
0 

 

 Dynamic GSCANO (Generalized Structured Canonical Correlation Analysis) with 

applications to the analysis of effective connectivity in functional neuroimaging data 

 

 

 

 

Lixing Zhou, Yoshio Takane, and Heungsun Hwang 

McGill University 

 

 

 

February 29, 2016 

 

 

 

 

  

 

 

 

The authors are grateful to Todd Woodward for providing his data. Requests for reprints should 

be sent to: Lixing Zhou, Department of Psychology, McGill University, 1205 Dr. Penfield 

Avenue, Montreal, QC, H3A 1B1, Canada. Email: lixing.zhou@mail.mcgill.ca   

*Manuscript
Click here to view linked References

mailto:lixing.zhou@mail.mcgill.ca
http://ees.elsevier.com/csda/viewRCResults.aspx?pdf=1&docID=13018&rev=4&fileID=285574&msid={AD1ECF14-7C68-496D-8F63-78221F66010C}


1 

 

Dynamic GSCANO (Generalized Structured Canonical Correlation Analysis) with 

applications to the analysis of effective connectivity in functional neuroimaging data 

 

Abstract 

Effective connectivity in functional neuroimaging studies is defined as the time dependent 

causal influence that a certain brain region of interest (ROI) exerts on another. A new method of 

structural equation modeling (SEM) is proposed for analyzing common patterns among multiple 

subjects’ effective connectivity. The proposed method, called Dynamic GSCANO (Generalized 

Structured Canonical Correlation Analysis) incorporates contemporaneous and lagged effects 

between ROIs, direct and modulating effects of stimuli, as well as interaction effects among 

ROIs. An alternating least squares (ALS) algorithm is developed for estimating parameters. 

Synthetic and real data are analyzed to demonstrate the feasibility and usefulness of the proposed 

method.  

 

 

Key words: dynamic generalized structured component analysis (Dynamic GSCA), structural 

equation modeling (SEM), longitudinal and time series data, alternating least squares (ALS) 

algorithm, fMRI (functional magnetic resonance imaging) data, brain connectivity 
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1.  Introduction 

Functional magnetic resonance imaging (fMRI) has become an important measurement tool 

in psychological research (e.g., Cacioppo & Decety, 2009; Breiter et al., 2001; Huettel et al., 

2006). The basic element of spatial measurement in fMRI is a voxel (i.e., a three dimensional 

volume element), from which time series of blood oxygenation level dependent (BOLD) signal 

are recorded. Each brain region of interest (ROI) consists of multiple voxels and thus results in 

matrix records of BOLD signals, where rows represent time points and column represent voxels. 

Effective connectivity analysis involves a class of fMRI analysis methods that quantify the 

influence of one ROI  on another (Friston, 1994). In a typical effective connectivity research, a 

hypothesized connectivity pattern among selected ROIs is expressed as a path diagram, and then 

a psychometric method is used to analyze the path-analytic relationships. Structural equation 

modeling is a helpful psychometric methodology in analyzing effective connectivity because of 

its strength in specifying and testing path-analytic relationships (McIntosh & Gonzalez-Lima, 

1994; Büchel & Friston, 1997; Bullmore et al., 2000; Penny et al., 2004). 

Recently, two SEMs have been proposed to analyze effective connectivity. They are 

extended unified SEM (euSEM; Gates, Molenaar, Hillary, & Slobounov, 2011) and Dynamic 

Generalized Structured Component Analysis (Dynamic GSCA; Jung, Takane, Hwang, & 

Woodward, 2012). Both approaches incorporate contemporaneous and lagged effects of ROIs, 

and direct and modulating effects of stimuli. The euSEM obtains parameter estimates under the 

Gaussian distributional assumptions (Gates et al., 2011), whereas Dynamic GSCA is 

distribution-free.  
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Both euSEM and Dynamic GSCA are capable of analyzing only a single subject’s effective 

connectivity at a time. However, it may be more useful to have SEMs that enable simultaneous 

analysis of multiple subjects and capture common patterns of effective connectivity across 

subjects. Unsynchronized measurement errors due to various artifacts tend to be cancelled out in 

simultaneous analysis of multiple-subject data. Examples of capturing population features of 

effective connectivity are abundant in empirical research (e.g., Luchtmann et al., 2012; Stoeckel 

et al., 2009). Moreover, it has been emphasized by researchers that treatments ignoring 

simultaneous analysis, such as simply applying a single subject based SEM to BOLD signals of 

one subject at a time and then representing the common effective connectivity by averaging 

parameter estimates obtained over multiple subjects, are likely to result in misleading inferences 

(Eklund et al., 2012; Mecheli et al., 2002).  

Despite the prevalence of multiple-subject research in effective connectivity research and 

the detrimental effects of lacking a systematic approach to simultaneous analysis to statistical 

inferences, there has been little attempt to develop SEMs to analyze multiple-subject data 

simultaneously.  In this paper, we fill this gap by proposing a new method for simultaneous 

analysis of multiple subjects’ connectivity. The proposed method, named Dynamic Generalized 

Structured Canonical Correlation Analysis (Dynamic GSCANO), combines generalized 

canonical correlation analysis (GCANO; Carroll, 1968; Gifi, 1991) with a multivariate 

autoregressive time series model in a unified framework. GCANO is a natural extension of two-

set canonical correlation analysis (Hotelling, 1936) and is able to construct a latent vector which 

is most representative of columns from multiple data matrices. The conventional GCANO, 

however, does not model relationships among the extracted components. Dynamic GSCANO, on 

the other hand, explicitly models their relationships by postulating an autoregressive time series 
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regression relationship among them. The autoregressive model subsumes all kinds of time series 

effects among ROIs and stimuli included in euSEM and Dynamic GSCA, as well as one extra 

term, the interaction effects between ROIs (Kenny & Judd, 1984; Hwang et al., 2010). In sum, 

Dynamic GSCANO is an extension of GCANO to the analysis of multiple subjects’ time series 

data.  

This paper is organized as follows. In Section 2, we discuss Dynamic GSCANO in detail, 

including the model (Section 2.1), the parameter estimation algorithm (Section 2.2), and other 

computational issues (Section 2.3). In Section 3, we conduct simulation studies to investigate the 

parameter recovery of Dynamic GSCANO. In Section 4, we demonstrate the feasibility and 

empirical usefulness of the method by applying it to two real data sets. In Section 5, we 

summarize previous sections and discuss further prospects for Dynamic GSCANO. 

2. Dynamic GSCANO 

2.1. The Model 

Dynamic GSCANO consists of two sub-models: measurement and structural models. For 

each ROI, the measurement model employs GCANO to relate a common latent variable to 

multiple subjects’ BOLD signal records in the ROI. The latent variable captures the common 

features of BOLD signals in the ROI across all subjects. The structural model specifies 

hypothesized intra-dynamics among latent variables for ROIs.  

       We begin with the measurement model. We assume that there are J ROIs and K subjects. Let 

Zki denote a T by iv  matrix of BOLD signals taken over the i-th ROI on the k-th subject, where 

iv  indicates the number of voxels in the i-th ROI and T denotes the total number of time points. 
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The matrix Zki is column-wise standardized a priori. Following GCANO, a T-element latent 

variable iγ  is constructed in terms of the following K multiple regression like equations,  

                                                      M

i ki ki ki γ Z w e ,  k = 1,…, K, (1) 

where kiw  indicates a iv -element vector of component weights, and  M

kie  represents a T-element 

vector of measurement errors for ROI i and subject k. The parenthesized superscript M indicates 

that  M

kie  is an error vector in the measurement model. Equation (1) suggests that γi  captures the 

common pattern of BOLD signal dynamics across all subjects and voxels in ROI i. Examples of 

γi are shown in Figures 2 and 3. The difference from the usual regression equations is that in (1) 

not only kiw  but also γi are unknown, and the latter is estimated so as to minimize the error over k 

subject to the standardization constraint, 
1

1i i
T

 γ γ . By concatenating γi
 side by side, we obtain 

a matrix of latent variables, 

  1 2, , , JΓ = γ γ γ . (2) 

We now present the structural model. Let uP  be a T-element vector, representing the time 

series records of the p-th stimulus, which is also a priori standardized. Assuming that there is a 

total of P stimulus inputs ( 1, ,p P ), we may express them collectively in matrix notation as 

follows: 

  1 2, , , .U = u u uP
 (3) 
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Note that in equation (3), P denotes the number of distinct types of stimuli (e.g., the first 

stimulus is a static image, the second with motion, and the third with attention priming) rather 

than the number of different onsets of the same stimulus over time (Jung et al. 2012). An 

example of a stimulus effect is depicted in Figure 1. We use the time series depicted in the 

bottom panel of the figure as the stimulus input variable, which is obtained by convoluting the 

raw signals with the hemodynamic response function. This figure contains one stimulus time 

series (P = 1) and onsets of this stimulus at three different occasions. 

     To place both contemporaneous and lagged effects in a unified framework, a series of T by T 

shift matrices  Sl
( 0,1,...,l L ) are introduced, with the subscript l indicating the order of time 

lags. Specifically, 0S , the shift matrix with lag 0, is defined to be IT , the identity matrix of order 

T.  The matrix 0S  denotes the contemporaneous effects.  Matrices Sl ’s with nonzero orders are 

used to obtain the lag l effects among ROIs. The matrix 1S  is defined as 

                                         1

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

S

 
 
 
 
 
 
  

,                                                           (4) 

and in general, 
 

S
l

l ijs 
 

 with l greater than or equal to 2 ( 2l  ) is defined as 

                                          
  1 if ,

0 otherwise.

l

ij

j i l
s

 
 


 (5) 
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Pre-multiplying Γ  by Sl
shifts down the rows of Γ  by l rows and defines the matrix of the 

effects of latent variables at time t - l on latent variables at time t. The generic structural model of 

Dynamic GSCANO is now stated as  

               

0 0 0 1 0 1

diag diag ,Γ = S ΓB S UD S u ΓM S γ Γ Q + E
L L L P L J

p j S

l l l l l p l l j l

l l l p l j     

   
          (6) 

where  diag u p  denotes a diagonal matrix with elements of u p as the diagonal entries, B l
 is a J 

by J coefficient matrix for the direct effects between ROIs, Dl
is a P by J coefficient matrix for 

the direct effects of stimuli on ROIs,  
M

p

l
is a J by J matrix of coefficients for the modulating 

effects of stimuli on connections between ROIs (interactions between stimuli and ROIs), and 

 
Q

i

l
’s are J by J matrices of coefficients representing the modulating effects of ROIs on 

connections between ROIs (interactions between ROIs). All of these effects include both 

contemporaneous ( 0l  ) and time lagged ( 0l  ) effects. The matrix 
 

E
S

 is a T by J matrix of 

error terms in the structural model, and L, the upper bound for l, indicates the maximum possible 

lags. 

2.2. Parameter Estimation 

We first define criteria for parameter estimation and then present the estimation algorithm. 

The criterion for the measurement model is given by 

 
  2

1 1

,γ Z w
J K

M

i ki ki

i k


 

    (7) 
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which is, as mentioned above, minimized with respect to kiw  and iγ  subject to the 

standardization constraint 
1

1i i
T

 γ γ . Here  
2

trA A A  for an arbitrary matrix A. The 

minimization criterion for the structural model is given by   

    
2

E
S S

   , (8) 

where
         

0 0 0 1 0 1

diag diag
L L L P L J

S p i

l l l l l p l l i l

l l l p l i     

          E Γ S ΓB S UD S u ΓM S γ Γ Q . The 

global minimization criterion is now stated as a weighted sum of the two criteria, 
 M

 and
 S

 , 

as follows: 

      
1

M S
      , (9)                                                          

where  (0≤ ≤1) regulates the importance of the two sub-models in Dynamic GSCANO. A 

larger value of   implies that the fit of the measurement model is more important than that of 

the structural model, while a smaller value of   indicates the opposite. We normally set 0.5   

(Hwang, et al., 2013).  

We develop an alternating least squares (ALS; De Leeuw et al., 1976) algorithm to 

minimize (9). We outline three essential steps of the ALS algorithm below and leave the detailed 

updating formulas in the technical appendix. The ALS algorithm repeats the following three 

steps until convergence. 

Step I. Update wki  to minimize (9) withB l
’s, Dl

’s,  
M

p

l
’s,  

Q
j

l
’s, Γ , and Zki ’s assumed 

temporarily fixed. 
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Step II. Update B l
’s, Dl

’s,  
M

p

l
’s, and  

Q
j

l
’s minimize (9) with Γ , U, and Zki ’s assumed 

temporarily fixed.  

Step III. Update γi  ( 1, ,i J ) sequentially to minimize (9) subject to the standardization 

constraint with B l
’s, Dl

’s,  
M

p

l
’s,  

Q
j

l
’s, U and Zki ’s assumed temporarily fixed. 

Closed form solutions can be obtained in the first two steps, whereas the third step is solved with 

a numerical routine as discussed in the appendix.  

The above algorithm is monotonically convergent, since the same criterion (9) is 

consistently minimized in each step. Note, however, that the monotonic convergence property 

does not guarantee that the convergence point is what we desire to find. In order to ensure an 

optimal solution, we may start the algorithm with several different initial estimates, and choose 

the ones associated with the lowest value of the minimization criterion.    

2.3. Additional considerations 

2.3.1  Goodness of Fit (GOF) Indices 

        In Dynamic GSCANO, the overall fit is measured by the predictability of a given model, 

stated as 

  

 

   

2 2* *

1 1

2 2 2 2

1 1

ˆ ˆ1 ˆ
FIT = 1 1

1 1

η X h γ Z w

η γ η γ

K J

i ki ki

k i

J J

i i

i i

K K

 


   

 

 

   

  

   



 
 , (10) 

where *
ĥ , ŵkj  and ̂  are the estimates of *

h , wki  , and  , respectively. The FIT index (Hwang 
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& Takane, 2004) is a natural extension of the squared multiple correlation coefficients ( 2R ) in 

multiple regression analysis to Dynamic GSCANO. It measures the proportion of the variance in 

criterion variables that can be explained by the predictor variables. The value of FIT ranges 

between 0 and 1. In general, the larger the FIT value, the better is the agreement between the 

observed data (the BOLD signals) and the hypothesized model.  

However, the FIT is affected by model complexity. To penalize the FIT by the number of 

free parameters used in the model, we employ an alternative measure of fit called adjusted 

goodness of fit (AFIT; Hwang, DeSarbo, & Takane, 2007), which is defined as  

   0

1

AFIT = 1 1 FIT ,
n

n
   (11) 

where 
0

1

J

i

i

n TK v


   is the degree of freedom of the null model (i.e., the model with no explicit 

structural relations among ROIs) with 
iv  denoting the number of voxels in the i-th ROI, and 

where 1 0n n r   is the degree of freedom for the hypothesized model with r indicating the 

number of free parameters in the model. The AFIT represents a tradeoff between the model fit 

and model complexity.  It tends to favor simpler models over complex ones, given a similar level 

of model fit.  

Note that various local fit indices can also be defined at different levels (Hwang & Takane, 

2014, Section 2.9.2). For example, we may take the ratio of the first terms in the numerator and 

the denominator of the fraction in (10) to indicate the goodness of fit (GOF) of the structural 

model, and the ratio of the second terms in (10) for the GOF of the measurement model. The 

former can be further broken down into the GOF of each structural equation, while the latter into 

subject-wise GOF indices. 
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2.3.2   The Bootstrap Method 

The Bootstrap method (Efron, 1982) is utilized to assess the reliability of parameter 

estimates in Dynamic GSCANO. The entire BOLD signal record of a subject serves as a 

sampling unit. The units are re-sampled from the original data set K times with replacement, 

which constitutes one bootstrap sample. Each bootstrap sample is analyzed by Dynamic 

GSCANO to obtain parameters estimates. This is repeated many times (say, 100 times) to derive 

empirical distributions of the parameter estimates. We may then calculate means and standard 

deviations of the parameter estimates. The former provides information about the estimation bias 

defined as the difference between the estimates from the original data and the mean of the 

estimates from bootstrap samples (Efron & Tibshirani, 1994, Chapter 10). The latter provides 

information regarding the reliability of the estimates. To assess the significance of the parameter 

estimates, in a two-tailed test, 95% confidence intervals may be constructed by taking 2.5% and 

97.5% percentile points of the distributions. In a one-tailed test, we simply replace the percentile 

points from 2.5% or 97.5% to 5% or 95%. If these intervals do not cover 0, the corresponding 

estimates are regarded statistically significant at the 5% significance level. 

A similar bootstrap method may also be used to test the significance of any contrasts 

between the parameter estimates. Suppose, for example, that we are interested in testing whether 

the influence of ROI i  on ROI j  is significantly larger than the other way around. In this case, 

we can form a contrast, 0, 0,ij jib b , whose distributional properties can be obtained in a manner 

similar to individual parameter estimates.  

2.3.3   Multiple-Group Dynamic GSCANO 
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            Subjects may have a group structure. These groups may be intact groups such as males 

and females, or experimentally manipulated treatment groups. Repeated measurement designs 

may also be considered creating group like structures. In such situations, we may wish to analyze 

both common and different aspects of the groups. It is not too difficult to estimate parameters in 

Dynamic GSCANO (Γ, B l
’s, Dl

’s,  
M

p

l
’s, and  

Q
j

l
’s ) separately for different groups (to 

capture distinct aspects of the groups), while optionally keeping some of them equal across the 

groups (to capture their common aspects). We demonstrate the feasibility of this kind of 

multiple-group analysis in the second real example in Section 4. 

3. Simulation Studies: Recovery of Parameters 

We report two of the several Monte Carlo studies conducted (Zhou, 2013). These studies 

show that Dynamic GSCANO works the way it is supposed to. Specifically, we investigate the 

parameter recovery capability of Dynamic GSCANO as a function of the number of time points 

(T), the number of subjects (K), the number of voxels per ROI (vi), the covariance structure of 

the BOLD signals (
 

Σ
M

kj ), and presence of a stimulus input. Study 1 roughly emulates the second 

real data set with no stimulus effects, while Study 2 the first real data set with a stimulus effect. 

The data generation process is somewhat easier without stimulus effects.  

One may wonder why the size of measurement errors is not among the above list (of 

factors to be examined). In fact, the effects of measurement errors (i.e., 2  in  
Σ

M

kj
, to be 

explained below) were systematically investigated in Zhou (2013). Specifically, the size of 2  

was varied at three different levels, which amounted 53%, 59%, and 65% of the total variations 

in ROIs. We found that the effects of 2  were consistently small for T larger than or equal to 
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100. The recovery rate as measured by the congruence coefficient (to be explained shortly) was 

all greater than .92 for K = 30 and J = 3 examined. We thus concluded that Dynamic GSCANO 

was fairly robust against measurement errors, and the value of 2  was set at one level ( 2  = 0.5) 

throughout the rest of the Monte Carlo studies. 

3.1. Study 1: A SEM with Seven Latent Variables, Different Covariance Structure of 

Measurement Errors and No Stimulus Input 

   In this study, the following structural model was employed:  

 
 

0 1 1

S
  Γ ΓB S ΓB E . (12) 

The matrix 0B  is assumed to be hollow (all diagonal entries are zeroes), and 1B  is assumed to be 

diagonal, which is equivalent to assuming that the lag 1 effect of a ROI is restricted to within 

itself. Furthermore, each column of Γ is constrained to have unit variance. The parameters of 

interest are B0, B1, and 
 

Σ
S

, where 
 

Σ
S

is the covariance matrix among columns of  
E

S
. 

However, it is extremely difficult to directly specify B0 and B1 to generate Γ, which is the key 

step for data generation. Instead, we indirectly specify 0B and B1 by specifying C00 = Cov(Γt) = 

Cov(Γt-1)  where Γt and Γt-1 are the t and (t – 1)-th rows of Γ, respectively. 

            To explain how, we first rewrite (12) as follows: 

 
     

 

1 1

1 1 0 0

1 1 ,

S

S

 
   

 

Γ S ΓB I B E I B

S ΓC E
  (13) 
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where  
1

1 1 0C B I B


   is the matrix of coefficients for the lag 1 autoregressive effects, and 

     
1

0E E I B
S S 
  . Given that 

0B  is hollow, and 
1B  is diagonal, they can be uniquely 

determined by 1C , namely 1

0 1 1

 B I C B  and   
1

1

1 1diag


B C , the latter of which can be 

derived from diag( 0B ) = 0 = I – diag(C1
-1

)B1.  Let  
Σ

S
 denote the covariance matrix of 

 
E

S
. 

The matrix 
 

Σ
S

 can be derived by        0 0Σ I B Σ I B
S S   . With C00 being generated, the 

matrix C1 and  
Σ

S
 in these formulas can be specified by an algorithm (appendix B1). 

          To generate Γ, we apply 

  
1 1 EC

S

t t t     , (14) 

recursively, where  
E

S

t
 denotes the t-th row of ( )S

E . The 0  is sampled from  00,0 CN  and 

then each 
t  is updated by (14) with the value of  

E
S

t
 sampled from

  ,0 Σ
S

tN .  

We then generate Zkj  by  M

kj j j kj
 Z γ c E , where  1, ,c

jj j jvc c


 is a jv -element vector 

of component loadings. The loading vector c j indicates the strength of the relationships between 

the BOLD signals and the corresponding latent variable in this study. Each row of the T by jv  

measurement error matrix  
E

M

kj
 is randomly sampled from  

( , )0 Σ
M

kjN . Finally, Zkj  is column-

wise standardized.  

  In this study, the number of ROIs was set to seven (J = 7) in accordance with the second 

real data set. The number of time points were varied at four levels (T = 50, 100, 200, and 500), 

the number of subjects at two levels (K = 15 and 30), the number of voxels at two levels (vi = 3 
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and 50), and the covariance structure for  
Σ

M

kj
at two levels (ρ = 0 and .9). Other specifications 

and assumed true values of 00C , c j , and  
Σ

M

kj
are given in Appendix (B2). To measure the quality 

of parameter recovery, we used the congruence coefficient.  Let *
h  be the column vector of free 

population path coefficients used to generate the simulation data, and let *
ĥn

 be its estimates from 

the n-th simulated data set. The congruence coefficient is defined as * * * * * *ˆ ˆ ˆ/h h h h h hn n n

    
 

. 

We report the mean value and standard deviation of this coefficient over N simulated samples. 

The mean indicates how well model parameters are recovered on average, while the standard 

deviation indicates how stable the recovery rate is. The mean value of the congruence coefficient 

greater than 0.9 is conventionally regarded as an acceptable level of recovery (Muliak, 1972). 

Table 1 presents a summary of the study. It is observed that there are little effects of K for vi = 3, 

little effects of vi, and little effects of ρ for 100T  . (The parameter recovery is better for 0   

than 0.9   when T is small. However, no significant difference is observed for 100T  .) 

Table 1. Means and standard deviations (SD) of the congruence coefficients for the path 

coefficients.  

 

 

       

 

 

  #voxels 3 3 50 50 

  K 15 30 30 30 

T 
 

0 0 0 0.9 

    50 Mean 0.7669 0.8021 0.6850 0.6244 

  SD   (0.1211)   (0.0894)    (0.2187)   (0.2414) 

  100 Mean 0.9291 0.9308 0.9312 0.9245 

  SD   (0.0250)   (0.0241)   (0.0256)   (0.0309) 

  200 Mean 0.9663 0.9664 0.9658 0.9666 

  SD   (0.0105)   (0.0082)   (0.0093)   (0.0094) 

  500 Mean 0.9812 0.9812 0.9805 0.9803 

  SD   (0.0042)   (0.0038)   (0.0044)   (0.0041) 
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To sum up, the number of time points T plays an important role in determining the quality of 

parameter estimates. As long as the sample size T is no less than 100, the effects of the number 

of subjects between 15 and 30, the number of voxels per ROI between 3 and 50, and the 

covariance structure of  
Σ

M

kj
 are negligible. 

3.2.   Study 2: A SEM with Four Latent Variables and a Stimulus Input  

The second simulation study examines the effect of T on parameter recovery in the presence 

of a stimulus input. In this study, the following structural model was employed: 

 
 

0 1 1Γ ΓB S ΓB UD + E
S

    . (15) 

where U stands for the T-element vector of the stimulus effect. For a specific value of T, U is 

fixed across all simulated data sets. As before, Γ should satisfy the column-wise unit variance 

constraint. The model (15) can be rewritten as 

                          
1 1 1

1 1 0 0 0Γ S ΓB I B UD I B  + E I B
S  

     =   
1 1,U S Γ C + E

S
,  

where  
1

1 0

1

D
C I B

 B

 
  
 

 and      
1

0E E I B
S S 
  . Let C00 = Cov([Ut, Γt-1]), where Ut is the t-

th element of U. The values of 1C  and  
Σ

S
 are specified from C00 with an algorithm (appendix 

B1). Then, the path coefficients can be derived similarly as in Study 1. The matrix of latent 

variables Γ was generated as in (14). In this study, the number of ROIs were set to four (J = 4), 

and the number of stimulus inputs to one (P = 1) in accordance with the real data set 1. The 

number of time points was varied at five levels (T = 25, 50, 100, 200, and 500), and the number 
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of voxels per ROI was set to three in all cases.  Other relevant specifications as well as assumed 

true values of 00C ,  
Σ

S
, c j , and  

Σ
M

kj
in this study are given in Appendix (B3). 

The results are summarized in Table 2. The mean congruence coefficient increases 

monotonically as T increases, while the opposite is true for the standard deviation. Again, as T 

goes beyond 100, the mean congruence coefficient goes above .90. 

Table 2. Means and standard deviations (SD) of the congruence coefficients for the path 

coefficients.  

   T Mean    SD 

  25 0.7925 (0.0820) 

  50 0.8846 (0.0408) 

100 0.9195 (0.0242) 

200 0.9382 (0.0144) 

500 0.9497 (0.0072) 
 

Note that all the structural and measurement errors were assumed to be normally distributed 

throughout our studies. This assumption may be questionable in some empirical settings, and it 

will be interesting to see how the fitting criterion and associated algorithm will react to non-

normally distributed errors. Another limitation to the present simulation study is that we have not 

investigated the robustness of the proposed method against misspecifications of the model. 

Despite these shortcomings, we conclude that the simulation studies are useful to demonstrate 

that Dynamic GSCANO performs reasonably well. 

4.   Applications of Dynamic GSCANO to Real Functional Neuroimaging Data 

4.1.   The Visual Task Data 
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The first example pertains to the “visual task” data reported in Fu et al. (2012), in which a 

group of fourteen subjects viewed a flickering checkerboard. The experiment comprised three 

repetitions of a 20-second fixation and 20-second flickering checkerboard viewing trial, followed 

by another fixation period at the end of the overall experiment. Each of fMRI time series data 

consists of 225 scans (T = 255). The preprocessing of the fMRI data was performed using SPM8 

(Statistical Parametric Mapping; http://www.fil.ucl.ac.uk/spm/), including motion correction, 

normalization of the functional images via normalizing the anatomical image and spatial 

smoothing using 8mm Gaussian kernel. The authors used GLM in SPM to obtain brain regions 

related to the visual task. They found four activated regions (J = 4) which were the left fusiform 

gyrus (FuG_L; 1γ ), the right fusiform gyrus (FuG_R; 2γ ), the left middle occipital gyrus 

(MOG_L; 3γ ), and the right middle occipital gyrus (MOG_R; 4γ ). Each ROI contains 81 voxels. 

There is one stimulus input U  (P = 1), the flickering checker board, as depicted in Figure 1.  

                                                       < Insert Figure 1 here > 

All four ROIs are considered crucial in completing a visual cognitive task (Grill-Spector, 

Kourtzi, & Kanwisher, 2001).  However, the left and right MOGs are regarded as functionally 

distinct from the left and right FuG (Kanwisher et al., 1997; Epstein & Kanwisher, 1998; Epstein, 

Harris, Stanley, & Kanwisher, 1999; Grill-Spector, Kourtzi, & Kanwisher, 2001). It is pointed 

out that MOG_L and MOG_R can be viewed as a general-purpose system for analyzing object 

shapes, whereas FuG_L and FuG_R are more specialized in the recognition of human faces 

(Grill-Spector, Kourtzi, & Kanwisher, 2001). More recently, it is advocated that FuG_L and 

FuG_R are engaged in different stages of face recognition, that is, the signal is first sent from 

MOG_L and MOG_R to FuG_L for identifying face like objects (Meng et al., 2012). Only upon 

http://www.fil.ucl.ac.uk/spm/
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detecting face like signals, they are passed on to FuG_R for further processing. Also, it has been 

noted that the connections from early visual areas (e.g., MOG_L and MOG_R) to higher visual 

areas (e.g., FuG_L and FuG_R) are sensitive to the level of stimulus visibility (Haynes et al., 

2005). This observation is further supported by the finding of Fu et al. (2012) that, when viewing 

a flickering checkerboard, the functional connectivity between MOG (left and right) and FUG 

(left and right) is less stable. 

Dynamic GSCANO with one stimulus input was applied to this data set. The structural 

model can be written as   

  0, 1, 1 0, 0, diagj ij i j i j ij i

i j i j

b b d m
 

    γ γ S γ u u γ  for  j = 1,…, 4,         (16) 

where 0,ijb , 1, jb , 0, jd  and 0,ijm are the coefficients to be estimated. This model includes all 

possible direct and modulating stimulus effects.  

With an Intel 2.50GHz CPU and 8 GB Ram, the average processing time for parameter 

estimation was 90 seconds, which resulted in a total of 2.5 hours to analyze 100 bootstrap 

samples. Note, however, that the entire data set contains over 1 million data points. We obtained 

FIT = 0.750 (with the standard error of 0.021) and AFIT = 0.741 (with the standard error of 

0.022), indicating that the model accounts for approximately three fourths of the variability in 

observed and latent variables. Table 3 gives the estimates of the contemporaneous effects (off-

diagonal) and of the lag 1 autoregressive effects (diagonal), their bootstrap standard errors, and 

the corresponding p-values. The p-value indicates the percentage of bootstrap estimates with the 

same sign as the one obtained from the original data. Therefore, a p-value of less than 0.01 

indicates that an opposite sign has never occurred during the 100 bootstrap replications.  
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Only a few contemporaneous effects among different ROIs are significant, while all lag 1 

autoregressive effects are significant. Table 4 provides the summary statistics for the direct 

stimulus effects. Only the direct effects of the stimulus on MOG_L and MOG_R are significant. 

Table 5 gives the modulating effects of the stimulus. Only the effect on the connection from 

MOG_L to FuG_L is significant. 

Table 3. The estimates of path coefficients (top) among ROIs, their bootstrap standard errors 

(middle), and the p-values (bottom). ROIs in rows exert influence on ROIs in columns. Diagonal 

entries give the lag 1 autoregressive effects. Path coefficients with one asterisk is significant at

0.05  , and those with two asterisks at 0.01  . 

 
FuG_L FuG_R MOG_L MOG_R 

 
-0.777 0.011 0.084 -0.185 

FuG_L (-0.053) (0.092) (0.110) (0.163) 

 
**<0.01 0.64 0.23 0.18 

 
-0.240 -0.726 0.122 -0.281 

FuG_R (0.124) (0.063) (0.150) (0.240) 

 
0.24 **<0.01 0.42 0.42 

 
0.274 0.186 -0.742 0.471 

MOG_L (0.130) (0.199) (0.160) (0.220) 

 
*0.05 0.33 **<0.01 *0.02 

 
-0.089 -0.298 0.762 0.692 

MOG_R (0.183) (0.250) (0.262) (0.200) 

 
0.16 0.44 **0.01 *0.02 

 

Table 4. The estimates of the direct stimulus effects (top), their bootstrap standard errors 

(middle), and the p-values (bottom). Path coefficients with one asterisk are significant at 0.05  , 

and those with two asterisks at 0.01  . 

  
Estimates 

Standard 

Error 
P-value 

U->FuG_L    -0.002 (0.110) 0.55 
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U->FuG_R 0.360 (0.133)  0.10 

U->MOG_L 0.138 (0.106) *0.05 

U->MOG_R 0.055 (0.070) **<0.01 

 

Table 5. The same as in Table 4, but for the modulating effects of stimulus.  A path coefficient 

with two asterisks is significant at 0.01  . 

Stimulus Path Estimates Standard Error P-value 

 

(FuG_L->FuG_R) 0.335 (0.206) 0.21 

U-> (FuG_L->MOG_L) -0.508 (0.225) 0.13 

 

(Fug_L->MOG_R) 0.540 (0.270) 0.20 

 

(FuG_R->FuG_L) 0.365 (0.169) 0.26 

U-> (FuG_R->MOG_L) 0.115 (0.196) 0.33 

 

(Fug_R->MOG_R) 0.036 (0.253) 0.60 

 

(MOG_L->FuG_L) -0.310 (0.180) **<0.01 

U-> (MOG_L->FuG_R) -0.131 (0.170) 0.48 

 

(MOG_L->MOG_R) -0.310 (0.160) 0.11 

 

(MOG_R->FuG_L) 0.490 (0.290) 0.11 

U-> (MOG_R->FuG_R) -0.740 (0.270) 0.14 

 

(MOG_R->MOG_L) 0.360 (0.230) 0.50 
 

Figure 2 displays the model we arrived at based on the present analysis, in which only 

significant connections are retained. Several remarks are in order. First of all, the significant 

bidirectional paths between MOG_L and MOG_R as well as the significant direct effects from 

stimulus to these two ROIs support Grill-Spector et al.’s (2001) contention that both left and 

right MOGs are actively engaged in an early stage of visual task. To better illustrate this point, 

Figure 3 displays the estimated ROI time series. Three-cycle periodic patterns can be clearly 

observed in the derived ROI time series corresponding to the left and right MOGs. Such a pattern 

is closely related to the similar three-cycle periodic pattern of the stimulus curve in Figure 1. 
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< Insert Figures 2 & 3 here > 

    Secondly, the significant one-way connection from MOG_L to FuG_L provides evidence for 

Meng et al. (2012) and Grill-Spector et al. (2001) to the effect that FuG_L is nested in a 

hierarchical network of the visual cognitive system, and receives signals from lower visual 

cortex. Thirdly, the significant modulating effect of stimulus on the connection from MOG_L to 

FUG_L justifies the claim by Haynes et al. (2005) that the level of stimulus strength affects the 

signal transferring from lower visual areas to higher visual areas. Lastly, Dynamic GSCANO 

asserts that under the visual task of the current experimental design, FuG_R is absent from any 

connections with the other ROIs. This may be counterintuitive at the first glance. However, it 

provides the first model-based evidence to Meng et al.’s (2012) finding that FuG_R is 

specialized in face recognitions and only “faces like” signals are sent to FuG_R. Since a 

flickering checkerboard is nothing like faces, it is reasonable not to observe a significant 

connection from FuG_L to FuG_R.     

4.2.   The Working Memory Data 

This study pertains to the working memory task data (Metzak, Riley, Wang, Whitman, 

Ngan, & Woodward, 2011). There are two groups of subjects, the normal control group and the 

schizophrenic group, and each group consisted of fifteen subjects. Each subject completed a 

repeated working memory task to judge whether or not consonants were presented previously. 

During the experimental period, 214 fMRI scans were recorded (T = 214).  SPM99 was used for 

image realignment, normalization into modified Talairach stereotaxic anatomical space, and 

smoothing with a Gaussian kernel (8mm full width at half maximum) to compensate for inter-

subject anatomical differences and optimize the signal to noise ratio. Constrained principal 
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component analysis (CPCA; Takane & Hunter 2001) was first applied to the original BOLD 

signal data, in which a finite impulse response (FIR) model was fitted with stimulus onset times 

as the predictor variables. The predictable portions of the BOLD signal data were then subjected 

to PCA to extract a component representing a major functional network comprising several brain 

regions. The seven clusters of voxels serving as ROIs in the present study were identified based 

on a cut-off value of the highest 5% of the first component loadings. The 7 ROIs are: inferior 

parietal lobule in the left hemisphere (IPL_L; 1γ ; 135 voxels), precentral gyrus in the left 

hemisphere (PreCG_L; 2γ ; 144 voxels), cerebellum in the left hemisphere (CL_L; 3γ ; 40 

voxels), cerebellum in the right hemisphere (CL_R; 4γ ; 157 voxels), inferior parietal lobule in 

the right hemisphere (IPL_R; 5γ ; 68 voxels), precentral gyrus in the right hemisphere (PreCG_R; 

6γ ; 53 voxels), and supplementary motor area (SMA; 7γ ; 180 voxels). As reported in Metzak et 

al. (2011), all of these ROIs are activated during the working memory task, and there are 

significant discrepancies with respect to the stability of voxel activations between the two groups. 

We therefore decided to first apply multiple-group Dynamic GSCANO with completely separate 

parameters for the two groups, which was essentially the same as separate analyses of the two 

groups. The hypothesized structural model is   

               
           

0, 1, 1

g g g g g g

j ij i j j j

i j

b b


  γ γ S γ e  for  j = 1,…,7  and  g = 1, 2,                 (17) 

where the parenthesized superscript g indexes a group. The g = 1 refers to the normal control 

group, and g = 2 the schizophrenic group. For each g,  
1,

g

jb  indicates the coefficient of the lag 1 

autoregressive effect of the j-th ROI on itself, and  
0,

g

ijb  indicates the coefficient of the 
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contemporaneous effect of ROI i on ROI j. The model hypothesizes that ROIs are fully 

bidirectionally connected, and that the only autoregressive effects are those from a ROI on itself. 

This kind of fully connected path model is prevalent in functional neuroimaging studies (Friston, 

Harrison, & Penny, 2003). It took 340 seconds for parameter estimation in one bootstrap sample 

and a total of 9 hours to analyze 100 bootstrap samples. Note, however, that the whole data set 

contains nearly 5 million data points. The overall goodness of fit indices for both groups 

combined turn out to be FIT = 0.863 (with the standard error of 0.007), and AFIT = 0.861

(with the standard error of 0.007), indicating about 86% of the total variance is explained by the 

model.  

The time series plots of the estimated latent variables for both groups are presented in 

Figure 4. It can be observed that the time series plots for the normal control group are generally 

smoother and display a clearer trend in comparison with those for the schizophrenic group which 

are more volatile. In the normal control group, the activations are low at the beginning, then go 

up and then down, and go up again toward the end across all ROIs, while no such clear patterns 

can be observed in the schizophrenic group. This is consistent with the findings of Metzak et al. 

(2011).   

< Insert Figure 4 here > 

Tables 6a and 6b display the estimates of path coefficients, their bootstrap standard errors, 

and the p-values of the path coefficients obtained for the normal group (a) and the schizophrenic 

group (b). The diagonal cells of the tables indicate the lag 1 autoregressive effects, whereas the 

off-diagonal elements the contemporaneous effects. The ROIs in the rows are used as predictor 

variables to predict the ROIs in the columns. The standard errors of the path coefficients and the 
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p-values were calculated from 100 bootstrap samples. All contemporaneous effects are 

significant one way or the other (either positively or negatively). This means that all the ROIs are 

significantly bi-directionally connected. This is consistent with Metzak et al.’s (2011) remark 

that all seven ROIs are involved in the working memory task for both groups. On the other hand, 

none of the autoregressive effects are significant in either group. 

Table 6a. The estimates of path coefficients among ROIs (top), their bootstrap standard errors 

(middle), and the p-values (bottom) for the normal control group obtained from the working 

memory data. ROIs in rows exert influence on ROIs in columns. Diagonal entries give the lag 1 

autoregressive effects. Significant path coefficients are indicated by one asterisk for 0.05  , 

and by two asterisks for 0.01  . 

 

 
IPL_L PreCG_L CL_L CL_R IPL_R PreCG_R SMA 

IPL_L 0.007 0.278 -0.306 0.379 -1.044 1.301 -0.411 

 
(0.008) (0.106) (0.119) (0.118) (0.431) (0.661) (0.140) 

 
0.17 **<0.01 **<0.01 **<0.01 **<0.01 **<0.01 **<0.01 

PreCG_L 4.071 -0.001 1.104 -1.427 3.944 -5.247 1.526 

 
(1.484) (0.002) (0.150) (0.315) (1.494) (3.169) (0.334) 

 
**<0,01 0.34 **<0.01 **<0.01 **<0.01 **<0.01 **<0.01 

CL_L -3.731 0.920 0.000 1.307 -3.648 4.738 -1.409 

 
(1.405) (0.117) (0.002) (0.310) (1.546) (2.780) (0.365) 

 
**<0.01 **<0.01 0.51 **<0.01 **<0.01 **<0.01 **<0.01 

CL_R 2.889 -0.743 0.817 -0.001 2.800 -3.623 1.082 

 
(0.972) (0.208) (0.240) (0.002) (1.012) (1.805) (0.174) 

 
**<0.01 **<0.01 **<0.01 0.24 **<0.01 **<0.01 **<0.01 

IPL_R -1.139 0.290 -0.321 0.394 0.005 1.358 -0.427 

 
(0.585) (0.116) (0.132) (0.122) (0.010) (0.710) (0.149) 

 
**<0.01 **<0.01 **<0.01 **<0.01 0.26 **<0.01 **<0.01 

PreCG_R 0.955 -0.267 0.287 -0.358 0.930 0.003 0.380 

 
(0.477) (0.174) (0.170) (0.225) (0.491) (0.016) (0.211) 

 
**<0.01 **<0.01 **<0.01 **<0.01 **<0.01 0.53 **<0.01 

SMA -2.752 0.697 -0.774 0.947 -2.661 3.407 0.001 

 
(1.112) (0.206) (0.273) (0.155) (1.109) (1.788) (0.001) 

 
**<0.01 **<0.01 **<0.01 **<0.01 **<0.01 **<0.01 0.20 
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Table 6b. The same as in Table 6a, but for the Schizophrenic Group. 

 

 

 
IPL_L PreCG_L CL_L CL_R IPL_R PreCG_R SMA 

IPL_L 0.002 0.636 -1.819 -1.916 2.619 -1.762 -1.128 

 
(0.002) (0.126) (0.842) (0.589) (1.594) (0.824) (0.262) 

 
0.22 **<0.01 **<0.01 **<0.01 **<0.01 **<0.01 **<0.01 

PreCG_L 1.646 -0.002 2.979 3.065 -4.029 2.846 1.811 

 
(0.404) (0.002) (1.470) (0.926) (2.049) (1.379) (0.440) 

 
**<0.01 0.11 **<0.01 **<0.01 **<0.01 **<0.01 **<0.01 

CL_L -0.638 0.406 0.001 -1.227 1.647 -1.032 -0.699 

 
(0.232) (0.178) (0.005) (0.600) (1.140) (0.407) (0.249) 

 
**<0.01 **<0.01 0.46 **<0.01 **<0.01 **<0.01 **<0.01 

CL_R -0.576 0.355 -1.048 0.001 1.438 -1.008 -0.625 

 
(0.199) (0.103) (0.592) (0.004) (0.829) (0.555) (0.179) 

 
**<0.01 **<0.01 **<0.01 0.37 **<0.01 **<0.01 **<0.01 

IPL_R 0.499 -0.297 0.899 0.916 0.0126 0.899 0.544 

 
(0.275) (0.119) (0.630) (0.466) (0.016) (0.719) (0.264) 

 
**<0.01 **<0.01 **<0.01 **<0.01 0.15 **<0.01 **<0.01 

PreCG_R -0.660 0.413 -1.102 -1.270 1.780 0.007 -0.732 

 
(0.236) (0.151) (0.403) (0.652) (1.463) (0.008) (0.290) 

 
**<0.01 **<0.01 **<0.01 **<0.01 **<0.01 0.09 **<0.01 

SMA -0.946 0.585 -1.656 -1.746 2.400 -1.626 0.000 

 
(0.290) (0.146) (0.714) (0.567) (1.497) (0.785) (0.002) 

 
**<0.01 **<0.01 **<0.01 **<0.01 **<0.01 **<0.01 0.44 

 

It is also of interest to see asymmetry between  
0,

g

ijb  and  
0,

g

jib . Table 7 gives the 

directionality tests for the two groups. Each cell in these tables indicates the difference between 

the effect of a ROI in a row on a ROI in a column and its reverse. Thus, for example, the value of 

3.793 in the top row of cell (1, 1) of Table 7 indicates the difference between the effect of 

PreCG_L on IPL_L and that of IPL_L on PreCG_L. The corresponding p-value indicates the 

relative frequency with which the former was smaller than the latter in the 100 bootstrap samples. 

The p-value of 0 shows that this never happened, indicating that the influence of PreCG_L on 

IPL_L is significantly larger than the other way round, and such asymmetry is likely to be stable 
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within the normal control group. Similarly, the negative effect of CL_L on IPL_L is significantly 

larger than the other way round. 

Table 7a. The estimates of the differences between the path coefficients in one direction and the 

opposite direction (top), their bootstrap standard errors (middle), and the p-values (bottom) for 

the normal control group in working memory data. Significant asymmetric relationships are 

indicated by one asterisk for 0.05  , and by two asterisks for 0.01  . 

 

 

IPL_L 

 

PreCG_L CL_L CL_R IPL_R PreCG_R 

 
3.793 

     
PreCG_L (1.578) 

     

 
**<0.01 

     

 
-3.426 -0.184 

    
CL_L (1.511) (0.265) 

    

 
**<0.01 0.22 

    

 
2.510 0.684 -0.490 

   
CL_R (1.077) (0.514) (0.539) 

   

 
**<0.01 0.08 0.15 

   

 
-0.094 -3.654 3.327 -2.406 

  
IPL__R (0.964) (1.597) (1.663) (1.123) 

  

 
0.47 **<0.01 **<0.01 **<0.01 

  

 
-0.346 4.981 -4.452 3.265 -0.428 

 
PreCG_R (1.085) (2.300) (2.915) (1.981) (1.142) 

 

 
0.41 **<0.01 **<0.01 *0.02 0.38 

 

 
-2.341 -0.829 0.635 -0.135 -2.234 3.028 

SMA (1.235) (0.531) (0.626) (0.327) (1.241) (1.953) 

 **<0.01 0.07 0.15 0.36 **<0.01 0.02 
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Table 7b. The same as in Table 7a, but for the Schizophrenic Group. 
 

 
 

IPL_L 

 

PreCG_L CL_L CL_R IPL_R PreCG_R 

 1.011      

PreCG_L (0.524)      

 **<0.01      

 1.180 2.573     

CL_L (1.046) (1.619)     

 0.10 **0.01     

 1.340 2.710 0.180    

CL_R (0.775) (1.024) (1.138)    

 *0.02 **<0.01 0.39    

 2.120 3.733 0.748 0.522   

IPL__R (1.105) (2.150) (1.640) (1.252)   

 *0.03 **<0.01 0.30 0.36   

 1.102 2.433 0.069 0.262 0.884  

PreCG_R (1.038) (1.212) (0.790) (1.146) (0.977)  

 0.08 **<0.01 0.48 0.39 0.30  

 0.182 1.226 0.957 1.122 1.858 0.894 

SMA (0.539) (0.579) (0.946) (0.537) (1.717) (1.048) 

 0.32 **0.01 0.14 *0.03 0.06 0.20 

 

There were, in total, 12 significantly asymmetric relationships in the normal groups, and 9 

in the schizophrenic group. Unfortunately, empirical implication of these findings is yet to be 

investigated because there is little established evidence regarding the directionality among these 

ROIs in the working memory task.  

By looking at Figure 4 more closely, it may be noticed that for the 4th ROI, namely CL_R, 

the activation patterns are quite similar across the two groups. This is rather unique in the sense 

that all other ROIs show distinct intergroup activation patterns. This naturally leads to the 

question that the activation of CL_R could be regarded homogeneous across the groups. To 

answer this question, another analysis was conducted in which both groups were analyzed 

simultaneously under the restriction that 
   1 2

4 4γ γ . The global goodness of fit indices turned out 
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to be FIT 0.860 with the standard error of 0.007 computed based on 100 bootstrap data sets, 

and AFIT 0.859  with the standard error of 0.007. These values are all only negligibly smaller 

than those obtained in the previous analysis, indicating that equating activations in CL_R across 

the two groups is at least not harmful. We have also found that the estimated ROI time series are 

essentially the same as in the previous study except that the activations on CL_R are now 

identical across the groups. The evidence above shows that the activations of CL_R is virtually 

identical across two groups, indicating CL_R is relatively unaffected by the disease.  

5. Summary and Discussion 

     We proposed Dynamic GSCANO as a SEM approach to analyzing multiple-subject 

effective connectivity. Dynamic GSCANO combines multiple-set canonical correlation analysis 

with a multivariate autoregressive model to deal with time series data. It is capable of analyzing 

both contemporaneous and time lagged effects of ROIs as well as direct and modulating effects 

of stimuli. These effects can also be analyzed by euSEM (Gates, et al., 2011) and dynamic 

GSCA (Jung et al., 2012). However, Dynamic GSCANO is unique in several respects. It is one 

of the first SEM-based methods for analyzing effective connectivity of multiple subjects 

simultaneously. The proposed method uses GCANO as the measurement model to relate 

observed fMRI data to latent variables in such a way that the latent variables capture the most 

representative activations in the ROIs across subjects. As argued earlier, GCANO is robust 

against outlying subjects. Such individuals can be easily detected by the local fit indices 

discussed at the end of Section 2.3.1. The directional associations among the extracted latent 

variables are captured by the structural model, which is essentially a hypothesized vector 

(multivariate) autoregressive time series model. Furthermore, the structural model in Dynamic 
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GSCANO includes one extra term that is not subsumed by euSEM or dynamic GSCA, namely, 

the latent interactions among ROIs.  

We demonstrated the usefulness of Dynamic GSCANO with simulated and empirical data 

sets. In the simulation studies, we found that the number of time points (T) was the key factor in 

determining the parameter recovery capability of Dynamic GSCANO.  For 100T   or greater, 

the parameter recovery was good to excellent (i.e., over 90% in the congruence coefficient 

between parameters and their estimates) and was robust against a variety of factors such as the 

size of measurement errors, the covariance structure of the measurement errors in the BOLD 

signals, and the presence of a stimulus input. Furthermore, we showed the usefulness of 

Dynamic GSCANO in empirical research involving multiple subjects, who may all be in one 

group or in different groups. The numerically stable algorithm developed for Dynamic GSCANO 

could successfully fit a complex structural model with many reciprocal (bidirectional) 

connections among ROIs.  

Dynamic GSCANO can be further extended in a variety of directions to enhance its data 

analytic capability. These include resolving possible heterogeneity among subjects, and dealing 

with endogeneity in the structural model. They are elaborated below.  

At present, we assume that subjects within a group are drawn from a relatively 

homogeneous population, which favors a unique type of intra-dynamics among ROIs. However, 

sometimes there may be heterogeneous subgroups of subjects within a group or groups, and that 

the intra-dynamics among ROIs differ across these subgroups. Indeed, misleading findings may 

arise if the connectivity maps for individuals vary across samples (Gates & Molenaar, 2012). An 

appealing approach for addressing subject level heterogeneity is to combine Dynamic GSCANO 
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with fuzzy clusterwise linear regression (FCR; Hathaway & Bezdek, 1993) in a unified 

framework, which accommodates both the clustering of subjects into heterogeneous subgroups 

and the estimation of clusterwise path coefficients.  

Another possible extension is to deal with the endogeneity problem. Endogeneity pertains to 

the fact that, in the structural model, there are non-trivial correlations between the predictor 

variables Γt and the error terms Et
(S)

 (Lütkepohl, 2007). Ordinary least squares estimates of 

parameters could be biased in such situations (Hayashi, 2000). However, the endogeneity 

problem is unavoidable because of the multiple autoregressive time series nature of the structural 

model (Lütkepohl, 2007). Indeed, the endogeneity issue exists not only in Dynamic GSCANO 

but also in euSEM and dynamic GSCA. One possible way to reduce the influence of endogeneity 

is to employ instrumental variable estimation (Hayashi, 2000; Bowden & Turkington, 1990; 

Greene, 2011). This means finding a multiple time series record W  which is significantly 

correlated with Γ and yet exhibits no correlations with
 

E
S

. Once W  is found, we pre-multiply 

both sides of (6) by WP , the orthogonal projector onto the linear subspace spanned by the 

columns of W . The above approach has been occasionally criticized as easier said than done, 

since it is not easy to find suitable instrumental variables to be used in practice (Baum, 2008; 

Berkowitz, Caner & Fang, 2012). Nonetheless, it is worthwhile investigating its feasibility with 

Dynamic GSCANO.  

We have written a MATLAB program for Dynamic GSCANO to produce the results 

reported in this paper (available upon request). However, this program is not very user-friendly. 

We realize the importance to develop a general-purpose program for Dynamic GSCANO with 

interactive input/output features and a graphical interface. Future research on extensions of 
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Dynamic GSCANO will further enhance its applicability in the investigation of neuronal 

pathways in the human brain. 

Appendices 

Appendix A. The alternating least squares (ALS) algorithm for Dynamic GSCANO 

   We provide derivations of the three steps in the parameter estimation algorithm outlined 

in Section 2.2. Two linear algebra operations are particularly useful in developing updating 

formulas: the vectorization operator, vec, and the Kronecker product,  . The vec operator forms 

a super-vector by stacking the columns of a given matrix. The Kronecker product of two 

matrices A and B, A B , is defined as A B Bija     , where A ija    .  

  In step I, 
kiw is related to φ

(M)
 only. Hence, it suffices to minimize (7). Such a

kiw can be 

obtained by  
1

ŵ Z Z Z γki ki ki ki i


  .  

  In step II, B l ’s, Dl ’s, 
 

M
p

l ’s, and 
 

Q
j

l are related to φ
(S)

 only. Hence, it suffices to 

minimize (8), which can be rewritten as  

                                                  
  2

η Xh
S

    ,                                                                       (A1) 

where X = [X1, X2, X3, X4], in which  

                                                            1 0 , ,X I S Γ I S ΓJ J L   , 

                                                            2 0 , ,X I S U I S UJ J L   , 

                                                     3 0 1diag , , diagX I S u Γ I S u ΓJ J L P     , 
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                                         4X     0 1diag , , diagI S γ Γ I S γ ΓJ J L J    ,  

and   

                  1 1

0 0 0 0vec , , , vec , , , vec , , vec , ,h B B D D M M Q Q
P J

L L L L

            
 

， .             

Let *
h  be the vector constructed from h by eliminating all zero entries, and let *

X  be the 

matrix formed from X  by eliminating the corresponding columns. One may rewrite (A1) further 

as  

                                                              2
* *

η X h
S

   .                                                      (A2) 

The estimates of 
*

h  is given by  
1

* * * *ĥ  = X X X η


   from which the estimate of h can be 

obtained by adding back the zeroes where appropriate.   

   In step III, for a specific j, one can rewrite (7) as  

                                                      2

γ Z
M M

j j j jC    ,                                               (A3) 

where 
1

1
,ki ki

K

j

kK 

 Z wZ  and  M

jC  is a constant unrelated to jγ . Furthermore, (8) can be 

rewritten as  

                                                   
         

2

1 2 3 4

1

γ Y Y Y Y
J

S i i i i

i

i




     ，                                (A4) 
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where ,Bl l hib    , ,1 ,,D = d dl l l J
  ， ,    

,M
p p

l l him 
 

,    
,Q

j j

l l hiq 
 

, and 
 

1Y
i

 through 
 
4Y

i
 

are given by 

                                                                , ,

1 1 1 
i i j i j

j Y Π γ  

with  ,

1 ,

0

Π S
L

i j

l ji l

l

b


  and  
 ,

1 ,

0

S
L

i j

l hi l h

l h j

b 
 

  , 

                                                             
     , ,

2 2 2

i i j i j

j Y  = Π γ  

with 
 ,

2 0Π
i j

  and 
 ,

2 ,

0

S Ud
L

i j

l l i

l

  , 

                                                                       , ,

3 3 3

i i j i j

j Y Π γ  

with 
     ,

3 ,

0 1

diagΠ S u
L P

i j p

l ji l p

l p

m
 

  and 
     ,

3 ,

0 1

diag
L P

i j p

l hi l p h

l p h j

m
  

  S u γ , and  

                                                                        , ,

4 4 4

i i j i j

j Y Π γ  

with 
         ,

4 , ,

0 1 1

diag diag ,
jL J

i j g j

l l ji g l hi h

l g h j

q q
   

 
  

 
  Π S γ γ  and 

     ,

4 ,

0 1
,

diag
L

i j g

l hi l g h

l g h J
g j h j

q
   

 

   S γ γ . 

Define further 

                                               

 

 

4
,

1

4
,

1

for ,

otherwise,

I Π

Π

Π

j j

J c

c

i

i j

c

c

i j





 


 






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and  

                                                           

 

 

4
,

1

4
,

1

if  ,

otherwise .

Ω

γ

j j

c

c

i

i j

i c

c

i j





 


 
  






 

 The estimates of γ j  is the solution of the optimization problem 

               
1

ˆ argmin 2 with respect to  1,γ γ Π Πγ γ Π γ γj
T

                                             (A5) 

where 

                                          1, , ,Π= I Π ΠJ JK  
  

 
, 

and  

                                          1, , ,Z Ω Ωj JK  
    

 
.  

This optimization problem is so-called Mosier’s oblique Procrustes rotation, which has been 

solved by an algorithm proposed by ten Berge and Nevels (1977). We incorporate their 

algorithm in Dynamic GSCANO to sequentially update γ j  in step III.  

       An initial estimate of Γ is needed before getting into the iterative steps. It may be generated 

randomly or rationally. The latter can be obtained by applying GCANO to Zkj (k = 1, …, K) for 

each ROI (j = 1, …, J), temporarily ignoring the structural model. Each problem reduces to an 

eigen-decomposition of the sum of orthogonal projectors defined by Zki  over k (Gifi, 1991). 
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Appendix B. Assumed values of parameters in the model in Monte Carlo studies 

(B1) Generation of 00C , C1 and 
 

Σ
S

 

In both simulation studies, 00C  was generated as K K where K is a square matrix of the 

same size as 00C . The entries of K were independently sampled from the standard normal 

distribution. Each column of K  was then normalized before K K was taken.   

For 1C and 
 

Σ
S

, we first decompose 00C  as R VR (R non-singular and V diagonal). We 

then define  01 1C t tE 
    as

1/2 1/2R V QV R , where Q has the effect of shrinking the 

covariances in C00. We then obtain 
1

1 00 01C C C
   (C1 being the matrix of regression coefficients of 

Γt onto Γt-1; Note that C11 = E(Γt-1΄Γt-1) = C00.), and 
  1

00 01 00 01Σ C C C C
S    (

 
Σ

S
 being the error 

covariance matrix in the regression of Γt onto Γt-1). In study 1, we define 00C R VR  as the 

singular value decomposition and  
1/2

1-0.5*Q= I VK


. For study 2, we specify 00C R VR  as 

the Cholesky decomposition ( R  upper triangular and V = IK ) and Q = diag([0.5, -0.6, 0.6, -0.7, 

0.7]), from which the stimulus ut  is constructed as an univariate time series and t  as a multiple 

time series. This allows the stimulus record U generated and then fixed across different 

simulated data sets prior to the generation of  . In principle, Q could be any non-singular 

symmetric matrix with eigen-values strictly between -1 and 1.  By knowledge of time series 

analysis (Lütkepohl, 2007),    
1 1

0

C Σ C
Si i

t t

i

E




   . Under the above specifications, simple 
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calculation reveals that        1/2 2 2 1/2

0

R V Q I Q V R
i

t t K

i

E




  
      

  
 . Notice that 

2

0

Q
i

i





 =

 
1

2
I QK



 , leading to   00R VR Ct tE      . 

(B2) Study 1: 

The generated values of 00C  were given as follows:   

 00

1 0.0021 0.2133 0.0120 0.0411 0.00

0.0021 1 0.0091 0.1483 0.0189

0.2133 0.0091 1 0.0295 0.2742

0.012 0.1483 0.0295 1 0.1119

0.0411 0.0189 0.2742 0.1119 1

0.0028 0.044 0.0431 0.2132 0.1002

0.0708 0.0339 0.1584 0.0203 0.1813

 

  









C

28 0.0708

0.044 0.0339

0.0431 0.1584

0.2132 0.0203

0.1002 0.1813

1 0.0786

0.0786 1

 
 
 
 
 

 
 
 
 
 
 

 ,  

         The covariance matrix of the measurement error (  
Σ

M

kj
) was postulated as

  
Σ

M

kj
= 2 I3 for 

vi = 3, and  

49

2

49

1

1

Σ
M

kj

 






 
 
 
 
 
 

for
 50jv  , where  is varied at two levels, {0, 0.9}. 

In all cases, 2 is set to 0.5 as in Jung et al. (2012). The case of ρ = 0 above is equivalent to  
Σ

M

kj

= 2 I50, while 0.9  assumes that there are excess correlations among voxels left unaccounted 

for by jγ . We further prescribed c j = [0.7, 0.8, 0.9] for vi = 3, and for 50jv  , 

 0.7, 0.7041, 0.7082, ... , 0.9c j
 , a 50-element vector with elements equally spaced between 

0.7 and 0.9. For each condition, 100 data sets were generated, and each data set was analyzed by 

Dynamic GSCANO. 
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(B3)  Study 2: 

 In this study, the generated values of 00C  were given as:  

 00

1 0.0907 0.1314 0.0340 0.1711

0.0907 1 0.2058 0.0346 0.2177

0.1314 0.2058 1 0.1876 0.1553

0.0340 0.0346 0.1876 1 0.0805

0.1711 0.2177 0.1553 0.0805 1

   
 
  
 
   
 
  
   

C  ,   

           For each level of T, one copy of U was generated recursively as 1U 0.5Ut t t   , where 

Ut
denotes the t-th element of the vector U and the measurement error t  is sampled from 

 0, 0.75N . Once U was generated, we fixed it across all simulation data sets within the same T.  

Finally, the BOLD signal data were generated, using  0.7, 0.8, 0.9c j   and   2

3

M

kj Σ I . 
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Figure 1. The time series plot of the stimulus input (U) in the first empirical data set: The raw 

signal (the upper panel) and its impact on dynamics of fMRI obtained by convoluting the raw 

signal with the hemodynamic response function (the bottom panel). 
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Figure 2. The significant connections found by Dynamic GSCANO for the first empirical data 

set. 
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Figure 3. The time series plots of the most representative activations at the four ROIs derived 

from the first empirical data set. 
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Figure 4. The time series plots of the most representative activations at the seven ROIs extracted 

from the second empirical data set. The normal control group is in the left column, and the 

schizophrenia group in the right column. The ROIs are, from the top to the bottom, IPL_L, 

PreCG_L, CL_L, CL_R, IPL_R, PreCG_R and SMA. 

 

 

 

 


