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Abstract With the advent of consistent partial least squares (PLSc), an in-
terest has surged in comparing the quality of various estimation methods in
structural equation models. Of particular interest are, beside PLSc, Bentler’s
non-iterative confirmatory factor analysis, Hägglund’s instrumental variable
(IV) estimation method, and Ihara-Kano’s non-iterative uniqueness estima-
tion method. All of these methods yield consistent estimates of parameters in
measurement models (factor loadings and unique variances), but require addi-
tional steps to estimate parameters in structural models (covariances among
latent variables (LVs) and path coefficients). These additional steps typically
involve calculating LV scores, either correlating them or applying regression
analysis, and correcting possible “biases” incurred by the use of LV scores as
proxies of true LVs. In this paper, we conduct a Monte Carlo study to evaluate
parameter recovery capabilities of the above LV extraction methods in con-
junction with subsequent LV score construction and bias correction methods.
We also compare these methods against more conventional estimation meth-
ods, such as the full least squares and maximum likelihood methods, that
estimate parameters in both measurement and structural models simultane-
ously. In addition, we examine three methods of estimating standard errors
(SEs) of estimated parameters from a single data set, the bootstrap method,
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ordinary least squares (OLS) regression, and the inverse Hessian method. The
SEs are important in assessing the reliability of parameter estimates, and in
testing their significance. It was found that Hägglund’s method used to ex-
tract one LV at a time from each block of observed variables, combined with
Croon’s bias correction method, worked best in both parameter recovery and
resistance to improper solutions, and that the bootstrap method provided the
most accurate estimates of SEs.

Keywords Bentler’s non-iterative confirmatory factor analysis · Hägglund’s
instrumental variable (IV) estimation method · Ihara-Kano’s non-iterative
uniqueness estimation method · Latent variable (LV) scores · Croon’s bias
correction method · Skrondal-Laake’s method · Consistent partial least
squares (PLSc) · Blockwise and full least squares and maximum likelihood
methods · Bollen’s two-stage least squares (2SLS) method · The bootstrap
method · Ordinary least squares (OLS) · The inverse Hessian method
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1 Introduction

Structural equation models (SEMs) provide useful analytic tools for data aris-
ing from research in many scientific disciplines by allowing statistical evalu-
ations of a priori hypothesized relationships among observed variables. They
are currently very popular in psychology, education, medicine, etc., and many
other natural and social sciences. A wide variety of methods have been devel-
oped for estimating parameters in structural equation models (SEMs). This
paper addresses the question of how the different methods of estimation com-
pare with each other in their ability to recover parameters in SEMs.

Our initial interest in this problem has been inspired by the recent devel-
opment of consistent partial least squares (PLSc; Dijkstra and Shermelleh-
Engel, 2014). Specifically, we were interested in finding out how well this
newly proposed method performed relative to more conventional estimation
methods that are based on covariance structure analysis. These methods in-
clude Bentler’s (1982) non-iterative confirmatory factor analysis, Hägglund’s
(1982) instrumental variable (IV) estimation method, Ihara-Kano’s (1986)
non-iterative uniqueness estimation method, and blockwise unweighted least
squares (ULS) and maximum likelihood (ML) methods. Like PLSc, all of these
methods require additional steps. After factor loadings and unique variances
(parameters in measurement models) are estimated by these methods, latent
variable (LV) scores are calculated, which are then used to estimate covariances
(or correlations) and/or path coefficients among LVs (parameters in structural
models). The estimates of structural parameters thus obtained are, however,
often “biased,” where the word “bias” means the difference between estimates
of structural parameters calculated from LV scores and those for true LVs.
Specifically, let ti (i = 1, · · · ,m) indicate the random variable representing
the LV score for the ith LV denoted by θi. A bias in covariance between LVs
arises when the covariance between ti and tj is not equal to the covariance
between θi and θj . A bias in path coefficients arises when regression coeffi-
cients calculated from ti’s are not equal to the path coefficients between θi’s.
(Note that this use of “bias” is different from its standard usage in statistics,
where the bias usually means the difference between the expected value of an
estimator and the corresponding population parameter. We will encounter an
instance of the word bias used in the traditional sense in Section 7.3.)

When the bias occurs, it must be corrected. Several methods for correcting
bias have been proposed, including Croon’s method (Croon, 2002), Skrondal-
Laake’s (SL) method (Skrondal and Laake, 2001), and Dijkstra’s PLSc method
(Dijkstra and Schermelleh-Engel, 2014). These methods have been proven use-
ful in obtaining better (less biased) estimates of structural parameters (e.g.,
Lu, Kwan, Thomas, and Cedzynski, 2014). It is interesting to compare the
initial LV extraction methods along with these bias correction methods, and
see which combination of the methods works best in their parameter recovery.
In this paper, we use a Monte Carlo study to achieve this goal.

All the methods mentioned so far are multi-step procedures. These methods
are mostly non-iterative, and computationally simple and quick. There are,
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however, one-step estimation procedures as well, such as full-ULS, full-GLS
(generalized least squares), and full-ML methods, that estimate all parameters
in SEMs simultaneously based on single optimization criteria. These methods
are mostly iterative, involving much heavier computation. However, they are
generally regarded as the state-of-the-art estimation methods in SEMs. Part of
the reason for their popularity is due to the fact that some of these methods
(full-GLS and full-ML) are known to provide estimates of parameters with
better statistical properties. That is, they provide not only consistent but also
asymptotically efficient estimates of parameters under some conditions (e.g.,
correctness of fitted models, a large sample). Apart from difficulties of meeting
these conditions, however, one may wonder to what extent this theoretical
expectation holds in finite samples. This question naturally leads to our second
interest in this paper, that of comparing the multi-step methods against the
one-step methods. Bollen’s (1996) two-stage least squares (2SLS) method is
added to the list of one-step procedures because this method directly obtains
estimates of path coefficients without estimating any other parameters. It is of
interest to see how this method compares against other methods in its ability
to recover parameters.

Standard errors (SEs) are important quantities in assessing the reliability
of estimated parameters, and in testing their significance (Devlieger, Mayer,
and Rosseel, 2015). In our study, we obtain benchmark estimates of SEs from
replicated samples of data generated from a population model. This is not fea-
sible, however, in practical data analytic situations. We examine three meth-
ods of estimating SEs from a single data set, the bootstrap method, ordinary
least squares (OLS) regression, and the inverse Hessian method, to see which
method provides the most accurate estimates of SEs.

This paper is organized as follows. In the next section (Section 2), we lay
out the basic SEMs we assume throughout this paper. We then (Section 3) dis-
cuss methods for initial LV extractions, starting from Bentler’s non-iterative
confirmatory factor analysis (Section 3.1), followed by Hägglund’s instrumen-
tal variable (IV) estimation method (Section 3.2), Ihara-Kano’s non-iterative
uniqueness estimation method (Section 3.3), and other (blockwise) methods
(Section 3.4). As has been noted above, these methods require additional steps
to estimate parameters in structural models, namely calculations of LV scores,
and of covariances and/or regression coefficients among them, and possible
bias corrections. We discuss methods of constructing LV scores in Section 4,
and methods of bias corrections in Section 5. In the latter, we discuss Croon’s
method (Section 5.1), Skrondal-Laake’s method (Section 5.2), and PLSc (Sec-
tion 5.3). In Section 6, we briefly discuss one-step methods, such as the full-
ULS, full-GLS, and full-ML methods (Section 6.1), and Bollen’s 2SLS method
(Section 6.2). These one-step methods serve as benchmark methods against
which the performance of the multi-step methods are assessed. In Section 7,
we present our empirical study. We first describe assumed population param-
eters (Section 7.1), then exact implementations of the estimation methods to
be compared (Section 7.2), performance and other measures of interest used in
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the study (Section 7.3), and report the main results (Section 7.4). We conclude
with a summary of the results (Section 8).

2 The Basic Structural Equation Model

This short section describes the basic SEM we assume throughout this paper.
Let there be m sets of observed variables (indicators), each assumed to be
generated by a single common LV (factor). Let yi (i = 1, · · · ,m) denote the
random vector of pi indicators in the ith set, and let θi denote the random
variable for the ith LV. We may write

yi = aiθi + ei, (1)

where ai is the pi-component loading vector, and ei is the random vector of
unique variations. We assume that θi has 0 mean and unit variance, that ei
also has 0 means, that the elements of ei are mutually independent, and that
they are independent from θi. Notice that at this point no other distributional
assumptions (such as normality) are made on either θi or on ei. It follows that

Σii = E[yiy
′
i] = E[θ2i ]aia

′
i + ∆i = aia

′
i + ∆i, (2)

and
Σij = E[yiy

′
j ] = E[θiθj ]aia

′
j = ρijaia

′
j , (3)

where the subscript j (j 6= i) refers to another set of observed variables and
the associated LV, E stands for expectation, E(θ2i ) = ρii is the variance of θi
(assumed unity), E[eie

′
i] = V[ei] = ∆i (assumed diagonal), and E[θiθj ] = ρij

is the correlation between θi and θj .
Let Yi (i = 1, · · · ,m) represent an n−cases by pi-variables matrix of

mean centered data (realized values of yi). Then, sample analogues of Σii

and Σij , denoted by Sii and Sij , are calculated by Sii = Y′iYi/(n − 1) and
Sij = Y′iYj/(n − 1). Estimates of ai and ∆i, denoted by placing a hat on
them, are obtained by applying factor analysis to Sii.

It is sometimes useful to represent (2) and (3) simultaneously. Let

Σ(ij) =

[
Σii Σij

Σ′ij Σjj

]
, (4)

Aij =

[
ai 0
0 aj

]
, (5)

Φij =

[
1 ρij
ρij 1

]
, (6)

and

∆ij =

[
∆i O
O ∆j

]
. (7)

Then,
Σ(ij) = AijΦijA

′
ij + ∆ij . (8)

The above expressions for two blocks of variables can easily be extended to
multiple blocks of variables.
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3 Methods for Initial Latent Variable Extraction

In this section, we discuss methods for initial LV extraction in the group of
multi-step procedures. In these methods, parameters in measurement models
(ai and ∆i, and in some cases, a subset of Φij) are estimated prior to the esti-
mation of structural parameters (the other subset of Φ and path coefficients).
As noted above, there are a number of methods in this class. We discuss some
of them here, namely Bentler’s confirmatory factor analysis, Hägglund’s IV es-
timation method, Ihara-Kano’s non-iterative uniqueness estimation method,
and blockwise ULS and ML methods. (PLSc will be separately treated in
Section 5.3.)

3.1 Bentler’s non-iterative confirmatory factor analysis

We first discuss Bentler’s (1982) non-iterative confirmatory factor analysis
method. This method is easy to program, quick to compute, and yet flexible
enough to accommodate various situational demands required in our study. In
particular, this method can be used for extracting one LV at a time from each
block of indicators as well as for extracting multiple LVs simultaneously from
multiple blocks of indicators. The former is required in Croon’s bias correction
method, while the latter in Skrondal-Laake’s method.

We begin with the situation in which one LV is separately extracted from
each block of indicators. We first rewrite (2) as

Σii = aiφia
′
i + ∆i, (9)

where φi = E[θ2i ] = 1. An observed variable in block i deemed most representa-
tive of the LV θi is called a pivotal variable. We assume that a pivotal variable
has been identified (perhaps having the largest average correlation with other
variables in the block), and that the pivotal variable is always placed in the
leading position in the block by permuting the variables in the block. We then
rescale ai in such a way that the loading on the pivotal variable is unity. This
rescaling can be done by dividing all elements of ai by its first element ai1,
that is,

ãi = aia
−1
i1 =

(
ai1
ai2

)
a−1i1 =

(
1

a∗i2

)
, (10)

where a∗i2 = ai2a
−1
i1 . Then, we may rewrite (9) as

Σii =

[
σi11 σ′i1
σi1 Σ∗ii

]
=

[
φ∗i + δi1 φ∗i a

∗′
i2

a∗i2φ
∗
i a∗i2φ

∗
i a
∗′
i2 + ∆∗i

]
, (11)

where φ∗i = a2i1, and ∆i =

[
δi1 0′

0 ∆∗i

]
. Since

a∗i2 = σi1φ
∗−1
i (12)
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from the bottom left corner of Σii, we obtain

Σ∗ii = σi1κiσ
′
i1 + ∆∗i , (13)

where κi = φ∗−1i . The sample analogue of (11) is given by

Sii =

[
si11 s′i1
si1 S∗ii

]
. (14)

We now assume that σi1 is closely approximated by si1, so that the former
can be replaced by the latter in (13). We then have

Σ∗ii = si1κis
′
i1 + ∆∗i , (15)

and
a∗i2 = si1φ

∗−1
i . (16)

We estimate φ∗i = κ−1i and ∆∗i in the above equation by minimizing the
following criterion:

f = tr[(Σ∗ii − S∗ii)W]2, (17)

where W is the weight matrix set equal to Ipi for the unweighted least squares
estimation (ULS), or to S∗−1ii for the generalized least squares estimation
(GLS). We allow both options. By differentiating f with respect to κi and
setting the result equal to zero, we obtain

(s′i1Wsi1)κ̂i(s
′
i1Wsi1)− s′i1W(S∗ii −∆∗i )Wsi1 = 0, (18)

resulting in

κ̂i = (s′i1Wsi1)−1s′i1W(S∗ii −∆∗i )Wsi1(s′i1Wsi1)−1, (19)

or
φ̂∗i = κ̂−1 = s′i1Wsi1(s′i1W(S∗ii −∆∗i )Wsi1)−1s′i1Wsi1. (20)

We now estimate ∆∗i in the above. Let δ∗i denote the column vector con-
sisting of the diagonal elements of ∆∗i . By differentiating f with respect to δ∗i
and setting the result to a zero vector, we obtain

∂∆∗i
∂δ∗i

vec[W(Σ∗ii − S∗ii)W] = Pvec[W(si1κis
′
i1 + ∆̂

∗
i − S∗ii)W] = 0, (21)

where P =
∂∆∗i
∂δ∗i

is a pi−1 by (pi−1)2 matrix with a zero element everywhere

except ones where row and column designate the same parameter, and where
the vec operator strings out columns of a matrix into a tall vector. Note that
Pvec(∆∗i ) = δ∗i , or more generally,

Pvec(B) = diag(B)1, (22)

where diag(B) indicates a diagonal matrix whose diagonal elements are equal
to the diagonal elements of a square matrix B, and 1 is a vector of ones. Note
also that

P′δ∗i = vec(∆∗i ), (23)
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and PP′ = Ipi−1. By substituting the estimate of κ̂i in (19) into (21), we
obtain

Pvec[G(S∗ii − ∆̂
∗
i )G + W∆̂

∗
iW −WS∗iiW] = 0, (24)

where

G = Wsi1(s′i1Wsi1)−1s′i1W. (25)

It follows that

Pvec(W∆̂
∗
iW −G∆̂

∗
iG) = Pvec(WS∗iiW −GS∗iiG), (26)

and that

P(W ⊗W −G⊗G)vec(∆̂
∗
i ) = Pvec(WS∗iiW −GS∗iiG), (27)

where ⊗ indicates a Kronecker product (i.e., A ⊗B = [aijB]). Note that we
used a well known identity, vec(ABC) = (C′⊗A)vec(B), to obtain (27) from
(26). We have

δ̂
∗
i = [P(W ⊗W −G⊗G)P′]−1Pvec(WS∗iiW −GS∗iiG). (28)

Note that δ∗i = P′vec(∆∗i ) by (23). We then arrange the elements of δ̂
∗
i into

the diagonal matrix ∆̂
∗
i . Finally, the estimate of φ∗i is obtained by putting ∆̂

∗
i

in (20).
It remains to obtain estimates of δi1 and ai. We first obtain

δ̂i1 = si11 − φ̂∗i (29)

and

â∗i2 = si1φ̂
∗−1
i = si1κ̂i. (30)

We then have

âi1 = φ̂
∗1/2
i , (31)

and

âi2 = â∗i2φ̂
∗1/2
i = si1φ̂

∗−1/2
i . (32)

This concludes Bentler’s estimation method for the first situation.
We next discuss the situation in which multiple LVs are derived from mul-

tiple blocks of indicators. We still assume that each block of indicators are
generated by a single LV (see Model (1)). For ease of exposition, we also as-
sume that we derive two LVs from two blocks of indicators, so that the model
can be stated as in (4) through (8). We further assume that pivotal variables
in the two blocks are placed in the leading positions. This means that Aij is
of the form:

Aij =


ai1 0
0 aj1

ai2 0
0 aj2

 =

[
DA

Aij2

]
, (33)
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where DA is a diagonal matrix, and Aij2 is a block diagonal matrix. As before,
we rescale the LVs in such a way that

Σ(ij) = (AijD
−1
A )(DAΦijDA)(D−1A A′ij) + ∆ij = A∗ijΦ

∗
ijA
∗′
ij + ∆ij , (34)

where

A∗ij =


1 0
0 1

a∗i2 0
0 a∗j2

 =

[
I2

A∗ij2

]
, and A∗ij2 = Aij2D

−1
A , (35)

and Φ∗ij = DAΦijDA. We now partition Σ(ij) and S(ij) conformably with
the partition of A∗ij . This is analogous to (11) and (14). The rest of the es-
timation procedure proceeds much the same way as in the previous situation
with two notable exceptions. First of all, some scalar quantities (e.g., si11) and
vectors (e.g., si1) in the previous situation are now matrices, so that some in-
version operations involve real matrix inversions (rather than mere reciprocals
of scalars). Also, (29) must be replaced by

∆̂ij1 = diag(Sij1 − Φ̂
∗
ij). (36)

Secondly, in estimating A∗ij2, we must take into account its block diagonality.
That is, analogously to si1 = a∗iφ

∗, we have

Sij1 =

[
Si1
Sj1

]
=

[
a∗i2 0
0 a∗j2

] [
φ∗
′

i

φ∗
′

j

]
+ Eij . (37)

The least squares estimate of â∗k2 (k = i, j) is given by

â∗k2 = Sk1φ
∗
k(φ∗

′

k φ
∗
k)−1. (38)

Finally, â∗k2 and Φ̂
∗
ij are rescaled in a manner similar to (31) and (32), and in

such a way that diag(Φ̂) = I2.

3.2 Hägglund’s instrumental variable (IV) estimation method

Hägglund’s (1982) method is used only for extracting one LV at a time from
each block of indicator variables, combined with Croon’s bias correction method.
As will be seen shortly, this method is similar to Bentler’s method in many
ways. Indeed, Bentler (1982) notes that his method was inspired by Hägglund’s
method. A major difference is that in Häggland’s method, a∗i is estimated first,
based on which ∆∗i and φ∗i are estimated. In Bentler’s method, on the other
hand, si1 is used as a surrogate for a∗i2, based on which ∆∗i and φ∗i are esti-
mated first, followed by a∗i2. In what follows, we emphasize parallels between
the two methods, wherever possible.

Let the observed variables in block i be partitioned into three subsets, one
consisting of variable 1 (the pivotal variable), the second consisting of variable
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j (j = 2, · · · , pi, i.e., any variable other than 1), and the set K consisting of all
other variables in the block. We rescale ai in the same way as in (10). Then,
for j = 2, · · · , pi, we have

σ′KjσK1(σ′K1σK1)−1 =

a∗ijφ
∗
i a
∗′
iKa∗iKφ

∗
i a
∗
i1(a∗i1φ

∗
i a
∗′
iKa∗iKφ

∗
i a
∗
i1)−1 = a∗ij , (39)

where σKj is the vector of covariances between variables in set K and variable
j, and a∗i1 = 1. Similarly,

σ′KjΣ
−1
KKσK1(σ′K1Σ

−1
KKσK1)−1 = a∗ij . (40)

The above two identities show that sample analogues of the quantities on the
left hand side of (39) and (40) may be used as estimates of a∗ij . That is, for
j = 2, · · · , pi,

â∗ij = s′KjsK1(s′K1sK1)−1, (41)

and
â∗ij = s′KjS

−1
KKsK1(s′K1S

−1
KKsK1)−1, (42)

where s’s and SKK are relevant portions of Sii. Hägglund (1982) calls the
method that uses (41) FABIN2 (Factor Analysis By INstrumental variables),
and the method that uses (42) FABIN3.

Once the estimate of a∗i is obtained, the remaining parameters (φ∗i and ∆i)

are estimated in a manner similar to Bentler’s method. We fit â∗iφ
∗
i â
∗′
i + ∆i

to Sii. Let
f∗ = tr(Sii − â∗iφ

∗
i â
∗′
i −∆i)

2. (43)

(This is analogous to (17) with W = Ipi (ULS) in Bentler’s method. The
difference is that (17) is defined only for non-pivotal variables, while (43) is
defined for all variables in the block.) By differentiating f∗ with respect to φ∗i
and ∆i, and setting the results equal to zero, we obtain

â∗
′

i (Sii − â∗i φ̂
∗
i â
∗′
i − ∆̂i)â

∗
i = 0, (44)

and
diag(Sii − â∗i φ̂

∗
i â
∗′
i − ∆̂i) = O, (45)

respectively. From (44), we obtain

φ̂∗i = (â∗
′

i â∗i )
−1â∗

′

i (Sii − ∆̂i)â
∗
i (â
∗′
i â∗i )

−1. (46)

This is analogous to (20) in Bentler’s method. (See the relationship between
si1 and a∗i2 in (16).) By substituting (46) into (45), we obtain

∆̂i = diag[Sii −D(Sii − ∆̂i)D], (47)

where D = â∗i (â
∗′
i â∗i )

−1â∗
′

i . (This quantity is analogous to G in Bentler’s
method.) From (47), we further obtain

∆̂i − diag(D∆̂iD) = diag(Sii −DSiiD). (48)
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Let E = I−D ∗D, where “∗” indicates an elementwise multiplication, and let
δ̂i and g denote column vectors of the diagonal elements of ∆̂i and diag(Sii−
DSiiD), respectively. Then (48) can be rewritten as

Eδ̂i = g, (49)

or

δ̂i = E−1g. (50)

The elements of δ̂i are then put in the diagonal elements of ∆̂i, which is further
substituted into (46) to obtain φ̂∗i . We then rescale â∗i and φ̂∗i to satisfy φ̂i = 1.

It may be pointed out in passing that (48) is analogous to (27). This may
be seen by first noting that (48) can be rewritten as

δ̂i − diag(D∆̂iD)1 = diag(Sii −DSiiD)1 = g, (51)

where 1 is a vector of ones of appropriate size. By noting (22) and (23), the
second term on the left hand side of this equation can further be rewritten as

diag(D∆̂iD)1 = Pvec(D∆̂iD) =

P(D⊗D)vec(δ̂i) = P(D⊗D)P′δ̂i = (D ∗D)δ̂i, (52)

and the right hand side as

g = P′vec(Sii −DSiiD). (53)

The last equality in (52) follows from

P(D⊗D)P′ = D ∗D. (54)

3.3 Ihara-Kano’s non-iterative uniqueness estimation method

Ihara-Kano’s (1986) method is also applied to extract one LV from each block
of indicators. In this method, unique variances (∆i) are estimated first, and
then the loading vector (ai). This is similar to Bentler’s method and opposite
to Hägglund’s method. Unlike both of these methods, Ihara-Kano’s method
does not rescale the loading vector for estimation.

For any variable index j (j = 1, · · · , pi), consider evaluating the quantity
of the following form, σjuσvj/σuv, where σ’s are appropriate elements in Σii,
and u and v > u are indices of any variables other than j in block i. Assuming
the model in (1), we have

σjuσvj/σuv = aijaiuaivaij/(aiuaiv) = a2ij . (55)

This means that

σjj − σjuσvj/σuv = δj , (56)
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where δj is the jth diagonal element of ∆i, and that the sample analogue of
the left hand side of this identity may be used to estimate the uniqueness of
variable j. That is,

δ̂j = sjj − sjusvj/suv, (57)

for j = 1, · · · , pi. This estimate of δj , however, depends on the choice of u and
v. Ihara and Kano (1986) recommend to choose u = q and v = r, such that
|sqr| is a maximum over all combinations of q and r such that q 6= j, r 6= j
and q < r.

Once ∆i is estimated, estimates of loadings are easily obtained by the
eigen-decomposition of Sii − ∆̂i. Let d1 represent the most dominant eigen-
value, and f1 the corresponding eigenvector of this matrix. Then

âi = f1d
1/2
1 . (58)

One thing we need to be careful in this process is that −f1 is as good as f1 as
the eigenvector, and in general there is no way to identify which one we get.
We thus must make sure the sign of âi is consistent with that of the population
loading vector in evaluating goodness of parameter recovery.

3.4 Blockwise methods for initial latent variable extraction

Beside the non-iterative methods discussed above, there are several iterative
estimation methods that can be used for initial LV extraction. We briefly
discuss two of them here, ULS (unweighted least squares) and ML (maximum
likelihood) methods, that are included in our comparison. We still assume that
these methods are used to extract one LV at a time from each block of indicator
variables. These methods are called blockwise-ULS and blockwise-ML in this
paper.

All the methods we introduced so far estimate different groups of model
parameters sequentially, so that parameters estimated at later stages are de-
pendent on those estimated earlier, and although some optimization criteria
are used to estimate some subsets of parameters, there were no single criteria
optimized to estimate the entire set of parameters. In contrast, both blockwise-
ULS and blockwise-ML estimate all parameters within blocks simultaneously.
Specifically, blockwise-ULS minimizes

gi = tr(Sii −Σii)
2, (59)

and blockwise-ML minimizes

hi = tr(SiiΣ
−1
ii )− log |SiiΣ−1ii | − pi (60)

with respect to ai and ∆i (i = 1, · · · ,m). Minimizations of these criteria
require rather elaborate iterative algorithms (e.g., Jöreskog, 1977). We use the
Gauss-Newton algorithm to minimize (59), and Fisher’s scoring algorithm to
minimize (60), developed earlier (Jung and Takane, 2008), although we give
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no further details of these algorithms in this paper. Being iterative, they tend
to require more computation time than the previous methods, although it is
usually not too excessive because of the relatively small number of parameters
involved in each block of observed variables.

4 The Methods for Constructing Latent Variable Scores

Once the estimates of loadings are obtained by one of the methods described
above, LV scores are calculated. We first discuss methods in which scores are
constructed for each LV separately, and then a method in which multiple LVs
constructed simultaneously. The former are used in combination with Croon’s
bias correction method, while the latter with Skrondal-Laake’s method.

There are four representative formulas for constructing LV scores (McDon-
ald and Burr, 1967). They are all of the form ti = w′iyi (i = 1, · · · ,m), where

(i) Regression: wi = (aia
′
i + ∆i)

−1ai = ∆−1i aidi, (61)

with di = (1 + a′i∆
−1
i ai)

−1,

(ii-a) Least Squares (LS): wi = ai(a
′
iai)

−1, (62)

(ii-b) Bartlett: wi = ∆−1i ai(a
′
i∆
−1
i ai)

−1, (63)

(iii-b) Anderson-Rubin (A-R): wi = ∆−1i ai(a
′
i∆
−1
i Σii∆

−1
i ai)

−1/2.
(64)

Note that the so-called empirical Bayes method of estimating LV scores reduces
to the Regression formula under the additional assumptions of normality on
σ and e in (1) (Skrondal and Rabe-Hesketh, 2004, p. 228). Note also that
the Bartlett formula reduces to the LS formula if ∆i is ignored (or set to an
identity matrix). If the same thing is done on the A-R formula, a new formula
results that might be called the Simplified A-R formula:

(iii-a) Simplified A-R: wi = ai(a
′
iΣiiai)

−1/2. (65)

In both the original and simplified A-R formulas, the variance of ti is con-
strained to be unity. It may also be pointed out that although Σii in these
formula are typically estimated by Σ̂ii = âiâ

′
i + ∆̂i, it may also be estimated

by its sample analogue, i.e., Sii, as is done in PLSc. (See Section 5.3.) The
second equality in (61) holds because (aia

′
i+∆i)

−1 = ∆−1i −∆−1i aidia
′
i∆
−1
i .

A couple of additional remarks are in order concerning the above formulas.
First of all, w′iai = 1 for the LS and Bartlett formulas. These formulas pro-
duce so-called “conditionally unbiased” estimates of LVs because it holds that
E[ti|θi] = θi (Croon, 2002, p. 215), where E[ti|θi] is the conditional expecta-
tion of ti given θi. This is readily seen by noting that E[yi|θi] = aiθi from (1),
so that

E[ti|θi] = E[w′iyi|θi] = w′iE[yi|θi] = w′iaiθi = θi. (66)
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It also holds that E[ti|x] = E[θi|x] for any external variables x. This follows
from

E[ti|x] =

∫
tif(ti|x)dti =

∫
ti[

∫
g(ti|θi)h(θi|x)dθi]dti

=

∫
[

∫
tig(ti|θi)dti]h(θi|x)dθi =

∫
E[ti|θi]h(θi|x)dθi

=

∫
θih(θi|x)dθi = E[θi|x],

where f , g, and h are conditional densities (Croon, 2002, p. 204). Notice that
in the above derivation, we used the fact that f(ti|x) =

∫
g(ti|θi)h(θi|x)dθi,

and assumed that the order of integrations with respect to ti and θi was
exchangeable.

Secondly, the weight vectors in the LS and simplified A-R formula are
proportional to the loading vector (wi ∝ ai), while those in the other formulas
are proportional to ∆−1i ai (wi ∝ ∆−1i ai). We call the former the series (A)
formulas, while the latter the series (B) formulas. Weight vectors within the
same series are proportional to each other, and are expected to yield identical
results after bias corrections. Thus, the distinction between the two series is
more important than the distinction within the series. The series (B) formulas
tend to be more often used with initial LV extraction methods that yield
asymptotically efficient estimates in measurement models, such as the GLS and
ML methods, while the opposite is true for the series (A) formulas. We later
take this into account in choosing a LV score construction method in Croon’s
bias correction method. Note, however, that the use of the series (B) formulas
used in conjunction with the efficient factor extraction methods usually does
not provide efficient estimates of structural parameters even with proper bias
correction methods. The following table classifies these formulas according to
two criteria: The proportionality and the normalization conditions.

Table 1 Classification of the formulas for constructing LV scores.

Normalization Proportionality

Conditions (A) wi ∝ ai (B) wi ∝ ∆−1
i ai

I. Unit regression Regression

(w′iΣiiwi)
−1w′iai = φ−1

i = 1
II. Conditionally unbiased Least Squares (LS) Bartlett

w′iai = 1
III. Unit variance scores Simplified A-R A-R

w′iΣiiwi = 1

As alluded to earlier, more than one set of LV scores may have to be con-
structed simultaneously in Skrondal-Laake’s method, when the path models
include more than one predictor variable. Assume that there are two predictor
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LVs, θi and θj . Let

tij =

(
ti
tj

)
, and yij =

(
yi
yj

)
,

and assume that we use the Regression formula. Then, tij is obtained by
tij = W′

ijyij , where

Wij = (AijΦijA
′
ij + ∆ij)

−1AijΦij , (67)

where Aij , Φij , and ∆ij are as defined in (5), (6), and (7), respectively.

5 Methods of Bias Correction

5.1 Croon’s method

Any weight vectors obtained in the previous section may be used to construct
LV scores, ti = w′iyi for i = 1, · · · ,m in Croon’s (2002) method. The covari-
ance between ti and tj (i 6= j) is related to the correlation between θi and θj
by

σtitj = w′iE[yiy
′
j ]wj = w′iΣijwj = w′iaiρija

′
jwj = QiQjρij , (68)

or

ρij = w′iΣijwj/QiQj = σtitj/QiQj , (69)

where Qi = w′iai and Qj = w′jaj . As noted earlier, Qi and Qj are unity for
conditionally unbiased formula for calculating LV scores (the LS and Bartlett
formula), in which case, ρij = σtitj . The variance of ti, on the other hand, is
given by

σ2
ti = w′iE[yiy

′
i]wi = w′iΣiiwi = (w′iai)

2σ2
i + w′i∆iwi, (70)

or

σ2
i =

w′iΣiiwi −w′i∆iwi

Q2
i

=
σ2
ti −w′i∆iwi

Q2
i

. (71)

The latter is equal to
Q2

i

Q2
i

= 1, as expected.

In practice, all relevant quantities have to be estimated from the data.
As noted earlier, estimates of ai and ∆i are obtained by applying initial LV
extraction methods to Sii, from which estimates of the weight vectors ŵi (i =
1, · · · ,m) are derived. Vectors of realizations of ti are obtained by t̂i = Yiŵi

(i = 1, · · · ,m), from which covariances between t̂i and t̂j (i, j = 1, · · · ,m) are
calculated. Estimates of covariances between true LVs, θi’s, are then obtained
using sample analogues of (69), namely

σ̂ij =
ŵ′iSijŵj

Q̂iQ̂j
, (72)
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where Q̂i = ŵ′iâi and Q̂j = ŵ′j âj . Note that here we have “covariances”
because the sample analogue of the variances of the true LVs are usually not
equal to unity, as indicated by

σ̂2
i =

ŵ′iSiiŵi − ŵ′i∆̂iŵi

Q̂2
i

, (73)

which is not equal to unity unless Sii = âiâ
′
i + ∆̂i holds exactly. Once the

estimates of the variances and covariances are obtained, estimates of path
coefficients (regression coefficients for predicting LVs from other sets of LVs)
can be easily derived from them.

5.2 Skrondal and Laake’s method

In the Skrondal and Laake’s (2001) method, “unbiased” estimates of param-
eters in structural models are directly obtained by combining two particular
formulas for constructing LV scores, the Regression formula for predictor LVs,
and the Bartlett formula for criterion LVs. When there are more than a sin-
gle structural model, each one is estimated separately. Each structural model
usually has only one criterion variable. We first consider the case in which
there is a single predictor variable, and then extend it to a multiple-predictor
case. Suppose that LV i (θi) is the predictor variable, while θj is the criterion
variable. That is, we estimate the regression coefficient βj|i for predicting θj
from θi. We define ti using the weight vector in the Regression formula, while
tj using the weight vector in the Bartlett formula. We then regress tj onto ti.
Let btj |ti denote the regression coefficient. Then,

btj |ti = (w′iΣiiwi)
−1w′iΣijwj = (w′iΣiiwi)

−1w′iaiρija
′
jwj , (74)

where ρij is the correlation between θi and θj . Since a′jwj = 1 (the Bartlett
estimate is conditionally unbiased), and

(w′iΣiiwi)
−1w′iai

= (a′iΣ
−1
ii ΣiiΣ

−1
ii ai)

−1a′iΣ
−1
ii ai = 1, (75)

where Σii = aia
′
i + ∆i, (74) reduces to

btj |ti = ρij = ρij/σ
2
i = βj|i, (76)

where σ2
i = ρii = 1, and βj|i is the regression coefficient for predicting θj from

θi. The above relation indicates that btj |ti is an “unbiased” estimate of βj|i.
Note also that any conditionally unbiased weight vector (e.g., the LS formula)
may be used for wj in (74) to obtain the relation in (76). Estimates of ai,
∆i, and wj , and realized values of tj are obtained similarly to the previous
section.

When there are more than one predictor variable in a structural model, the
above derivation has to be changed only slightly (Lu et al., 2011). Suppose,
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for simplicity, there are two predictor variables, θi and θj , and one criterion
variable, θk. The predictor LVs tij is calculated using the weight matrix defined
in (67) and tk using a weight vector in any conditionally unbiased formula. By
regressing tk on tij , we obtain

btk|titj = (W′
ijΣijWij)

−1W′
ijΣij,kwk

= (W′
ijΣijWij)

−1W′
ijAijΦik,jka

′
kwk, (77)

where Σij = E[yijy
′
ij ], Σij,k = E[yijyk], and Φik,jk =

(
ρik
ρjk

)
. Since a′kwk =

1, and

(W′
ijΣijWij)

−1W′
ijAij

= (ΦijA
′
ijΣ

−1
(ij)Σ(ij)Σ

−1
(ij)AijΦij)

−1ΦijA
′
ijΣ

−1
(ij)Aij

= Φ−1ij , (78)

where Σ(ij) = AijΦijA
′
ij + ∆ij , (77) reduces to

btk|titj = Φ−1ij Φik,jk = βk|ij . (79)

An extension to more than two predictor variables is rather straightforward,
following a similar line of derivation as above.

5.3 PLSc

The consistent Partial Least Squares (PLSc) method (Dijkstra and Schermelleh-
Engel, 2014) is unique in that it obtains weight vectors first, and then loading
vectors, while in all other methods discussed so far, loading vectors are ob-
tained first, from which weight vectors are derived.

The weight vectors are derived as a convergence point of the following
iterative procedure:

ŵi ∝
∑
j∈Bi

signijSijŵj , (80)

where j ∈ Bi if the jth block of variables are connected to block i, and
signij = ±1. (Note that following Dijkstra and Schermelleh-Engel (2014), we
only consider the so-called Mode A algorithm in PLS, which these authors
seem to favor.) Under (2) and (3), the probability limit of ŵi as the sample
size n increases infinitely, denoted as wi, is proportional to ai, since

wi ∝
∑
j∈Bi

signijΣijwj = (
∑
j∈Bi

signijρija
′
jwj)ai ∝ ai. (81)

(Note that the term enclosed in parentheses in the formula above is a scalar
which is dependent only on i.) That is,

ai = ciwi (82)



18

for some ci. We require, as a normalization convention, that

σ2
ti = E[(w′iyi)

2] = w′iΣiiwi = 1, (83)

from which it follows that

wi = (a′iΣiiai)
−1/2ai (84)

or
ci = (a′iΣiiai)

1/2. (85)

The sample analogues of (82) through (85) are:

âi = ĉiŵi, (86)

ŵ′iSiiŵi = 1, (87)

ŵi = (â′iSiiâi)
−1/2âi, (88)

and
ĉi = (â′iSiiâi)

1/2. (89)

We determine ĉi in such way that its probability limit is equal to ci. Dijkstra
and Schermelleh-Engel (2014) suggest to use

ĉi =

(
ŵ′i(Sii − diag(Sii))ŵi

ŵ′i(ŵiŵ′i − diag(ŵiŵ′i))ŵi

)1/2

. (90)

It may be seen that in the above formula, the matrix in the numerator, Sii −
diag(Sii), is a′iΣiiai times as large as the matrix in the denominator, ŵiŵ

′
i −

diag(ŵiŵ
′
i), if Sii and ŵi are replaced by their population counterparts, i.e.,

by Σii and wi. Note that (84) and (88) indicate that the relationship between
loadings and weights in PLSc is similar to the Simplified A-R formula for
constructing LV scores. We say “similar”, not “identical,” because Sii is used
for Σii (rather than Σ̂ii = âiâ

′
i + ∆̂i) in (88). See Dijkstra and Schermelleh-

Engel (2014) for more detailed justifications of ĉi above.
Let ρtitj represent the correlation between ti = w′iyi and tj = w′jyj . (We

say “correlation” here, because the variance of LV scores is constrained to be
unity in the A-R formula.) Then,

ρtitj = w′iΣijwj = QiQjρij , (91)

or
ρij = w′iΣijwj/QiQj = ρtitj/QiQj , (92)

where Qi = w′iai and Qj = w′jaj as defined previously. Note that (91)
and (92) are identical in form to (68) and (69), respectively. The numera-
tor of (92) can be consistently estimated by ŵ′iSijŵj , and the denominator

by Q̂iQ̂j = ŵ′iâi · ŵ′j âj . The ρ̂ii(= 1) and ρ̂ij (i, j = 1, · · · ,m) may further
be used to estimate parameters in structural models that describe hypothe-
sized relationships among θi’s. Dijkstra and Schermelleh-Engel (2014) further
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proposed to fit polynomial regression models among LVs using estimated ρij ’s
and Qi’s.

Dijkstra (2013) proposed to apply the PLS iteration algorithm (80) only
once to estimate wi rather than iterating until convergence, and showed that
the resultant estimators are still consistent. This procedure is non-iterative,
although it is a two-step procedure and yields different estimates starting from
different initial estimates of the weights. Since these estimates are intermediate
results obtained during the fully iterated PLS procedure, it is easy to include
them in our comparison. This method will be referred to as PLSc1 in the
sequel. The initial weights used are equal weights across all variables as in the
fully iterated PLSc.

As may be noticed earlier, the weight vector is adjusted by one-parameter
to obtain the corresponding loading vector in both PLSc and PLSc1 (see (82)
and (86)). This means that the choice of the value of this parameter is very
important. There are a number of possible choices, and (90) is just one of
them. Dijkstra (2016) proposed to choose ĉi that minimizes

gi =
∑
a,b6=a

[
1

2
log

(
1 + sab
1− sab

)
− 1

2
log

(
1 + c2i ŵaŵb
1− c2i ŵaŵb

)]2
, (93)

where a and b index variables in block i, and sab is an element in Sii. A mini-
mization of the above criterion requires an iterative procedure. The consistent
PLS method that uses the above adjustment will be denoted as PLSc∗.

6 One-Step Estimation Methods to Be Compared

In this section, we discuss one-step estimation methods to be compared. These
methods include full-ULS, full-GLS, and full-ML methods, and Bollen’s two-
stage least squares (2SLS) method. All of these methods directly estimate Φ
and/or path coefficients without calculating LV scores, and consequently no
bias corrections are required. These methods are included in our study because
it is of interest to find out how well those methods that require bias corrections
(the multi-step procedures) work relative to those requiring no corrections.

6.1 Full-ULS, full-GLS, and full-ML methods

The full-ULS, full-GLS, and full-ML methods minimize

g = tr(S−Σ)2, (94)

r = tr[(S−Σ)S−1]2, (95)

and

h = tr(SΣ−1)− log(SΣ−1)− p, (96)



20

respectively, where p is the total number of observed variables (i.e., p =∑m
i=1 pi). The minimizations of these criteria typically require elaborate itera-

tive algorithms. For convenience, we use a MATLAB version of Cudeck, Klebe,
and Henly’s (1993) Gauss-Newton algorithm with numerical approximations
to the Hessian matrix. Unfortunately, a MATLAB program implementing the
same with an analytic Hessian matrix is unavailable. The full-GLS and full-ML
methods are known to provide not only consistent but also asymptotically ef-
ficient estimates of parameters if the fitted model is correct. They also provide
estimates of standard errors (SEs) as the square root of the diagonal elements
of the inverse of the Hessian matrix. It is interesting to compare the estimates
of SEs thus obtained against other methods of estimating SEs. It should be
noted that none of the three methods discussed in this section are capable
of a priori equating the variance of the criterion LVs, which renders equality
constraints on path coefficients meaningless.

6.2 Bollen’s 2SLS method

Bollen’s (1993) 2SLS method directly estimates pass coefficients without esti-
mating loadings, unique variances, or correlations among LVs. In this method,
one (called the pivotal variable) of the observed variables in each block of
variables is chosen as a proxy of the LV supposed to generate the block of
observed variables. We consider each path model separately. In the ith path
model, let Xi denote a collection of pivotal variables in the blocks of variables
whose corresponding LVs are used as predictor variables. Let vi denote the vec-
tor of pivotal variable in the block of variables corresponding to the criterion
LV. We regress vi onto Xi. However, the use of ordinary least squares (OLS)
method is not suitable in this context because the use of observed variables
(Xi) as predictors in place of true LVs incurs correlations between predic-
tors and disturbance terms, which is against the basic OLS (ordinary least
squares) assumptions. To avoid this difficulty, Bollen’s 2SLS method employs
instrumental variable (IV) estimation. Let Zi denote the matrix of IVs, which
typically consist of non-pivotal variables in the blocks whose LVs are used as
predictor variables. The unconstrained 2SLS estimates of path coefficients in
the ith path model are then given by

β̂
(2SLSi)

u = (X′iPZi
Xi)
−1X′iPZi

vi =

(S′ZiXi
S−1ZiZi

SZiXi
)−1S′ZiXi

S−1ZiZi
SZivi , (97)

where PZi = Zi(Z
′
iZi)

−1Z′i is the orthogonal projector onto the column space
of Zi. The 2SLS estimates of unconstrained path coefficients for other path
models are similarly obtained. The constrained estimates of path coefficients
will be given in Section 7.2 in the specific context of fitted constrained path
models.
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7 An Empirical Study

The foregoing discussions on methods of initial LV extraction and bias correc-
tion provide little information as to which combinations work best in parame-
ter recovery. To investigate the problem, we conduct a Monte Carlo study, in
which a simple SEM is assumed as a population model. Replicated data sets
are generated from the assumed model, to which the methods discussed in
the previous sections are applied, and estimates of parameters in the assumed
model are obtained. Parameter recovery is assessed by how close the derived
estimates are to the population parameters used to generate the data sets.

In the study, we also investigate how to obtain good estimates of standard
errors (SEs) of parameter estimates from a single data set. This information
is essential for assessing the reliability of estimated parameters, and for test-
ing their significance (Devlieger et al., 2015). We use replicated samples of
data (called the Monte Carlo samples) to obtain benchmark estimates of SEs,
against which estimates of SEs obtained by the bootstrap method (Efron,
1979), the method based on OLS regression, and the method based on the
inverse Hessian, are compared.

In what follows, we present the basic set-up of the Monte Carlo study:
Assumed population parameters, the data generation procedure, exact imple-
mentations of the methods to be compared, definitions of the performance
measure and other statistics of interest, and results of the Monte Carlo study.

7.1 Assumed population parameters

We assume model (1) and (2) as the basic measurement model, and model (3)
as the basic structural model in our simulation study. This is a confirmatory
factor analysis model in which only correlations (covariances) among the LVs
are specified. We further assume that there are five LVs (m = 5), each generat-
ing five indicator variables (pi = 5, i = 1, · · · ,m) according to (1) through (3).
Assumed values of parameters are: ai = .7× 15 for all i = 1, · · · , 5, where 15

is the five-component vector of ones, ∆i = .51× I5 (this leads to a covariance
matrix between observed variables, in which the variances due to systematic
variations and those due to random variations (the unique variances) are about
even), and

Φ =


φ11 φ12 φ13 φ14 φ15
φ21 φ22 φ23 φ24 φ25
φ31 φ32 φ33 φ34 φ35
φ41 φ42 φ43 φ44 φ45
φ51 φ52 φ53 φ54 φ55

 =

Φ1:3 φ4 φ5

φ′4 φ44 φ45
φ′5 φ54 φ55

 =


1 .2 .2 .6 .6
.2 1 .2 .6 .6
.2 .2 1 .6 .6
.6 .6 .6 1 .6
.6 .6 .6 .6 1

. (98)

(The correlations among the first three LVs are .2 and all other correlations
are .6. Later (see Eqs. (99) and (100)) we postulate two path models in which
LVs 4 and 5 serve as the criterion variables, and the first three LVs as com-
mon predictor variables. The correlations between predictor LVs are low, and
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correlations between predictor and criterion LVs, and those between criterion
LVs are somewhat higher, as may be expected. These values ensure positive-
definiteness of the population covariance matrix between LVs as well as that
between observed variables.) From these parameter vectors and matrices, the
25 by 25 population correlation (covariance) matrix among the observed vari-
ables is derived. One hundred data sets are then generated, for each of three
sample sizes, n = 200 (small sample size), n = 400 (medium sample size),
and n = 800 (large sample size), in such a way that each case (observation
unit) in a sample follows a 25-variate normal distribution with 0 means and
the prescribed correlation (covariance) matrix.

We actually tried a few other sets of parameter values (e.g., ai = .8 × 15

and ρij = .7) informally before we settled on the above specification, although
the basic model adopted remained the same. We found, in all cases, results
very similar to the one to be reported below. We thus consider that the result
we report is relatively unaffected by the actual parameter values used in the
study.

We also consider the second structural model, in which we postulate explicit
path models among the LVs, namely

θ4 = θ1β1 + θ2β2 + θ3β3 + e1, (99)

and
θ5 = θ1β4 + θ2β5 + θ3β6 + e2. (100)

It is convenient to write these path models in one equation, namely(
θ4
θ5

)
=

[
θ1 θ2 θ3 0 0 0
0 0 0 θ1 θ2 θ3

]
βu +

(
e1
e2

)
, (101)

where
βu =

(
β1, β2, β3, β4, β5, β6

)′
. (102)

The population path coefficients are then given by

βu = Φ−1(1:3)

(
φ4

φ5

)
=

(
Φ−11:3φ4

Φ−11:3φ5

)
, (103)

where

Φ(1:3) =

[
Φ1:3 O
O Φ1:3

]
. (104)

The population path coefficients thus calculated happen to be all equal to
.4286.

We also consider a constrained path model in which we assume β3 = β4 ≡
βc1, β1 = β5 ≡ βc2, and β2 = β6 ≡ βc3 in (101). The constrained population
path coefficients are derived by

βc =

βc1
βc2
βc3

 = (L′Φ(1:3)L)−1L′
(
φ4

φ5

)
, (105)
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where Φ(1:3) is as defined in (104), and

L =

 0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

′. (106)

The constrained path coefficients thus calculated happen to be all identical to
the unconstrained path coefficients obtained above.

7.2 Implementations of the estimation methods to be compared

The generated data are analyzed by sixteen different methods, designated
as (1) Bentler(ULS)/Croon, (2) Bentler(GLS)/Croon, (3) Bentler(ULS)/SL,
(4) Bentler(GLS)/SL, (5) Hägglund’s FABIN2/Croon, (6) FABIN3/Croon, (7)
Ihara-Kano/Croon, (8) PLSc, (9) PLSc1, (10) PLSc∗, (11) blockwise-ULS,
(12) blockwise-ML, (13) Bollen’s 2SLS, (14) full-ULS, (15) full-GLS, and (16)
full-ML. The first twelve methods pertain to multi-step methods, requiring cal-
culations of LV scores and possible bias corrections. The general constituents
of these methods have already been described in some detail in Sections 3, 4,
and 5, so that we discuss here only specific ones. The remaining four meth-
ods ((13) through (16)) requiring no bias corrections, on the other hand, are
described in Section 6. These one-step methods are included in the compari-
son as benchmark methods, against which the performance of the multi-step
methods is calibrated.

The first four methods use Bentler’s method discussed in Section 3.1 for
initial LV extraction, the first two of which apply Bentler’s method to each
block of indicators to extract one LV at a time. In each case, the first vari-
able in each block is regarded as the pivotal variable, while the remaining
ones are taken as non-pivotal variables. The two methods are distinguished by
the criterion used to obtain estimates of parameters for non-pivotal variables,
ULS (W = Ip in (17)) in the first method and GLS (W = S−1ii in (17)) in
the second method. Bentler(ULS)/Croon then applies the LS formula, while
Bentler(GLS)/Croon the Bartlett formula, to construct LV scores. The third
and fourth methods pertaining to the Skrondal-Laake’s corrections fit uncon-
strained and constrained path models directly, so that no estimates other than
those of path coefficients are available. These methods apply Bentler’s method
to extract three predictor LVs simultaneously corresponding to the first three
blocks of observed variables, followed by the Bartlett formula for score con-
struction. Criterion LVs, on the other hand, are extracted in the same way
as in the first two methods. The third and fourth methods are again distin-
guished by the criterion used to obtain estimates of parameters in non-pivotal
variables.

The next two methods use Hägglund’s IV estimation method described in
Section 3.2 to extract initial LVs. These methods are applied to each block
of observed variables to extract one LV each. FABIN2 uses (41) to estimate
loading vectors followed by the LS formula for LV score construction, while
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FABIN3 uses (42) to estimate loadings followed by the Bartlett method for
score construction. As in Bentler’s method, the first variable in each block is
taken as the pivotal variable.

Ihara-Kano’s method is applied to each block of observed variables to ex-
tract one LV at a time. The LS formula is then used for constructing LV scores.
This method is fully described in Section 3.3, and no further implementation
details are needed.

The next three methods are the consistent PLS methods described in Sec-
tion 5.3. PLSc iterates on (80) until convergence, while PLSc1 only once, both
starting from homogeneous weights. Both PLSc and PLSc1 use (90) for ĉi,
while PLSc∗ the ĉi that minimizes (93).

The next two methods, blockwise-ULS and blockwise-ML, are described
in Section 3.4. These methods are applied to each block of indicators to ex-
tract one LV at a time so as to minimize (59) and (60). As noted earlier,
the minimizations require iterative algorithms, and initial estimates of unique
variances. We use 1 - smc (the squared multiple correlations) as initial esti-
mates of unique variances. Once parameters in the measurement models are
estimated, the blockwise-ULS uses the LS formula to derive LV scores, while
the blockwise-ML uses the Bartlett formula.

The full-ULS, full-GLS, and full-ML methods have been described in Sec-
tion 6.1. The only thing we should note here is that they typically require
good initial estimates of unique variances to start the iterations. While we
could have used Ihara-Kano’s method for this purpose, we simply used popu-
lation unique variances that are available in the present context.

Bollen’s (1993) 2SLS method has been described in Section 6.2. To obtain
constrained estimates of path coefficients, the unconstrained estimates given
in (97) for the ith path model should be written in a single equation for all
path models bound by the constraints. For the constrained path models given
toward the end of the previous subsection, let K represent a block diagonal
matrix of X′iPZiXi, and let v∗ represent a super vector of X′iPZivi. Then, the
unconstrained 2SLS estimates of path coefficients can be written collectively
as

β̂(2SLS)
u = K−1v∗. (107)

The constrained 2SLS estimates of path coefficients, on the other hand, are
given by

β̂(2SLS)
c = (L′KL)−1L′v∗, (108)

where L is defined in (106).

7.3 Performance and other measures of interest

One of our main interests in the present study lies in comparing the perfor-
mance of various methods of estimation in parameter recovery. The recovery
is measured by root mean square errors (rmse’s). There are five groups of
parameters in assumed SEMs: loadings (ai, i = 1, · · · ,m), unique variances
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(diagonal elements of ∆i, i = 1, · · · ,m), covariances among LVs (Φ), uncon-
strained path coefficients (βu), and constrained path coefficients (βc). The
rmse is defined for each group of parameters separately. Let a denote the su-
per vector consisting of ai’s placed on top of each other. Then, the rmse of
loadings is defined by

rmsea = (

nb∑
q=1

[â(q) − a(pop))′(â(q) − a(pop))/25nb]
1/2, (109)

where q indexes a replicated sample (called a Monte Carlo sample in this pa-
per), nb indicates the total number of replications, and a(pop) is the population
loading vector whose elements are arranged in the same way as a. Squared
differences between estimates and parameters are summed over all loadings
and replications, and divided by the number of loadings times the number of
parameters, before a square-root is taken. The rmse’s of other groups of pa-
rameters are defined similarly, except for Φ, which is a symmetric matrix. To
avoid redundancy in the symmetric matrix, only non-redundant portions are
taken into account.

The rmse defined above is a function of both bias and average standard
error (SE). Here, the word bias is used in the conventional sense of the word in
statistics, namely the difference between true parameters and expected values
of their estimates. To assess the degree of bias and to obtain a purer measure
of variability in the estimates of parameters, we also calculate average SEs,
defined by

SEa = [

nb∑
q=1

(â(q) − ā)′(â(q) − ā)/25nb]
1/2 (110)

for loadings, where ā is the mean estimate of loadings over replications. This
is similar to (109) except that a(pop) in (109) is replaced by ā. Average SEs
for the other groups of parameters are similarly defined. When the SE’s are
not much different from the corresponding rmse’s, the biases in estimates are
considered small.

The average SEs can be calculated over replicated samples under the
present circumstances because the replicated samples of data are generated
from a population model. However, in practical data analytic situations, there
are no such replicated samples, and estimates of SEs must be obtained from
a single set of observed data. There are several techniques used to obtain es-
timates of SEs in such situations, among which the bootstrap method (Efron,
1979) is perhaps most widely applicable. It can be used as far as cases (sam-
pling units) are statistically independent. In this method, many so-called boot-
strap samples are generated by repeatedly resampling cases from an original
data set. Each bootstrap sample is analyzed by the methods of interest. Differ-
ent parameter estimates are produced from different bootstrap samples, but
their variabilities provide estimates of SEs. The bootstrap estimates of SEs
can be obtained for any groups of parameters in SEMs. We take the first
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Monte Carlo data set as the original data set from which bootstrap samples
are generated.

Another possible estimate of SEs is based on the ordinary least squares
(OLS) regression, in which all assumptions underlying the OLS estimation are
supposed to hold. Those assumptions include: Predictor variables are fixed
(not random) and measured without errors, and unpredictable portions of
observations on the criterion variable vary independently from each other with
constant variance σ2. Then, the OLS estimates of SEs for the unconstrained
path coefficients are given by

σ̂2
β̂u

= σ̂2
udiag(Φ̂

−1
1:3), (111)

where Φ̂1:3 is an estimate of Φ1:3 introduced in (98), and

σ̂2
u = φ̂44 + φ̂55 − φ̂

′
4,5β̂u, (112)

while those for the constrained path coefficients by

σ̂2
β̂c

= σ̂2
cdiag((L′Φ̂1:3L)−1)1, (113)

where 1 is a vector of ones, and

σ̂2
c = φ̂44 + φ̂55 − φ̂

′
4,5β̂c. (114)

The σ̂2
β̂u

and σ̂2
β̂c

are averaged over the regression coefficients to obtain mean

SEs. As is clear from the above, the OLS estimates of SEs can only be obtained
when specific path models are postulated as the structural model.

As noted earlier, in the asymptotically efficient estimators, such as the full-
GLS and full-ML methods, square roots of the diagonal elements of the inverse
of the Hessian matrix at the convergence point provide estimates of SEs. We
are interested in comparing SEs obtained by these methods against each other
and against those obtained from replicated samples of data.

Parameters in SEMs are not entirely free to vary, but restricted. The load-
ings should all be between -1 and 1 if the data are standardized. The unique
variances should be non-negative. A covariance (correlation) matrix among
LVs must be positive definite, that is, their eigenvalues must all be positive.
Solutions that violate these restrictions are called improper solutions. As far
as we know, no methods for estimating SEMs are equipped with proper de-
vices for preventing improper solutions. In our simulation study, frequencies
of improper solutions are counted and compared across different methods.

7.4 The results

The results of the Monte Carlo study are summarized in Tables 2 and 3. Table
2 reports rmse’s as functions of sample sizes, (n = 200, 400, and 800), groups
of parameters (loadings, unique variances, covariances among LVs, and uncon-
strained and constrained path coefficients), and sixteen methods of parameter
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estimation. The smaller the rmse, the better is the parameter recovery. Table 2
also reports frequencies of improper solutions out of 100 Monte Carlo samples
in the last column. These frequencies represent the number of data sets that
produced improper solutions of some kind, although a vast majority of im-
proper solutions were due to non-positive definite estimates of the covariance
matrix among LVs.

As expected, rmse decreases as the sample size increases. It is observed that
there are only small differences in rmse between Bentler(ULS) and Bentler(GLS).
Between Croon’s bias correction method and Skrondal-Laake’s (SL) method,
the former seems to have a clear edge over the latter. There are also only
small differences between FABIN2 and FABIN3. Both methods work remark-
ably well in terms of both parameter recovery and frequencies of improper
solutions. Ihara-Kano’s method, on the other hand, does not seem to work as
well in parameter recovery or in the frequency of improper solutions. In fact,
it produces excessive numbers of improper solutions across all sample sizes. It
may also be observed that there are only small differences among three PLS
methods. This indicates that iterations beyond the first are indeed unnecessary
(although this may be due to the fact that the population weights are homoge-
neous), and that a more “elaborate” choice of ĉi in PLSc∗ is not of much help
in improving parameter recovery, while increasing the number of improper
solutions. All three versions of PLSc tend to produce larger rmse’s for param-
eters in measurement models (loadings and unique variances) than the other
methods examined in this study, while producing approximately equal rmse’s
for parameters in structural models (correlations between LVs and path coeffi-
cients), which is probably more important in SEMs. Both blockwise-ULS and
blockwise-ML with Croon’s correction work very well. They work as well as
the full versions of these methods (full-ULS and full-ML) in most cases, and
even better in some cases. Somehow Bollen’s 2SLS method performs rather
poorly across all sample sizes. The overall winner in parameter recovery seems
to be Hägglundd’s methods (FABIN2 and FABIN3). They work as well as
blockwise-ML and full-ML in both rmse’s and frequencies of improper solu-
tions with much less computation time.

One important observation to be made is that what is evaluated in the
simulation study is the combinations (=interactions) of the initial LV extrac-
tion methods, the methods of LV scores construction methods, and the bias
correction methods. From the simulation study, it seems clear now that the
initial LV extraction methods are the most important factor. The effects of
the LV score construction methods are relatively minor, provided that proper
bias corrections are applied.

Table 3 reports four kinds of estimates of SEs (Monte Carlo, bootstrap,
OLS, and inverse Hessian) of estimated parameters obtained by four selected
methods of parameter estimation (FABIN3, PLSc1, blockwise-ML, and full-
ML) for varying sample sizes (n = 200, 400, and 800). It should be noted
first that, as expected, estimates of SEs invariably get smaller as the sample
size increases. We next look at the rows labeled “Monte Carlo” more closely.
These are the SEs obtained from replicated data sets generated according to
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Table 2 Parameter recovery: Root mean square error (rmse) per parameter obtained by
the various methods

Sample L.V. Unique L.V. Path Coeff. Improper
Size Methods Load. Vari. Corr. Unconst. Const. Solu.

Bentler(ULS)/Croon 558 772 662 591 425 11
Bentler(GLS)/Croon 570 642 674 595 429 5
Bentler(ULS)/SL 617 443
Bentler(GLS)/SL 614 455
FABIN2/Croon 456 644 661 592 426 12
FABIN3/Croon 463 644 663 596 429 7
Ihara-Kano/Croon 458 780 675 607 439 39

200 PLSc 799 1092 656 590 423 11
PLSc1 774 1061 656 589 423 10
PLSc∗ 772 1041 662 596 420 27
blockwise-ULS/Croon 455 631 661 592 426 12
blockwise-ML/Croon 458 638 662 596 428 9
Bollen(2SLS) 1008 710
full-ULS 512 711 662 682 18
full-GLS 533 1234 764 700 11
full-ML 432 601 666 632 19

Bentler(ULS)/Croon 401 555 486 399 301 6
Bentler(GLS)/Croon 408 445 494 399 301 3
Bentler(ULS)/SL 413 319
Bentler(GLS)/SL 416 323
FABIN2/Croon 320 446 486 399 300 7
FABIN3/Croon 324 450 487 398 300 4
Ihara-Kano/Croon 326 586 493 406 307 24

400 PLSc 560 770 481 400 301 8
PLSc1 541 744 481 400 301 9
PLSc∗ 541 739 481 401 302 14
blockwise-ULS/Croon 320 445 486 399 300 11
blockwise-ML/Croon 321 446 487 398 300 9
Bollen(2SLS) 714 522
full-ULS 361 500 485 530 9
full-GLS 340 694 518 491 10
full-ML 305 423 486 446 12

Bentler(ULS)/Croon 278 389 336 294 214 1
Bentler(GLS)/Croon 279 322 338 294 214 1
Bentler(ULS)/SL 293 217
Bentler(GLS)/SL 295 220
FABIN2/Croon 230 321 337 294 215 1
FABIN3/Croon 230 322 337 297 216 1
Ihara-Kano/Croon 234 408 342 406 307 13

800 PLSc 395 549 337 294 214 1
PLSc1 380 529 337 294 214 1
PLSc∗ 380 527 338 295 214 1
blockwise-ULS/Croon 230 321 337 294 215 1
blockwise-ML/Croon 230 322 337 293 214 1
Bollen(2SLS) 523 360
full-ULS 258 360 337 451 0
full-GLS 229 415 356 338 1
full-ML 218 305 338 352 0
Tabled numbers should be multiplied by 10−4.
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the assumed population model. Observe that the values of the Monte Carlo SEs
are all similar to the corresponding values of rmse’s in the previous table. This
means that in all cases there is little bias in the estimates of parameters. The
Monte Carlo SEs also serve as benchmark SEs, against which other estimates
of SEs obtained from single samples are compared.

Following the Monte Carlo SEs, the bootstrap estimates of SEs are re-
ported in the table. It may be observed that they are all fairly close to the
Monte Carlo SEs. This indicates that the bootstrap SEs are reasonably good
approximations to the Monte Carlo SEs, so that they may be safely used in
significance testing of estimated parameters. An exception is the bootstrap
SEe for the loadings by PLSc1, which are appreciably larger than the corre-
sponding Monte Carlo SEs. This indicates that the tests of loading parameters
in PLSc1 tend to be more conservative than they are supposed to.

The OLS estimates of SEs are available only for path coefficients. It should
be pointed out that they tend to be smaller than the corresponding Monte
Carlo SEs across all methods and sample sizes. This implies that the tests of
significance of path coefficients based on the OLS estimates of SEs tend to
be too liberal, leading to too many rejections of the null hypotheses stating
that the corresponding population path coefficients are zero. Perhaps, it is too
optimistic to expect that the assumptions underlying OLS hold for LVs in
SEMs.

The estimates of SEs obtained by the inverse Hessian are available only
for full-ML. They consistently overestimate the Monte Carlo SEs across all
parameter types and sample sizes. Consequently, the significance tests of pa-
rameters based on these estimates tend to be more conservative than they
should. It may be that numerical approximations to the Hessian matrix is
accurate enough for optimization, but not for obtaining the SE estimates.

8 Discussion

In this paper, we compared several estimators of parameters in structural equa-
tion models in terms of their parameter recovery capability (as measured by
rmse’s) and efficiency (as measured by SEs), which are almost synonymous to
each other in near absence of bias, as in the preset situation. The estimators
included four versions of Bentler’s non-iterative confirmatory factor analysis,
two versions of Hägglund’s IV estimation method, Ihara-Kano’s non-iterative
uniqueness estimation method, three versions of PLSc (Consistent PLS), and
two blockwise estimation methods. These methods were used for initial LV ex-
tractions to estimate parameters in measurement models (factor loadings and
unique variances), followed by calculations of LV scores and bias corrections
to estimate parameters in structural models (covariances among LVs and path
coefficients). The performance of these methods are also compared with one-
step estimation methods, such as the full-ULS, -GLS, and -ML methods, and
Bollen’s 2SLS method, that estimate all relevant parameters simultaneously.
It may be concluded that Hägglund’s (1982) FABIN3 combined with Croon’s
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Table 3 Estimates of standard errors for selected methods

Sample L.V. Unique L.V. Path Coeff.
Size Methods Kinds of SE Load. Vari. Corr. Unconst. Const.

FABIN3 Monte Carlo 458 636 653 592 426
Bootstrap 468 644 678 601 432
OLS 506 357

PLSc1 Monte Carlo 746 1027 693 586 420
Bootstrap 893 1010 693 582 420

200 OLS 487 419
blockwise-ML Monte Carlo 455 633 653 593 426

Bootstrap 461 634 678 601 435
OLS 506 357

full-ML Monte Carlo 429 597 656 604
Inv. Hess. 928 851 946 1078

FABIN3 Monte Carlo 318 443 479 395 296
Bootstrap 327 453 473 418 302
OLS 355 250

PLSc1 Monte Carlo 522 799 473 396 296
Bootstrap 630 720 464 412 297

400 OLS 352 248
blockwise-ML Monte Carlo 317 442 479 394 296

Bootstrap 325 450 476 421 307
OLS 355 250

full-ML Monte Carlo 301 419 479 401
Inv. Hess. 657 605 673 759

FABIN3 Monte Carlo 229 320 330 290 211
Bootstrap 228 317 335 294 215
OLS 250 176

PLSc1 Monte Carlo 367 571 329 291 210
Bootstrap 442 509 331 291 213

800 OLS 249 176
blockwise-ML Monte Carlo 229 320 330 290 212

Bootstrap 227 316 336 295 216
OLS 249 176

full-ML Monte Carlo 217 302 331 295
Inv. Hess. 464 427 475 536

Tabled numbers should be multiplied by 10−4.

bias correction methods worked best among all the methods compared in this
paper. It is non-iterative, easy to implement, and resistant to improper solu-
tions.

We also examined methods for obtaining estimates of SEs of parameter
estimates from a single data set, the bootstrap method, OLS estimates of
SEs for path coefficients, and SEs based on the inverse Hessian in full-ML,
against those obtained from replicated samples (Monte Carlo estimates). It
was found that the bootstrap method could obtain estimates of SEs close
to the Monte Carlo estimates of SEs, while the OLS estimates tended to be
systematically smaller, and the inverse Hessian estimates systematically larger,
than the Monte Carlo estimates.

It should be pointed out, however, that our empirical study is somewhat
limited in scope. In particular, only very simple SEMs were assumed and no
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structural errors were incorporated in the data generation process. The perfor-
mance of the methods we examined may well be affected by these factors. More
comprehensive studies are in order so as to draw more general conclusions on
the performance of the methods. A study is currently underway that specif-
ically addresses potential impacts of structural errors such as cross loadings
(i.e., existence of indicators that significantly load on more than one LV) on
the quality of parameter estimates obtained by the methods we investigated
in the present paper.

Finally, it should be noted that MATLAB routines implementing the esti-
mation methods discussed in this paper are available from Online Resource.
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