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1 Introduction

The analysis of multiple categorical variables is a cornerstone in many scienti-
fic investigations. Measuring and assessing the nature of the association among
these variables are often undertaken by partitioning a multi-way statistic into
univariate, bivariate, trivariate, and higher order terms (Carlier and Kroon-
enberg, 1996; Lombardo et al., 1996; Loisel and Takane, 2016; Beh and Davy,
1998). For three-way contingency tables, Lancaster (1951) presented two met-
hods of partitioning Pearson’s chi-square statistic (Pearson, 1900). One, des-
cribed in Section 4 of his paper, is based on repeated calculations of the chi-
square statistics for full and various marginal tables and subtracting the latter
from the former. An advantage of his partition is that it provides flexibility in
specifying a priori marginal probabilities. His exposition was rather informal,
however, and no explicit expressions of the terms in the partition were given,
nor proofs of their orthogonality; see also Bishop et al. (1975, p.361). Toward
the end of his paper, Lancaster proposed another method, using orthogonal
transformations of variables arranged in hierarchical order. This method also
enjoys flexibility in specifying a priori marginal probabilities. His discussion,
however, focused primarily on the analysis of a 2 × 2 × 2 table. Although he
claimed that it could be implemented for the analysis of variables consisting
of more than 2 categories, he did not present any formal derivations, proofs,
or examples, to highlight how this could be achieved.

In this paper, we give a new general framework and strategy for orthogonal
partitions of Pearson’s chi-square statistic under the assumption of complete
independence of the variables. This method, along with matrix formulations,
overcomes some of the difficulties of Lancaster’s methods mentioned above.
Specifically, it provides explicit expressions of the terms in the partitions,
which makes their meaning (i.e., what they actually represent) clearer. This
method makes orthogonality and other relations (e.g., inclusion) among the
terms in the partitions easier to observe. It is also applicable to contingency
tables of any size, and is easily extensible to tables of any order.

Another advantage of the proposed partition is that it accommodates a
variety of different hypotheses concerning the distribution of the marginal pro-
babilities (expected proportions). Simultaneous tests of the marginal and joint
probabilities are possible (Lang, 1996). The partitions presented in this paper
are based on the ANOVA-like familywise partitions of Pearson’s chi-square sta-
tistic (Pearson, 1900; Lancaster, 1951) when alternative representations of the
expected proportions (hypothesised probabilities) are provided. Most often,
these probabilities are estimated by using the margins of the empirical distri-
bution that underly the data (Carlier and Kroonenberg, 1996; Kroonenberg,
2008; Lombardo et al., 1996; Beh et al., 2007; Beh and Lombardo, 2014). In
some cases, however, the probabilities are prescribed by the analyst, because
a priori knowledge of the phenomena suggests otherwise (Loisel and Takane,
2016). See the discussion of Andersen (1980, p.92-93) when, for example, it
is known that all categories have a priori the same probability of occurring.
Also, much like goodness-of-fit tests designed for the analysis of one-way data
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where the hypothesised marginal probabilities are theoretically derived (Ag-
resti, 1990; Andersen, 1980, 1991), studying two-way and multi-way tables in
a similar manner poses interesting results (as we shall see).

A variety of other methods and approaches have been proposed for analyses
of contingency tables (Agresti, 1990; Andersen, 1980, 1991; Bishop et al., 1975;
Friendly, 1994; Goodman, 1969, 1970; van der Heijden and de Leeuw, 1985).
Among them, perhaps the strongest competitor to Pearson’s chi-square statis-
tic is the log-likelihood ratio (LR) statistic often used in log-linear analyses of
contingency tables. Partitions similar to those presented in the present paper
for Pearson’s statistic have also been derived for the LR statistic (Cheng et al.,
2006; Goodman, 1969; Loisel and Takane, 2016). We discuss these partitions
and compare them with those for Pearson’s statistic in Section 4.1, using a
concrete example.

This paper is organized as follows. In Section 2, we present formal deriva-
tions of the basic partitions. We first give some general results on orthogonal
projectors to be used in the derivations (Section 2.1). We then apply these
results to derive partitions for one-way (Section 2.2), two-way (Section 2.3),
three-way (Section 2.4), and higher-order tables (Section 2.5). In deriving these
partitions, we also discuss their basic properties (e.g., orthogonality of terms
in the partitions). In Section 3, we discuss representative scenarios concerning
possible specifications of marginal probabilities, and their consequences in dis-
tributional properties of the terms in the partitions. Section 4 provides some
empirical examples to demonstrate the use of the proposed partitions, followed
by brief concluding remarks in Section 5.

2 Partitioning the chi-square statistic

In this section, we give ANOVA-like familywise partitions of Pearson’s chi-
square statistic under arbitrary marginal probabilities. We start with one-way
tables, and then extend the results obtained for one-way tables to higher-order
tables. This makes it easier to see that our approach can be easily extended
to any complex contingency tables.

2.1 Preliminary results

Consider a categorical variable, A, with A categories belonging to the space
RA, and let fA denote an A-component vector of observed frequencies from
a multinomial population MN(pA) out of n = f ′A1A independently replicated
trials, where pA is the vector of probabilities of A mutually exclusive events,
and 1A is the A-component vector of unities. Let DA denote the diagonal
matrix with the elements of pA as its diagonal elements so that pA = DA1A,
and let p̂A = fA/n be an observed counterpart to pA. Pearson’s chi-square



4 Rosaria Lombardo et al.

statistic in this situation can be expressed as

X2 = n(p̂A − pA)′D−1A (p̂A − pA)

= n(p̂A − pA)′D−1A p̂A = n(p̂′AD−1A p̂A − 1), (1)

which is known to asymptotically follow the chi-square distribution with A−1
degrees of freedom (df) (written as X2 ; χ2

A−1) when the specified value
of pA = p∗A is correct. Note that pA is the expected value of p̂A, and that
D−1A is a g-inverse of the covariance matrix of

√
np̂A, given by nVar[p̂A] =

DA − pAp′A ≡ ΣA. It is interesting to note that D−1A in (1) can be replaced
by any g-inverse matrix of ΣA, with D−1A being a special case.

The following projectors play central roles in the sequel:

R1/A = D
1/2
A 1A1′AD

1/2
A = p

1/2
A (p

1/2
A )′, (2)

and its complement,

Q1/A = IA −R1/A = IA −D
1/2
A 1A1′AD

1/2
A = IA − p

1/2
A (p

1/2
A )′, (3)

where IA is the identity matrix of order A. Note that R1/A is the ortho-

gonal projector onto Sp(D
1/2
A 1A), while Q1/A is the orthogonal projector

onto Ker(1′AD
1/2
A ), where Sp indicates the space spanned by the column vec-

tors in its argument, and Ker indicates the null space of its argument, i.e.,

Ker(1′AD
1/2
A ) indicates the space spanned by all vectors x’s such that 1′AD

1/2
A x =

0. It follows that

R1/A + Q1/A = IA (complementarity), (4)

R2
1/A = R1/A and Q2

1/A = Q1/A (idempotency), (5)

R′1/A = R1/A and Q′1/A = Q1/A (symmetry), (6)

and

R1/AQ1/A = Q1/AR1/A = OA, (orthogonality), (7)

where OA is the zero matrix of order A. These properties are standard pro-
perties of orthogonal projectors (Yanai et al., 2011), and can easily be ve-
rified directly. Note that ΣA introduced earlier can be expressed as ΣA =

D
1/2
A Q1/AD

1/2
A .

2.2 One-way tables

When applying the complementarity property of Equation (4) to D
−1/2
A p̂A,

we obtain

D
−1/2
A p̂A = (R1/A + Q1/A)D

−1/2
A p̂A = R1/AD

−1/2
A p̂A + Q1/AD

−1/2
A p̂A. (8)
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The orthogonality of the two terms on the right hand side of (8) is obvious
from Equation (7). The n times squared norm of the second term is given by

X2
Total ≡ X2

A = np̂′AD
−1/2
A Q1/AD

−1/2
A p̂A

= np̂′A(D−1A − 1A1′A)p̂A = n(p̂′AD−1A p̂A − 1), (9)

which is equal to X2 in Equation (1). It is interesting to note that D−1A −1A1′A
in the above formula is also a (symmetric reflexive) g-inverse of ΣA.

Let pa and p̂a (a = 1, · · · , A) denote the ath element of pA and p̂A, re-
spectively. Then Equation (9) can be rewritten, in scalar notation, as

X2
Total = n

A∑
a=1

1

pa
(p̂a − pa)2 = n

(
A∑

a=1

p̂2a
pa
− 1

)
. (10)

2.3 Two-way tables

Suppose that there is a second categorical variable, B, with B categories. Let
P̂AB denote an A by B table of observed probabilities of cross classified events
by the two variables. Let DA and DB denote the diagonal matrices whose
diagonal elements are, respectively, the elements of pA and pB , the vectors of
marginal probabilities of variables A and B. Furthermore, let R1/B and Q1/B

be defined analogously to R1/A and Q1/A, as in Equations (2) and (3). These
matrices have similar properties to R1/A and Q1/A, as stated in Equation (4)
through Equation (7).

For the purpose of partitioning onto the spaceRA×B , we apply R1/A+Q1/A

to the left hand side and R1/B+Q1/B to the right hand side of D
−1/2
A P̂ABD

−1/2
B

to obtain

D
−1/2
A P̂ABD

−1/2
B = (R1/A + Q1/A)D

−1/2
A P̂ABD

−1/2
B (R1/B + Q1/B), (11)

which can be vectorized, using a vec operator and Kronecker products, as

M
1/2
ABp̂AB ≡ vec(D

−1/2
A P̂ABD

−1/2
B )

= [(R1/B + Q1/B)⊗ (R1/A + Q1/A)]M
1/2
ABp̂AB

= (R1/B ⊗R1/A + R1/B ⊗Q1/A + Q1/B ⊗R1/A

+Q1/B ⊗Q1/A)M
1/2
ABp̂AB , (12)

where MAB = D−1B ⊗ D−1A . (Incidentally, this matrix is a g-inverse of the
covariance matrix of

√
np̂AB , which is given by ΣAB = DB ⊗DA − pBp′B ⊗

pAp′A.)
The total chi-square is calculated by

X2
Total = n(p̂AB − pB ⊗ pA)′MAB(p̂AB − pB ⊗ pA)

= np̂′ABM
1/2
AB [IAB − (R1/B ⊗R1/A)]M

1/2
ABp̂AB

= np̂′ABM
1/2
ABQ1/ABM

1/2
ABp̂AB , (13)
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where Q1/AB = IAB −R1/AB and R1/AB = R1/B ⊗R1/A. Notice that R1/AB

and Q1/AB are both orthogonal projectors having similar properties to R1/A

and Q1/B , as given in Equations (4) through (7).
The orthogonality of the four terms on the right hand side of Equation

(12) may be readily seen from Equation (7). For example, the second and the
fourth terms are orthogonal, since

p̂′ABM
1/2
AB(R1/B ⊗Q1/A)(Q1/B ⊗Q1/A)M

1/2
ab p̂AB

= p̂′ABM
1/2
AB(R1/BQ1/B ⊗Q1/A)M

1/2
ABp̂AB

= p̂′ABM
1/2
AB(OB ⊗Q1/A)M

1/2
ABp̂AB = 0, (14)

where OB is the zero matrix of order B. Consequently, X2
Total can be partiti-

oned as
X2

Total = X2
A +X2

B +X2
AB , (15)

where
X2

A = np̂′ABM
1/2
AB(R1/B ⊗Q1/A)M

1/2
ABp̂AB , (16)

X2
B = np̂′ABM

1/2
AB(Q1/B ⊗R1/A)M

1/2
ABp̂AB , (17)

and
X2

AB = np̂′ABM
1/2
AB(Q1/B ⊗Q1/A)M

1/2
ABp̂AB . (18)

The X2
A, X2

B , and X2
AB represent part chi-squares for the main effect of A,

the main effect of B, and the interaction between A and B.
Let QX and QY be two orthogonal projectors such that QXQY = QY QX =

QY . This implies Sp(QX) ⊃ Sp(QY ), that is, the latter is a subspace of the
former. We have Q1/AB(R1/B ⊗ Q1/A) = (R1/B ⊗ Q1/A)Q1/AB = R1/B ⊗
Q1/A, Q1/AB(Q1/B ⊗ R1/A) = (Q1/B ⊗ R1/A)Q1/AB = Q1/B ⊗ R1/A, and
Q1/AB(Q1/B ⊗ Q1/A) = (Q1/B ⊗ Q1/A)Q1/AB = Q1/B ⊗ Q1/A, so that
Sp(Q1/AB) ⊃ Sp(R1/B ⊗Q1/A), Sp(Q1/AB) ⊃ Sp(Q1/B ⊗R1/A), and
Sp(Q1/AB) ⊃ Sp(Q1/B ⊗Q1/A), implying that Sp(Q1/AB) includes all of the
other three spaces as its subspaces.

Let pa. and p.b be the ath and bth elements of pA and pB , and let p̂a.
and p̂.b represent their observed counterparts. Further, let p̂ab represent the
observed joint proportion of the ath category of variable A and the bth category
of variable B (i.e., the abth element of P̂AB). Then, X2

Total, X
2
A, X2

B , and X2
AB

can be written as

X2
Total = n

A∑
a=1

B∑
b=1

1

pa.p.b
(p̂ab − pa.p.b)2, (19)

X2
A = n

A∑
a=1

1

pa.
(p̂a. − pa.)2, (20)

X2
B = n

B∑
b=1

1

p.b
(p̂.b − p.b)2, (21)
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and

X2
AB = n

A∑
a=1

B∑
b=1

1

pa.p.b
(p̂ab − p̂a.p.b − pa.p̂.b + pa.p.b)

2. (22)

The correspondence between the matrix and scalar representations can be
easily verified by elaborating the matrices between p̂′AB and p̂AB in Equations
(13), (16), (17), and (18). Note that Equations (18) and (22) provide explicit
expressions of X2

AB , which were defined by

X2
AB = X2

Total −X2
A −X2

B

in Lancaster (1951) based on the assumption of Equation (15).

2.4 Three-way tables

Suppose that, in addition to the previous two variables, there is a third varia-
ble, called C with C categories, giving rise to a three-way contingency tables.
Let p̂ABC denote a vector of observed proportions p̂abc of the joint event abc
arranged in such a way that a is the fastest moving index and c is the slo-
west moving index. Let DA, DB , and DC represent the diagonal matrices
whose diagonal elements are marginal probabilities of categories of the three
variables, and let MABC = D−1C ⊗D−1B ⊗D−1A . Define R1/C and Q1/C ana-
logously to R1/A and Q1/A as in Equations (2) and (3). Then, the projection

of M
1/2
ABC p̂ABC onto the space RA×B×C is given by

M
1/2
ABC p̂ABC

= [(R1/C + Q1/C)⊗ (R1/B + Q1/B)⊗ (R′1/A + Q1/A)]M
1/2
ABC p̂ABC

= (R1/C ⊗R1/B ⊗R1/A + R1/C ⊗R1/B ⊗Q1/A + R1/C ⊗Q1/B ⊗R1/A

+Q1/C ⊗R1/B ⊗R1/A + R1/C ⊗Q1/B ⊗Q1/A + Q1/C ⊗R1/B ⊗Q1/A

+Q1/C ⊗Q1/B ⊗R1/A + Q1/C ⊗Q1/B ⊗Q1/A)M
1/2
ABC p̂ABC . (23)

The eight terms on the righthand side of Equation (23) are mutually orthogo-
nal, which can be readily verified in a manner similar to Equation (14). The n
times squared norms of the last seven terms give part chi-squares for the three
main effects A, B, and C, the three two-way interaction effects AB, AC, and
BC, and the one three-way interaction effect ABC. Specifically, we can write

the n times squared norm of M
1/2
ABC p̂ABC as

X2
Total = n(p̂ABC − pC ⊗ pB ⊗ pA)′MABC(p̂ABC − pC ⊗ pB ⊗ pA)

= n(p̂′ABCMABC p̂ABC − 1)

= np̂′ABCM
1/2
ABC [IABC − (R1/C ⊗R1/B ⊗R1/A)]

×M
1/2
ABC p̂ABC ,

= np̂′ABCM
1/2
ABCQ1/ABCM

1/2
ABC p̂ABC , (24)
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where Q1/ABC = IABC −R1/ABC and R1/ABC = R1/C ⊗R1/B ⊗R1/A. The
R1/ABC and Q1/ABC are both orthogonal projectors having similar properties
to R1/AB and Q1/AB defined in the previous section. Also, the n times squared
norm of the first of the seven terms as

X2
A = np̂′ABCM

1/2
ABC(R1/C ⊗R1/B ⊗R1/A)M

1/2
ABC p̂ABC . (25)

The X2
B and X2

C can be defined analogously to Equation (25). Furthermore,
the n times squared norm of the fifth term in (23) is equal to

X2
AB = np̂′ABCM

1/2
ABC(R1/C ⊗Q1/B ⊗Q1/A)M

1/2
ABC p̂ABC . (26)

The X2
AC and X2

BC can be defined analogously to Equation (26). Finally, the
n times squared norm of the last term of (23) is given by

X2
ABC = np̂′ABCM

1/2
ABC(Q1/C ⊗Q1/B ⊗Q1/A)M

1/2
ABC p̂ABC . (27)

We then have the following partition of X2
Total:

X2
Total = X2

A +X2
B +X2

C +X2
AB +X2

AC +X2
BC +X2

ABC . (28)

The first three terms on the righthand side of Equation (28) pertain to the main
effects of the three variables, the next three terms to the two-way interactions,
and the last one to the three-way interaction effect.

Let pa.., p.b., and p..c denote the ath, bth, and cth element of pA, pB , and pC ,
respectively, and let p̂a.., p̂.b., and p̂..c represent their observed counterparts.
Let p̂abc denote the observed joint proportion of the event abc. Further, let p̂ab.,
p̂a.c, and p̂.bc represent the observed two-way marginal probabilities derived
from p̂abc’s by summing them up over the subscript replaced by a dot (e.g.,

p̂ab. =
∑C

c=1 p̂abc). Then, the total chi-square in Equation (24) and the terms
of its partition (from Equations (25) through (27)) can be re-expressed, in
scalar notation, as

X2
Total = n

A∑
a=1

B∑
b=1

C∑
c=1

1

pa..p.b.p..c
(p̂abc − pa..p.b.p..c)2, (29)

X2
A = n

A∑
a=1

1

pa..
(p̂a.. − pa..)2, (30)

X2
AB = n

A∑
a=1

B∑
b=1

1

pa..p.b.
(p̂ab. − p̂a..p.b. − pa..p̂.b. + pa..p.b.)

2, (31)

and

X2
ABC = n

A∑
a=1

B∑
b=1

C∑
c=1

1

pa..p.b.p..c
(p̂abc − p̂ab.p..c − p̂a.cp.b. − p̂.bcpa..

+p̂a..p.b.p..c + p̂.b.pa..p..c + p̂..cpa..p.b. − pa..p.b.p..c)2. (32)
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The X2
B and X2

C can be re-expressed similarly to Equation (30), and X2
AC

and X2
BC can be re-expressed similarly to Equation (31), by permuting the

subscripts appropriately. The correspondence between matrix and scalar re-
presentations can be easily established similarly to the two-way case. Note
that Equations (26) and (27) (and Equations (31) and (32)) give explicit ex-
pressions of X2

AB and X2
ABC , which were defined by

X2
AB = n

A∑
a=1

B∑
b=1

1

pa..p.b.
(p̂ab. − pa..p.b.)2 −X2

A −X2
B ,

and

X2
ABC = X2

Total −X2
A −X2

B −X2
C +X2

AB +X2
AC +X2

BC

in Lancaster (1951).

2.5 Extensions to higher-order tables

It is now straightforward to extend the above derivations to higher-order ta-
bles. For four-way tables,

M
1/2
ABCDp̂ABCD

= [(R1/D + Q1/D)⊗ (R1/C + Q1/C)⊗ (R1/B + Q1/B)

⊗(R1/A + Q1/A)]M
1/2
ABCDp̂ABCD, (33)

where MABCD = D−1D ⊗ D−1C ⊗ D−1B ⊗ D−1A , and p̂ABCD is the vector of
observed probabilities arranged in a similar way to the three-way case (i.e., in
such a way that the category index for variable D is the slowest moving index).
The righthand side of Equation (33) may be further elaborated similarly to
the last equation in (23) to obtain a sixteen-term partition. Dropping the first
term (pertaining to the grand mean), the total chi-square is partitioned into
the sum of fifteen part chi-squares, four main effects, six two-way interaction
effects, four three-way interaction effects, and one four-way interaction effect.

For higher-order tables, simply define, for any newly added variable Y,
MABCD···Y = D−1Y ⊗MABCD···, add (R1/Y + Q1/Y )⊗ immediately follo-
wing the left bracket on the righthand side of Equation (33), and construct
p̂ABCD···Y in such a way that the category index for variable Y is the slowest
moving index. In the general case of m variables, there will be 2m terms in the
familywise partition of the total chi-square. Dropping the first term (pertai-
ning to the grand mean), the number of the jth order interaction effects can

be calculated by

(
m
j

)
= m!

j!(m−j)! .
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3 Scenarios concerning the specification of marginal probabilities

In deriving the partitions of the total chi-squares in the previous section, the
problem of specifying marginal probabilities (pA, pB , etc.) was left open. There
are two conceivable scenarios for the specification of marginal probabilities for
each variable. One is in which marginal probabilities are prescribed by the ana-
lyst. The prescribed values, denoted as p∗A, are supposed to come from sources
independent from the data. They may be theoretically driven or derived on
the basis of prior knowledge about the phenomena of concern. In rare cases,
they may be set equal across all categories of a variable, with a lack of strong
theory or prior knowledge that suggest otherwise. The variable whose mar-
ginal probabilities are prescribed is called the Scenario 1 variable hereafter.
Often, however, there are no such theories or prior knowledge, and marginal
probabilities have to be estimated from the data. The variable whose marginal
probabilities are estimated (i.e., pA = p̂A) is called the Scenario 2 variable.
Note that the variable whose margins are a priori fixed is also called a Sce-
nario 2 variable. Distributional properties as well as calculated values of the
total and the main effect part chi-squares depend on the profiles of scenarios
of the variables concerned. Distributional properties of the part chi-squares for
the interaction effects, on the other hand, remain intact, although their values
change. In the following subsections, we elaborate on these points for tables
of different orders and under different profiles of scenarios.

3.1 One-way tables

In one-way tables, the variable of concern (variable A) must be a Scenario 1 va-
riable (because X2

Total is identically equal to 0 otherwise). Then, X2
Total = X2

A

in Equation (9) asymptotically follows the chi-square distribution with A− 1
df (χ2

A−1) if the prescribed value of pA = p∗A is correct. To see this, it is
useful to rely on some standard result on the asymptotic distribution of a
quadratic form involving central normal variables. Specifically, let x asymp-
totically follows a central normal distribution with the covariance matrix Σ
(i.e., x ; N (0,Σ)). Then, the quadratic form x′Cx asymptotically follows
the chi-square distribution with df equal to rank(ΣC) if and only if

ΣCΣCΣ = ΣCΣ (34)

for further details, seeAgresti (2002, p.589) Rao (1973, p.188). In the present

case, x =
√
nD
−1/2
A (p̂A−pA) ; N (0,Q1/A) and C = Q1/A, so that Equation

(34) is satisfied. The df of this chi-square is rank(Q1/A) = A− 1.

3.2 Two-way tables

The variables in two-way tables can be either a Scenario 1 variable or a Scena-
rio 2 variable. Both can be Scenario 1 variables (Profile 1), Scenario 2 variables
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(Profile 2), or a mixed case in which one is a Scenario 1 variable while the other
is Scenario 2 (Profile 3).

In Profile 1, X2
Total in Equation (13) asymptotically follows χ2

AB−1 under
the assumptions that the two variables are statistically independent and that
the prescribed marginal probabilities are correct (see Equation (19)). In this

case, we have x′Cx, where x =
√
nQ1/ABM

1/2
ABp̂AB ; N (0,Σ) with Σ =

Q1/AB and C = Q1/AB , so that ΣC = Q1/AB , and it can be easily seen
that the condition of Equation (34) is satisfied. The df for this chi-square
is rank(Q1/AB) = AB − 1. The X2

A in Equation (16), on the other hand,
asymptotically follows χ2

A−1 when the specified value of pA = p∗A is correct

(see Equation (20)), since x =
√
nQ1/ABM

1/2
ABp̂AB ; N (0,R1/B⊗Q1/A) and

C = R1/B⊗Q1/A, so that ΣC = R1/B⊗Q1/A. Again, it can be readily verified
that Condition (34) is satisfied. The df for this chi-square is rank(R1/B ⊗
Q1/A) = A − 1. Similarly, X2

B in Equation (17) asymptotically follows χ2
B−1

when the prescribed value of pB = p∗B is correct (see Equation (21)), and X2
AB

in Equation (18) asymptotically follows χ2
(A−1)(B−1) when the prescribed value

of pAB = p∗B ⊗ p̂A + p̂B ⊗ p∗A − p∗B ⊗ p∗A is correct (see Equation (22)).
It remains to be seen that the (asymptotic) distributions of X2

A, X2
B , and

X2
AB are mutually independent. This can be shown as follows: Two quadratic

forms x′C1x and x′C2x involving the same x, where x ; N (0,Σ) (asymp-
totically) follow independent chi-square distributions with respective df if and
only if

ΣC1ΣC2Σ = O (35)

(Ogasawara and Takahashi, 1951). If we apply this condition to show the
asymptotic independence of X2

A and X2
AB , for example, we have C1 = R1/B⊗

Q1/A, C2 = Q1/B ⊗Q1/A, and Σ = Q1/AB , so that ΣC1 = C1 and ΣC2 =
C2. Since C1C2 = OAB (see Equation (14)), then Equation (35) is satisfied.
Thus, the independence issue reduces to the orthogonality issue in the present
case. Independence of the asymptotic distributions of other pairs of part chi-
squares can be similarly verified.

In Profile 2, the chi-square variables above are redefined using the estimates

of pA and pB instead of their prescribed values. Let R̂1/A = D̂
1/2
A 1A1AD̂

1/2
A

and Q̂1/A = IA − R̂1/A. Further, define R̂1/B and Q̂1/B analogously. Then,
(11) can be rewritten as

D̂
−1/2
A P̂ABD̂

−1/2
B = R̂1/AD̂

−1/2
A P̂ABD̂

−1/2
B R̂1/B

+Q̂1/AD̂
−1/2
A P̂ABD̂

−1/2
B R̂1/B + R̂1/AD̂

−1/2
A P̂ABD̂

−1/2
B Q̂1/B

+Q̂1/AD̂
−1/2
A P̂ABD̂

−1/2
B Q̂1/B . (36)

The second term on the righthand side of the above partition is

Q̂1/AD̂
−1/2
A P̂ABD̂

−1/2
B R̂1/B

= (IA − D̂
1/2
A 1A1′AD̂

1/2
A )D̂

−1/2
A P̂ABD̂

−1/2
B D̂

1/2
B 1B1′BD̂

1/2
B

= D̂
−1/2
A P̂AB1B1′BD̂

1/2
B − D̂

1/2
A 1A1′AP̂AB1B1′BD̂

1/2
B = OAB ,
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where OAB is the zero matrix of order A×B, so that X2
A is identically equal

to 0 with 0 df. Similarly, X2
B = 0. The fourth term, on the other hand, is equal

to

Q̂′1/AD̂
−1/2
A P̂ABD̂

−1/2
B (IB − R̂1/B)

= Q̂1/AD̂
−1/2
A P̂ABD̂

−1/2
B

= D̂
−1/2
A (P̂AB − D̂A1A1′BD̂B)D̂

−1/2
B , (37)

so that

X2
AB = nvec(P̂AB − D̂A1A1′BD̂B)′(D̂−1B ⊗ D̂−1A )vec(P̂AB − D̂A1A1′BD̂B)

= n(p̂AB − p̂B ⊗ p̂A)′(D̂−1B ⊗ D̂−1A )(p̂AB − p̂B ⊗ p̂A). (38)

Since D̂A and D̂B approach true values of DA and DB , respectively as n goes
to infinity, the above X2

AB asymptotically follows χ2
(A−1)(B−1) when the two

variables are statistically independent. Note that in this case X2
Total = X2

AB .
As noted earlier, the distributional property of X2

AB remains the same as in
Profile 1, although its realized (observed) value typically differs. The above
chi-square term can be written, in scalar notation, as

X2
Total = X2

AB = n

A∑
a=1

B∑
b=1

1

p̂a.p̂.b
(p̂ab − p̂a.p̂.b)2, (39)

which can also be obtained from Equation (22) by replacing both pa. and p.b
by their estimates (i.e., p̂a. =

∑
b p̂ab and p̂.b =

∑
a p̂ab).

In Profile 3, in which one variable (say, variable A) is under Scenario 2,
while the other is under Scenario 1, we set pA = p̂A and pB = p∗B . The X2

A

becomes identically equal to zero, while X2
B remains the same as in Profile 1.

The X2
AB in Equation (22) becomes

X2
AB = n

A∑
a=1

B∑
b=1

1

p̂a.p∗.b
(p̂ab − p̂a.p̂.b)2, (40)

where p∗.b is the bth element of p∗B . The X2
AB above asymptotically follows

the χ2
(A−1)(B−1) under the assumptions that the two variables are statistically

independent, and that the prescribed marginal probabilities for variable B
are correct. Again, the distributional property remains unchanged, although
its realised value calculated from the data is likely to be different from that
calculated under different profiles. The X2

Total asymptotically follows χ2
A(B−1)

under the same conditions as the asymptotic null distribution of X2
AB is obtai-

ned.



Partitioning Pearson’s chi-square statistic 13

3.3 Three-way tables

Cases of three-way tables are similar. There are cases in which all three va-
riables are under Scenario 1 (Profile 1), cases in which all three variables are
under Scenario 2 (Profile 2), and mixed cases in which some variables are un-
der Scenario 1 while the others are under Scenario 2 (Profile 3), although there
are more variety of profiles in Profile 3 than in two-way tables.

In Profile 1, we set pY = p∗Y for all variables Y = A, B, and C in X2
Total,

X2
A, X2

B , X2
C , X2

AB , X2
AC , X2

BC , and X2
ABC defined in Section 2.3. They all

asymptotically follow the chi-square distributions with ABC−1, A−1, B−1,
C−1, (A−1)(B−1), (A−1)(C−1), (B−1)(C−1), and (A−1)(B−1)(C−1)
df, respectively, all under the hypotheses that the prescribed marginal proba-
bilities are correct, and that all three variables are statistically independent.

In Profile 2, all three main effect chi-squares (X2
A, X2

B andX2
C) become

identically 0 with 0 df, so that

X2
Total = X2

AB +X2
AC +X2

BC +X2
ABC .

All three two-way interaction part-chi-squares become similar to Equation (39)
with an additional dot in the subscripts replacing the index of the variable not
involved in the interaction (e.g., we replace p̂ab by p̂ab., p̂a. by p̂a.., p.b by p.b.
in case of X2

AB). The two-way interaction chi-squares, X2
AB , X2

AC , and X2
BC ,

all asymptotically follow the chi-square distributions with (A − 1)(B − 1),
(A− 1)(C − 1), and (B− 1)(C − 1) df, respectively, under the hypothesis that
all three variables are statistically independent. The three-way interaction chi-
square in Equation (32) becomes

X2
ABC = n

A∑
a=1

B∑
b=1

C∑
c=1

1

p̂a..p̂.b.p̂..c
(p̂abc−p̂ab.p̂..c−p̂a.cp̂.b.−p̂.bcp̂a..+2p̂a..p̂.b.p̂..c)

2,

(41)
which asymptotically follows χ2

(A−1)(B−1)(C−1) under the hypothesis that all

three variables are independent. The total chi-square, X2
Total, asymptotically

follows χ2
ABC−A−B−C+2 under the same condition.

In Profile 3, only those main effect chi-squares corresponding to the Scena-
rio 2 variables become 0 with 0 df, while those under Scenario 1 are unaffected.
There are three possible cases in the two-way interaction chi-squares, say X2

AB .
If both A and B are the Scenario 1 variables (Case 1), Equation (31) remains
essentially unchanged. If A is under Scenario 2, and B is under Scenario 1
(Case 2), X2

AB will be similar to Equation (40). If both A and B are under
Scenario 2 (Case 3), X2

AB will be similar to Equation (39). In all cases, X2
AB

asymptotically follows χ2
(A−1)(B−1) under the null hypothesis that depends on

the cases. In Case 1, the hypothesis is that all three variables are independent
and that the prescribed marginal probabilities are correct for both variables.
In Case 2, it is that the three variables are independent and that the pres-
cribed marginal probabilities for variable B are correct. In Case 3, only the
independence among the three variables is required. The three-way interaction
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chi-square is obtained by replacing the vectors of hypothesised marginal pro-
babilities in Equation (32) by their observed counterparts only for variables
under Scenario 2. This is a mixture of Equations (32) and (41). In all cases,
X2

ABC asymptotically follows χ2
(A−1)(B−1)(C−1) under the hypothesis that the

three variables are statistically independent, and that the prescribed marginal
probabilities are correct for all Scenario 1 variables. Under the same conditi-
ons, X2

Total asymptotically follows the chi-square distribution with df equal to
ABC − 1 minus the df’s of the Scenario 2 variables.

4 Illustrative examples

In this section, we present two exemplary analyses of three-way contingency
tables, based on the partitions of Pearson’s chi-square statistic described in
Section 2 under the scenarios in the specification of marginal probabilities dis-
cussed in Section 3. As emphasized earlier, one benefit of our general partitions
of the chi-square statistic is that it is valid whether the marginal probabili-
ties are prescribed (Scenario 1) or estimated from the data or fixed a priori
(Scenario 2). The former allows us to perform simultaneous tests of marginal
probabilities and independence among the variables. Often, only one of these
is conducted, ignoring the other.

4.1 An example data from Lang (1996)

The first data set we analyze is a contingency table from Lang (1996, p.1021)
displayed in Table 1. There are three variables (A, B, and C) with two cate-
gories (1 and 2) in each. Following Lang (1996), all three variables are treated
as the Scenario 1 variables with prescribed probabilities of p∗A = (0.5, 0.5)′,
p∗B = (0.5, 0.5)′, and p∗C = (0.5, 0.5)′ (marginal homogeneity across all three
variables). The part chi-squares in the seven-term partition of the total chi-
square derived under the assumptions of complete marginal homogeneity and
three-way independence are displayed in the second column of Table 2 along
with df’s and p-values in columns 3 and 4. These values were obtained using the
function chi2scen1 of the R package chi2x3way (Lombardo et al., 2017). Note
that our partition is exact, contrary to Lang’s suggested partition. As the tests
of interactions all depend on the correctness of prescribed marginal probabi-
lities, we first look at the values of the main effect chi-squares, none of which
turned out to be significant at the 5% level. This indicates that the hypothe-
sized marginal homogeneity is reasonably correct for all three variables, which
implies that the interaction chi-squares are assured to give unconfounded tests
of interactions from mis-specifications of the marginal probabilities. Only the
B by C interaction has turned out to be significant at the 5% level. This im-
plies that p̂a.. ≈ p∗a.. = 1/2, p̂.b. ≈ p∗.b. = 1/2, p̂..c ≈ p∗..c = 1/2, p̂ab. ≈ pa..p.b.,
p̂a.c ≈ pa..p..c, and X2

ABC ≈ 0 (where “≈” means ”approximately equal”),
which in turn implies p̂abc ≈ p̂.bc/2 for all a, b, and c. This suggests that the
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model in which one variable (variable A) is independent from the other two (B
and C) with equal probabilities of categories of variable A is the most plausible
model for this data set.

Table 1 The three-way contingency table from (Lang, 1996, p.1021).

C
A B 1 2
1 1 5 10

2 11 3
2 1 9 8

2 9 4

Table 2 Partition of Pearson’s three-way chi-square statistic (X2) under Scenario 1 for all
three variables and three alternative partitions of the log-likelihood ratio chi-square (G2),
obtained from the data in Table 1.

G2

effect X2 df p-value Partition 1 Partition 2 Partition 3
A 0.017 1 0.896 0.017 0.017 0.017
B 0.424 1 0.515 0.424 0.424 0.424
C 1.373 1 0.241 1.378 1.378 1.378

AB 0.153 1 0.696 0.145 0.145
AC 0.153 1 0.696 0.141 0.141
BC 4.898 1 0.027 5.650 5.650

AB|AC,BC 0.272
AC|AB,BC 0.268
BC|AB,AC 5.777
AB,AC,BC 5.204 3 0.158 6.063 6.063 6.063

ABC 1.373 1 0.241 1.295 1.295 1.295
AB,AC,BC,ABC 6.577 4 0.160 7.358 7.358 7.358
Total(+A,B,C) 8.390 7 0.299 9.178 9.178 9.178

As promised in the introduction section, we compare our partition of Pear-
son’s chi-square statistic and analogous partitions of the log-likelihood ratio
chi-square (G2), often used in log-linear analyses of contingency tables. Un-
fortunately, the familywise partition of G2

Total is not unique for tables of order
higher than two. Depending on how one splits the joint effects of three two-
way interaction effects, three alternative partitions emerge (Cheng et al., 2006;
Loisel and Takane, 2016). Specifically, let G2

AB denote the part G2 due to the
AB interaction ignoring the other two two-way interaction effects, and let
G2

AB|AC,BC (where the subscripts AB are followed by AC,BC separated by

|) denote the part G2 due to the AB interaction eliminating the effects of AC
and BC interactions (Goodman (1969) called the former the marginal two-way
interaction between A and B, and the latter the partial two-way interaction be-
tween A and B after eliminating the effects of AC and BC interactions). Then,
G2

AB,AC,BC = G2
AB + G2

AC + G2
BC|AB,AC = G2

AB + G2
BC + G2

AC|AB,BC =
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G2
AC + G2

BC + G2
AB|AC,BC . Depending on which of these three partitions of

G2
AB,AC,BC we use, three different partitions of G2

Total result. Columns 5 to 7

of Table 2 report the part G2’s for the three alternative partitions of G2
Total

for the same data set as above. These values were obtained by Proc Hilogli-
near and Proc Loglinear in SPSS. Each partition is exact, however, as can be
seen from the table, unlike the partition reported in Table 2 of Lang (1996).
Note that G2

ABC can only be calculated iteratively. Since the tests of partial
two-way interactions depend on the assumption of no three-way interaction
effect (Goodman, 1969), we start with the test of the three-way interaction,
which happens to be nonsignificant. We then proceed to the tests of partial
two-way interaction effects. As it happens, only the BC interaction effect is
significant. If we retain this effect in the model, the marginal BC interaction is
no longer testable. The only marginal two-way interactions that can be tested
independently from the partial BC interaction are the AB and AC interacti-
ons, neither of which turn out to be significant. Since the BC interaction effect
is significant, the only main effect that can be meaningfully tested is the A
main effect (Andersen, 1980, 1991), which turns out to be nonsignificant. The
whole pattern of the test results indicates that the model, in which variable A
is independent from the other two with the additional marginal homogeneity
of categories of variable A, is the best model. Thus, essentially the same con-
clusion as above reached by Pearson’s chi-square statistics can be drawn using
the LR statistics (Andersen, 1980, p. 104). See Loisel and Takane (2016) for
more detailed comparisons between partitions of Pearson’s statistics and the
LR ratio statistics.

It seems difficult, if not impossible, to make general remarks on relative
merits of X2 and G2. There are a variety of criteria (e.g., speed of convergence,
efficiency, robustness against outliers, overdispersion, etc.) and a wide range
of conditions under which their performance is evaluated. Results are “mixed”
depending on the conditions and criteria. For example, focussing on efficiency
alone, the two statistics are asymptotically equivalent in one situation (fixed
cells, a fixed size of the tests, and local alternatives). On the other hand, G2

is said to be optimal in another situation (fixed cells, fixed (nonlocal) alter-
natives, and size of the tests tending to zero as the sample size increases),
while this superiority of G2 does not necessarily hold, if the number of cells
is assumed to increase at the same rate as the sample size (Hoeffding, 1965).
Thus, there is no statistic which is universally the best. One promising idea
to resolve the issue is the use of the power-divergence statistic proposed by
Cressie and Read (1984), which is a family of statistics indexed by the value
of λ, and which includes both G2 (λ = 0) and X2 (λ = 1) as its special cases.
Cressie and Read (1984) recommend λ = 2/3 as a good compromise between
G2 and X2; see also Read and Cressie (1988, p. 96-97). While it is not easy to
derive exact partitions of the power-divergence statistic with λ = 2/3 similar
to the ones for X2, it is possible to turn each term in the partitions of X2 into
a power-divergence statistic by plugging in appropriate values of observed and
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expected joint or marginal probabilities in the formula of the power-divergence
statistic.

4.2 Twin births by year, gender combinations, and race

Here we illustrate the partitions of Pearson’s chi-square statistic in a gene-
tic study. The data concerns the number of twin births in the U.S. Birth
Registration Area from 1922 to 1936 (inclusive) annually for Caucasian and
African-American twins of the same and different gender (Strandskov and
Edelen, 1946). Table 3 displays a contingency table of dimension 15 × 3 × 2,
consisting of the following three variables: Variable A is the birth year with 15
categories, variable B represents the gender profiles in twins with three cate-
gories, both males (MM), both females (FF ), and one male and one female
(MF ), and variable C is the race of twins with two categories, Caucasian and
African-American.

Table 3 Crosstabulation of twins in terms of birth year (variable A), combination of gender
(variable B), and race (variable C).

(C)Race Caucasian African-American
(A)Year\(B)Gender MM FF MF MM FF MF

1922 6176 6304 6467 735 794 687
1923 6298 6298 6547 735 815 751
1924 6552 6659 7052 775 916 797
1925 6412 6173 6875 651 746 674
1926 6412 6309 6864 697 747 697
1927 7334 7357 7998 1056 1082 1033
1928 7499 7555 7998 1164 1323 1247
1929 7422 7504 7721 1251 1319 1272
1930 7224 7316 7583 1289 1432 1284
1931 6782 7074 7239 1280 1432 1259
1932 6790 7102 7164 1253 1468 1304
1933 6721 6926 7094 1377 1545 1327
1934 7135 7054 7401 1388 1558 1457
1935 6911 6983 7385 1211 1414 1293
1936 7104 7059 7492 1290 1329 1295

There is a substantive theory deducing the marginal probabilities of diffe-
rent gender profiles. Human twins are generally thought to be of two types; mo-
nozygotic (MZ) (or single-egg) twins and dizygotic (DZ) (or two-egg) twins.
In human genetics, the existence of dizygotic twins explains why some twins
consist of different gender. That monozygotic twins occur at all is attested by
the fact that more same-sex twins appear than what one would expect if the
twins were all dizygotic. For the genetic rules on twinning, we may assume that
the probability of twins being dizygotic is P (DZ) = 2/3 and the probability
of being monozygotic is P (MZ) = 1/3. Also, let the probability of two twin
males and two twin females being born, given that they are monozygotic, be
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P (MM |MZ) = P (FF |MZ) = 1/2, while the probability of different genders
in monozygotic twins be P (MF |MZ) = 0. Further, the probabilities of two
male dizygotic twins, and two female dizygotic twins are P (MM |DZ) = 1/4
and P (FF |DZ) = 1/4, respectively, while P (MF |DZ) = 1/2. This leads to
P (MM) = 1/3, P (FF ) = 1/3, and P (MF ) = 1/3, so that the prescribed
marginal probabilities for the gender variable are p∗B = (1/3, 1/3, 1/3)′. In the
first analysis of the above data set, the gender profile variable (variable B) is
regarded as a Scenario 1 variable so we are going to test that its probabilities
are homogeneous, while the other two as Scenario 2 variables whose marginal
probabilities are estimated from the data.

Table 4 summarises the part chi-squares in the partition of Pearson’s statis-
tic, given the above specifications of the marginal probabilities. The partition
includes one nonzero main effect term (X2

B), three two-way interaction terms,
and one three-way interaction term. The table reports, for each term, their
magnitude, the corresponding df, and the p-value under the assumptions of
complete independence among the three variables and of the correctness of
the prescribed marginal probabilities for variable B. The total chi-square is
X2

Total = 2362.66 with 74 df, which is highly significant, indicating a clear
departure from independence and/or mis-specifications of marginal probabili-
ties. Note, however, that X2

Total does not tell us which of the familywise effects
are responsible for its significance. For this, we need to look at the values of
part chi-squares in the partition of this quantity.

We first consider the main effect of variable B (X2
B = 159.39 with 2 df),

which is highly significant, so we reject the hypothesis that the marginal pro-
babilities are homogeneous indicating a “gross” mis-specifications of the mar-
ginal probabilities of this variable. There must be something wrong with the
theory from which the expected marginal probabilities were derived. It may
be that the assumption of P (MZ) = 1/3 and P (DZ) = 2/3 and/or that of
P (M) = P (F ) = 1/2 from which conditional probabilities of gender profiles
given the types of twins are deduced is too crude. In any case, this result
indicates that there is a room for improvements in the genetic theory.

The genetic theory given above also did not take into account the possibility
that the values of the probabilities used to calculate the expected marginal
probabilities of the twin’s gender profiles may depend on other variables such
as the year of birth and the race of the twin-pair that is born. In order to check
this possibility, we look at other part chi-squares in the table. The three-way
interaction (X2

ABC = 23.66 with 28 df) is not significant, but three two-way
interactions are all significant in varying degrees. In particular, the gender by
race interaction (X2

BC = 149.8 with 2 df) is highly significant, indicating the
probabilities of the three gender profiles (MM , FF , and MF ) do differ across
the two races. The gender by year interaction is also significant (X2

AB = 54.03
with 28 df), although much less significant than the gender by race interaction.
This indicates that the probabilities of the gender profiles also change as the
years go by (although the nature of the changes is unclear at this point). The
year by race interaction is by far the largest interaction effect (X2

AC = 1975.99
with 14 df) among all the interaction effects. This indicates that the probability
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distribution of twin births across the two races (regardless of their gender
profiles) change in time (although this effect has nothing to do with the genetic
theory that predicted the probabilities of gender profiles).

Table 4 Partition of Pearson’s three-way chi-square statistic obtained from the data in
Table 3 under Scenario 1 for variable B (gender profile) and under Scenario 2 for variables
A (year) and C (race).

effect X2 df p-value
B 159.39 2 <0.001

AB 54.03 28 0.002
AC 1975.99 14 <0.001
BC 149.58 2 <0.001

ABC 23.66 28 0.699
Total 2362.66 74 <0.001

The analyses reported above assumed that the effects of the mis-specification
of marginal probabilities for gender profiles on interaction chi-squares were
negligible, despite the fact that the main effect of the gender variable was
significant. The interaction chi-squares related to variable B reported in Ta-
ble 4 may be un-ignorably affected by the mis-specification. To find it out,
the same data set was reanalysed, assuming that all three variables were un-
der Scenario 2. Table 5 reports the recalculated values of the interaction chi-
squares. As it turns out, all part chi-square values are very similar to the
corresponding part chi-squares in the previous table. Apparently, the effects
of the mis-specification are relatively minor in this particular instance. This
may be because the observed marginal probabilities (of 0.325, 0.332, and .342)
are not far away from the prescribed value of .333 for all three gender pro-
files, with the significance of the departures being primarily driven by the
large sample size (n = 365, 774). A big question is how we know when the
mis-specification of the marginal probabilities significantly affect the values of
interaction chi-squares, and when not? Unfortunately, there is no good answer
to this question a priori. The only way that can be recommended is, as in the
present case, to reanalyse the data regarding the variables as under Scenario 2,
whose main effects are found to be significant under Scenario 1, and compare
the results.

Table 5 Partition of Pearson’s three-way chi-square statistic obtained from the data in
Table 3 under Scenario 2 for all three variables.

Effect X2 df p-value
AB 53.85 28 0.002
AC 1976.00 14 <0.001
BC 148.50 2 <0.001

ABC 22.73 28 0.746
Total 2201.08 72 <0.001
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5 Discussion

In this paper, we presented a general framework for partitioning Pearson’s
chi-square statistic under the assumption of complete independence among
the variables. This framework is “general”, as it applies to contingency tables
of any order. The resulting partitions are unique, exact, and can be calcula-
ted in closed form, unlike some of their competitors (e.g., the log-likelihood
ratio chi-square). With these partitions, simultaneous tests of marginal and
joint probabilities in contingency tables become feasible. Although these tests
demand an additional burden of prescribing marginal probabilities, they, in
return, provide opportunities to kill “two birds with one stone”, whenever
plausible values of marginal probabilities are available. In case they are not
available, one can always resort back to the usual analyses of the joint proba-
bilities, ignoring the marginals. Two examples of analyses along this line were
presented to illustrate the point.

Plackett (1962) has claimed that X2
ABC in Lancaster (1951) (Equation (27)

in this paper) does not need to follow an asymptotic chi-square distribution
under the notion of no three-way interaction effect originally proposed by Bart-
lett (1935); see also Simpson (1951) and Roy and Kastenbaum (1956). This
is indeed true if it is the only plausible definition of no three-way interaction.
We argue that there is an alternative definition, more suitable in the context
of Pearson’s chi-square statistic, namely

pabc = p̂ab.p..c + p̂a.cp.b. + p̂.bcpa.. − p̂a..p.b.p..c − p̂.b.pa..p..c
−p̂..cpa..p.b. + pa..p.b.p..c (42)

for all combinations of a, b, and c (see Equation (32)). Under this notion of
no three-way interaction, our theoretical contention that the asymptotic null
distribution of X2

ABC is well approximated by a chi-square distribution under
a variety of conditions (profiles of scenarios) has been confirmed by extensive
Monte-Carlo studies (Lombardo et al., 2017).

Note that familywise partitions of the total chi-squares into multiple part
chi-squares tend to increase the number of tests to be performed on one data
set. For example, there could be up to seven tests in three-way contingency
tables. To keep the joint α level (the probability of committing a Type 1
error in at least one of the tests performed) to a reasonable level, we may use
the Bonferroni type of tests, as has been recommended by Andersen (1980,
1991). In these tests, the usual α level is divided by the number of tests
to be performed, and each test is performed with the reduced α level. This
guarantees the joint α level is at most the prescribed value of α. A potential
drawback of the Bonferroni tests is that they are often too conservative. In fact,
they get more and more conservative as the number of tests to be performed.
Another interesting idea is to use post-hoc tests like the ones developed by
Goodman (1964), which keep the joint α level constant no matter how many
tests are performed.

The partitions of Pearson’s statistic presented in this paper were all derived
under the assumption of complete independence among the variables. Some
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argue that this is too restrictive because this assumption is violated too often
in practical situations. One may ask, however, how we will know when the
assumption is violated? To find it out, we need to know the null distribution
of the statistic (X2

Total), and to identify the nature of the violation, that of the
terms in the partition of the statistic (part chi-squares). The assumption of
independence is essential as a working hypothesis to derive such distributions.

If the purpose of the analyses goes beyond the complete independence as-
sumption, we can offer alternative partitions of Pearson’s statistic under wea-
ker assumptions, such as one variable independent from other two (one-factor
independence), or two variables conditionally independent given a third vari-
able (conditional independence). In fact, such partitions were already derived
and used by Loisel and Takane (2016, Section 4.3) in the analysis of three-way
contingency tables. It should be noted, however, that there are three ways in
which one variable is independent from the other two, and also three ways
in which two variables are conditionally independent from a third variable in
three-way contingency tables, and these numbers tend to go up rapidly, as
the tables increase their order. As an appropriate partition depends on these
situational factors, we have to be aware in advance which situation we are in.
This could be a bit too demanding in many practical situations.
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