, which are only negligibly correlated with V5 in the fourth pannel (i.e., r= -0.10

and r=0.06, respectively). Thus, it makes intuitive sense that these modulating effects are

not significant.

***** Insert Table 3 about here. *****

***** Insert Figure 4 about here. *****

In addition, the relationships between the ROIs and their respective indicators (i.e.,

BOLD signals) were fairly strong and homogeneous. Most component loadings were posi-

tive and higher than .80.

4.2 The Memory Data

In the second example, we again considered fully and bidirectionally connected struc-

tural models. In contrast to the first example, the number of ROIs was increased from

three to seven, and no stimulus input was considered in this example. This hypothesized

structural equation model was identical to that which we used in the simulation study

2. This model is a popular brain network analysis model (Smith, et al., 2010), which is

also known as being difficult to fit by conventional methods of SEM based on analysis of

covariance structures (e.g., Gates et al., 2011) due to computational difficulties.

In this example, we used the data collected as part of a larger study examining

changes in topological patterns of large-scale functional brain networks during the per-

formance of memory tasks (Grady et al., 2006) available at the fMRI Data Center

(http://www.fmirdc.org). In the study, participants performed four encoding and two

recognition tasks. The encoding tasks involved the presentation of pictures or words in
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either perceptual or semantic conditions. After encoding tasks, subjects performed two

recognition tasks. In each recognition condition, participants responded as to whether

each stimulus was familiar or novel.

Using the data, Wang et al. (2010) found several network hubs in association cortices

regions using a correlation-based network analysis. Specifically, in their analysis, the fMRI

data was first parceled into 90 cortical and subcortical regions (ROIs) using an automated

anatomical labeling brain atlas. Then, a representative time series with 154 data points

was extracted for each ROI by averaging the BOLD signals over all voxels within the

ROI. They then conducted a correlation-based network analysis to reveal alterations in

topology of functional brain networks during the performance of memory tasks.

For the present analysis, we used the data extracted from one adult belonging to an

older adult group (the mean age of this group was 74.4 years) during a recognition task.

We adopted the network hubs of older adults in a recognition task, revealed by Wang et al.

(2010), and constructed a hypothesized structural equation model. Specifically, the net-

work hubs consisted of seven ROIs in the left-hemisphere: Insula (INS), Median cingulate

and paracingulate gyri (DCG), Hippocampus (HIP), Middle occipital gyrus (MOG), Pre-

cuneus (PCUN), Thalamus (THA), and Middle temporal gyrus (MTG). The number of

BOLD signals was 542 in INS, 575 in DCG, 268 in HIP, 968 in MOG, 1064 in PCUN, 305

in THA, and 1487 in MTG. There were simply too many BOLD signals to be processed

for each ROI. So they were aggregated into five distinct signals for each ROI, capturing

representative patterns of BOLD signals within the ROI. We calculated the centroids of

clusters, which were used as indicators of ROIs in Dynamic GSCA. For the cluster analysis,

the K-means algorithm in MATLAB was used (www.mathworks.com).

Dynamic GSCA was applied to fit the specified model to the data. The specified

model provided FIT = 0.714 and AFIT = 0.709, indicating that it accounted for about

71% of the total variance of all observed and latent variables. Tables 4 show estimates of

path coefficients, their standard errors, and p-values. Note that the diagonal portion of the

table denotes the autoregressive effects of ROIs on themselves. As before, the bootstrapped

standard errors were calculated based on 500 bootstrap samples using the modified moving

block bootstrap method.

***** Insert Table 4 about here. *****

From the table, we observed that a majority of path coefficients were found to be

significant. There were 10 nonsignificant contemporaneous effects and 3 nonsignificant

autoregressive effects.

In this example, most component loadings were higher than .80 with positive signs,

indicating the relationships were fairly strong and homogeneous. However, one of the com-
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ponent loadings of PCUN was not significant statistically, showing a negative sign (i.e.,

-0.143). It suggests that we would better remove the indicator in constructing the ROI

(i.e., PCUN). This result implies that we may benefit from Dynamic GSCA in defining

ROIs more adequately by assessing validity and reliability of indicator variables (e.g.,

BOLD signals) to be included in an analysis of effective connectivity.

Summary and Discussion

In this paper, we proposed Dynamic GSCA as a new method of SEM for multivariate

time series data. Dynamic GSCA extends the original GSCA by incorporating a multi-

variate autoregressive model to deal with the dynamic nature of data taken over time.

Dynamic GSCA is capable of examining both contemporaneous and time lagged effects

between latent variables, as well as direct and modulating effects of input variables on the

latent variables and their connections. Using the modified moving block bootstrap method,

Dynamic GSCA is also able to assess the reliability of parameter estimates despite the

presence of dependencies among observations over time.

We demonstrated the usefulness of Dynamic GSCA using synthetic and real data

in terms of flexibility in model specification. In the Monte Carlo studies, we reported

that Dynamic GSCA was capable of recovering original parameter values with reasonable

accuracy (i.e., over 90% congruence between parameters and their estimates) even in small

samples, especially when the amounts of errors in measurement and structural models

were small. In empirical examples, we showed that Dynamic GSCA enables researchers to

specify complex reciprocal relations in the structural equation model and provide stable

parameter estimates without any computational difficulties, such as improper solutions

and non-convergence.

Here, we point out that there are two path-analytic SEMs without a measurement

model for multivariate time series data, called the unified SEM (Kim et. al., 2007) and the

extended unified SEM (Gates et al., 2011). The path-analytic SEMs have similar features

to Dynamic GSCA for incorporating time lagged effects and input variable effects. In

parameter estimation, as in covariance structure analysis, they use a lagged correlation

matrix as input, and a maximum likelihood estimation method based on multivariate

normality assumption is used.

Compared to the existing methods of SEM for multivariate time series data, Dynamic

GSCA has several advantages. First, Dynamic GSCA has a single optimization criterion,

including both measurement and structural models in a unified framework. As such, the

previous SEMs are a special case of Dynamic GSCA in which a single indicator/observed

variable is taken as a latent variable. Second, Dynamic GSCA employs an improved boot-
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strap method to deal with time dependence between consecutive observations more appro-

priately. Thus, Dynamic GSCA may provide more accurate S.E. of parameter estimates

when the data are serially correlated. Finally, Dynamic GSCA uses an alternating least

squares algorithm for parameter estimation. Thus, it computationally benefits from a least

squares parameter estimation method with less distributional assumptions and no model

identification problems or improper solutions. On the other hand, the path-analytic SEMs

are prone to have computational difficutlies in model identification and convergence of it-

erative algorithms as the model complexity increases (e.g., the number of latent variables

and observed variables, and the number of directional paths among latent variables). Con-

sequently, Dynamic GSCA is able to deal with more elaborate and complicated models

than the existing methods.

The Dynamic GSCA model may be extended in a variety of ways to enhance its

data-analytic capability and applicability. The possible enhancements include simultane-

ous analysis of multi-sample data, analysis of hierarchically structured data (multilevel

analysis), incorporating interactions among latent variables, and an alternative minimiza-

tion criterion, which we in turn elaborate below.

Dynamic GSCA is currently capable of analyzing a single sample data at a time.

Here, a sample may refer to a subject. However, Dynamic GCSA can be extended to si-

multaneously analyze multiple-sample data. There are at least two promising possibilities.

One approach is based on multi-sample (multi-group) comparison (Hwang and Takane,

2004), and the other based on multilevel analysis (Hwang et al., 2007b). In the former,

the same structural model is fitted to more than one sample simultaneously with some of

the path coefficients assumed equal across samples while others are assumed to vary over

the samples.

The second approach deals with hierarchical structures of observed data. For in-

stance, typical functional neuroimaging data are hierarchically structured in that their

individual-level measures (e.g., BOLD signals) are grouped within higher-level units (e.g.,

groups/subjects/trials). In this approach, observed data are split into between-samples

and within-samples data, each of which is separately modeled by SEM. This analysis al-

lows us to investigate cross-level interactions of explanatory variables for loadings and path

coefficients in different levels. Multilevel Dynamic GSCA is an extension of the original

multilevel GSCA (Hwang et al., 2007b) to accommodate multivariate time series data.

Another possible extension of Dynamic GSCA involves incorporation of latent inter-

actions. A latent (linear by linear) interaction is defined as a product of interacting latent

variables (Hwang et al., 2010). This extension of Dynamic GSCA may be particulary use-

ful for brain connectivity analysis to model changes in the magnitude of path coefficients

between ROIs as a function of activities of different ROIs, thereby capturing important as-
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pects of neuronal interactions. This kind of feature has been required for modeling complex

neurobiological processes, including top-down modulation, learning and effects exerted by

neuromodulatory transmitters (Stephan et al., 2008).

Yet another possible extension involves the minimization criterion used. So far, we

implicitly assumed that all equations (in both measurement and structural models) are

equally important. However, there may be hundreds of measurement equations with just

a few structural equations. In such cases, criterion (19) will put a large emphasis on the

measurement part, while neglecting the structural part, resulting in latent variables that

are nearly equal to the principal components of observed variables. Therefore, it may

make sense, in some cases, to give larger weights to the structural part to balance the

contributions of the two types of submodels in the global structural equation model. This

can be done by employing a weighted LS criterion instead of the unweighted LS criterion

(Abdi, 2003).

We have written a MATLAB program for Dynamic GSCA to obtain the results re-

ported in this paper. The codes of our program can be further optimized to speed up the

algorithm. One promising idea is to use symbolic computations in some parts (Takane,

2009) of the program. Specifically, the equations of both measurement and structural

models can be simplified as much as possible at a symbolic level, and actual numerical

values are plugged in only at the final stage. As a result, final updating equations become

simpler and smaller in size, and Dynamic GSCA will be able to handle more complex

structural models with a larger number of observed variables.
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Figure 1.
A structural model with three latent variables.
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Figure 2.
Time series of the first input variable (u1): A delta function (in the upper panel) and the convoluted
input function using HRF (in the bottom).
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Figure 3.
Time series of three experimental inputs and BOLD signals of three ROIs (graphs 4, 5, and 6
depict the BOLD signal of one chosen voxel in the ROI, while graphs 7, 8, and 9 depict the BOLD
signals of all voxels in the representative ROI).
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Figure 4.
Time series of u1 and three latent variables (ROIs), and interactions between u2 and V1, and u3

and SPC.
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Table 1.
The mean congruence coefficients with varying error variances and different numbers of time
points (T = 50, 100, and 200) in study 1 (Standard deviations in parentheses).

τ2 = 1 τ2 = 2

Paths Loadings Paths Loadings

σ2 = 0.3 (92%)

T = 50 .9316 .9986 .9103 .9987

(.0433) (.0006) (.0470) (.0006)

T = 100 .9692 .9993 .9427 .9993

(.0141) (.0003) (.0204) (.0003)

T = 200 .9834 .9997 .9625 .9997

(.0074) (.0001) (.0132) (.0002)

σ2 = 0.5 (82%)

T = 50 .9263 .9961 .9027 .9964

(.0350) (.0016) (.0469) (.0016)

T = 100 .9605 .9980 .9420 .9981

(.0182) (.0009) (.0282) (.0007)

T = 200 .9808 .9990 .9608 .9990

(.0097) (.0004) (.0152) (.0005)

σ2 = 0.7 (72%)

T = 50 .8969 .9927 .8826 .9924

(.0605) (.0034) (.0628) (.0035)

T = 100 .9543 .9965 .9334 .9965

(.0241) (.0015) (.0304) (.0017)

T = 200 .9755 .9982 .9571 .9982

(.0123) (.0008) (.0168) (.0008)

σ2 = 0.9 (62%)

T = 50 .8703 .9868 .8396 .9876

(.0791) (.0064) (.0851) (.0051)

T = 100 .9376 .9931 .9172 .9936

(.0354) (.0032) (.0417) (.0027)

T = 200 .9689 .9968 .9502 .9968

(.0154) (.0014) (.0236) (.0013)
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Table 2.
Power and alpha levels with varying error variances and different numbers of time points
(T = 50, 100, and 200) in study 2.

τ2 = 1 τ2 = 2

Power Alpha Power Alpha

σ2 = 0.3 (89%)

T = 50 0.722 0 0.722 0

T = 100 0.917 0 0.917 0

T = 200 0.972 0.077 0.972 0.077

σ2 = 0.5 (78%)

T = 50 0.639 0 0.556 0

T = 100 0.806 0 0.806 0

T = 200 0.917 0 0.944 0

σ2 = 0.7 (67%)

T = 50 0.389 0 0.389 0

T = 100 0.778 0 0.694 0

T = 200 0.889 0 0.833 0

σ2 = 0.9 (59%)

T = 50 0.278 0 0.222 0

T = 100 0.556 0 0.556 0

T = 200 0.833 0 0.806 0
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Table 3.
Estimates of path coefficients, their standard errors, and p-values for the attention to visual
motion study.

Coeff. Path Estimate S.E. p-value

a1 V5 → V1 0.347 0.034 0

a2 SPC → V1 0.146 0.037 0

a3 V1 → V5 0.601 0.058 0

a4 SPC → V5 0.307 0.047 0

a5 V1 → SPC 0.335 0.069 0

a6 V5 → SPC 0.404 0.062 0

a7 V1 → V1 0.329 0.034 0

a8 V5 → V5 -0.044 0.055 0.176

a9 SPC → SPC 0.052 0.045 0.136

d1 V1 0.267 0.032 0

m1 V1 → V5 -0.028 0.043 0.180

m2 SPC → V5 0.018 0.047 0.288
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Table 4.
Estimates of path coefficients (top), their standard errors (middle), and p-values (bottom) for the
memory study. ROIs in rows exert influence on ROIs in columns. The diagonal entries are
autoregressive effects of ROIs on themselves. Nonsignificant paths at α = .05 are indicated by
two asterisks on p-values.

INS DCG HIP MOG PCUN THA MTG

INS 0.362 -0.288 -0.166 0.022 0.197 0.136 0.050

(.090) (.053) (.060) (.058) (.053) (.055) (.064)

0.000 0.000 0.000 0.298∗∗ 0.000 0.002 0.222∗∗

DCG -0.743 0.138 -0.707 -0.096 0.636 0.347 0.235

(.123) (.062) (.089) (.082) (.079) (.104) (.105)

0.000 0.006 0.000 0.108∗∗ 0.000 0.002 0.014

HIP -0.389 -0.675 0.120 0.050 0.167 0.406 -0.080

(.141) (.077) (.068) (.075) (.096) (.088) (.111)

0.002 0.000 0.066∗∗ 0.230∗∗ 0.024 0.000 0.232∗∗

MOG -0.087 -0.144 0.166 0.369 0.300 -0.262 0.650

(.159) (.101) (.109) (.054) (.100) (.077) (.093)

0.302∗∗ 0.024 0.052∗∗ 0.000 0.000 0.002 0.000

PCUN 0.836 0.539 0.249 0.316 0.243 0.266 -0.414

(.140) (.068) (.090) (.078) (.075) (.093) (.088)

0.000 0.000 0.004 0.000 0.002 0.000 0.000

THA 0.345 0.280 0.716 -0.089 0.283 0.102 0.527

(.186) (.129) (.109) (.085) (.110) (.083) (.094)

0.024 0.014 0.000 0.148∗∗ 0.014 0.120∗∗ 0.000

MTG -0.099 0.296 -0.084 0.538 -0.402 0.447 0.066

(.176) (.126) (.132) (.072) (.104) (.079) (.070)

0.276∗∗ 0.006 0.240∗∗ 0.000 0.000 0.000 0.214∗∗


